留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

风云卫星的掩星干大气温度廓线精准度特征

廖蜜 张鹏 刘健 柳聪亮 白伟华 徐娜 陈林

廖蜜, 张鹏, 刘健, 等. 风云卫星的掩星干大气温度廓线精准度特征. 应用气象学报, 2023, 34(3): 270-281. DOI:  10.11898/1001-7313.20230302..
引用本文: 廖蜜, 张鹏, 刘健, 等. 风云卫星的掩星干大气温度廓线精准度特征. 应用气象学报, 2023, 34(3): 270-281. DOI:  10.11898/1001-7313.20230302.
Liao Mi, Zhang Peng, Liu Jian, et al. Accuracy and stability of radio occultation dry temperature profiles from Fengyun satellites. J Appl Meteor Sci, 2023, 34(3): 270-281. DOI:  10.11898/1001-7313.20230302.
Citation: Liao Mi, Zhang Peng, Liu Jian, et al. Accuracy and stability of radio occultation dry temperature profiles from Fengyun satellites. J Appl Meteor Sci, 2023, 34(3): 270-281. DOI:  10.11898/1001-7313.20230302.

风云卫星的掩星干大气温度廓线精准度特征

DOI: 10.11898/1001-7313.20230302
资助项目: 

国家重点研发计划 2022YFF0801302

国家重点研发计划 2021YFC2803303

中国科学院青年交叉团队项目 JCTD-2021-10

详细信息
    通信作者:

    廖蜜, 邮箱:liaomi@cma.gov.cn

Accuracy and Stability of Radio Occultation Dry Temperature Profiles from Fengyun Satellites

  • 摘要: 风云三号气象卫星C星/D星/E星的掩星接收机接收GPS和北斗导航卫星信号,形成掩星事件,进而反演得到大气温度廓线。利用2016—2022年FY-3C/3D/3E GPS和北斗掩星干大气温度廓线,通过与ERA5再分析资料对比,分析掩星干大气温度的精准度特征。结果表明:掩星干大气温度廓线在200 hPa至20 hPa间精度最高,标准偏差约为1 K,且GPS与北斗掩星的误差特征相近。在稳定度方面,FY-3C GPS掩星干大气温度平均偏差线性变化趋势为-0.0055 K·a-1,与国外同类掩星资料稳定性相当。因2021年初掩星天线多径效应订正,FY-3D GPS掩星干大气温度与ERA5再分析资料的平均偏差出现明显跳变,平均偏差值从-0.154 K降为-0.007 K, 负偏差显著减小。总体上,FY-3C GPS掩星干大气温度廓线长序列稳定度较好,北斗掩星干大气温度廓线精度能够达到或优于GPS,风云极轨卫星序列的GPS和北斗掩星在长序列稳定性上具有良好的应用前景。
  • 图  1  FY-3C/3D/3E GPS和BDS掩星的日平均廓线数

    Fig. 1  Daily profile number of FY-3C/3D/3E GPS and DBS radio occultation

    图  2  2022年1月1日掩星干大气温度廓线与湿大气温度廓线对比

    Fig. 2  Comparison of radio occultation dry and wet temperature profiles on 1 Jan 2022

    图  3  风云卫星掩星干大气温度廓线与ERA5的平均偏差、标准偏差以及垂直样本量

    Fig. 3  Deviation, standard deviation and sample number of Fengyun radio occultation dry temperature profiles to ERA5

    图  4  GPS掩星干大气温度在300 hPa至30 hPa高度平均偏差的时间序列

    Fig. 4  Time series of mean deviation of GPS radio occultation dry temperature from 300 hPa to 30 hPa

    图  5  GPS掩星干大气温度在300 hPa至30 hPa高度平均标准偏差的时间序列

    Fig. 5  Time series of mean standard deviation of GPS radio occultation dry temperature from 300 hPa to 30 hPa

    图  6  BDS掩星干大气温度在300 hPa至30 hPa高度平均偏差的时间序列

    Fig. 6  Time series of mean deviation of BDS radio occultation dry temperature from 300 hPa to 30 hPa

    图  7  BDS掩星干大气温度在300 hPa至30 hPa高度平均标准偏差的时间序列

    Fig. 7  Time series of mean standard deviation of BDS radio occultation dry temperature from 300 hPa to 30 hPa

    图  8  掩星干大气温度在300 hPa至30 hPa高度平均偏差的时间序列

    Fig. 8  Time series of mean deviation of radio occultation dry temperature from 300 hPa to 30 hPa

    表  1  FY-3E GPS与BDS掩星干大气温度廓线在不同高度的平均偏差和标准偏差

    Table  1  Mean deviation and mean standard deviation of FY-3E GPS and BDS radio occultation dry temperature profile at different altitudes

    高度 GPS BDS
    平均偏差/K 标准偏差/K 平均偏差/K 标准偏差/K
    500 hPa至225 hPa -1.22 2.13 -0.81 1.45
    200 hPa至100 hPa -0.17 1.07 -0.05 0.83
    70 hPa至1 hPa 0.01 4.26 0.41 3.96
    500 hPa至1 hPa -0.46 2.49 -0.15 2.08
    下载: 导出CSV

    表  2  掩星干大气温度在300 hPa至30 hPa高度的平均偏差和标准偏差

    Table  2  Mean bias and deviation of radio occultation dry temperature from 300 hPa to 30 hPa

    卫星产品 平均偏差/K 标准偏差/K
    FY-3C GPS -0.10 1.09
    FY-3D GPS -0.15 1.08
    FY-3D BDS -0.01 1.13
    FY-3E GPS -0.22 1.34
    FY-3E BDS -0.15 0.99
    下载: 导出CSV
  • [1] 林爱兰, 谷德军, 彭冬冬, 等.近60年我国东部区域性持续高温过程变化特征.应用气象学报, 2021, 32(3):302-314. doi:  10.11898/1001-7313.20210304

    Lin A L, Gu D J, Peng D D, et al. Climatic characteristics of regional persistent heat event in in the eastern China during recent 60 years. J Appl Meteor Sci, 2021, 32(3): 302-314. doi:  10.11898/1001-7313.20210304
    [2] 张人禾. 气候观测系统及其相关的关键问题. 应用气象学报, 2006, 17(6): 705-710. http://qikan.camscma.cn/article/id/200606119

    Zhang R H. Climate observing system and related crucial issues. J Appl Meteor Sci, 2006, 17(6): 705-710. http://qikan.camscma.cn/article/id/200606119
    [3] 赵平, 南素兰. 气候和气候变化领域的研究进展. 应用气象学报, 2006, 17(6): 725-735. http://qikan.camscma.cn/article/id/200606121

    Zhao P, Nan S L. Some advances in climate and climate change research. J Appl Meteor Sci, 2006, 17(6): 725-735. http://qikan.camscma.cn/article/id/200606121
    [4] 任素玲, 牛宁, 覃丹宇, 等. 2021年2月北美极端低温暴雪的卫星遥感监测. 应用气象学报, 2022, 33(6): 696-710. doi:  10.11898/1001-7313.20220605

    Ren S L, Niu N, Qin D Y, et al. Extreme cold and snowstorm event in North America in February 2021 based on satellite data. J Appl Meteor Sci, 2022, 33(6): 696-710. doi:  10.11898/1001-7313.20220605
    [5] Hurrell J W, Trenberth K E. Spurious trends in satellite MSU temperatures from merging different satelliterecords. Nature, 1997, 386: 164-167. doi:  10.1038/386164a0
    [6] 谷松岩, 王振占, 李靖, 等. 风云三号A星微波湿度计主探测通道辐射特性. 应用气象学报, 2010, 21(3): 335-342. doi:  10.3969/j.issn.1001-7313.2010.03.009

    Gu S Y, Wang Z Z, Li J, et al. The radiometric characteristics of sounding channels for FY-3A/MWHS. J Appl Meteor Sci, 2010, 21(3): 335-342. doi:  10.3969/j.issn.1001-7313.2010.03.009
    [7] Nash J, Forrester G F. Long-term monitoring of stratospheric temperature trends using radiance measurements obtained by the TIROS-N series of NOAA spacecraft. Adv Space Res, 1986, 6(10): 37-44. doi:  10.1016/0273-1177(86)90455-2
    [8] Ohring G, Wielicki B, Spencer R, et al. Satellite instrument calibration for measuring global climate change: Report of a workshop. Bull Amer Meteor Soc, 2005, 86(9): 1303-1313. doi:  10.1175/BAMS-86-9-1303
    [9] Christy J R, Spencer R W, Lobl E S. Analysis of the merging procedure for the MSU daily temperature time series. J Climate, 1998, 11: 2016-2041. doi:  10.1175/1520-0442(1998)011<2016:AOTMPF>2.0.CO;2
    [10] Mears C A, Wentz F J. Construction of the remote sensing systems V3.2 atmospheric temperature records from the MSU and AMSU microwave sounders. J Atmos Oceanic Technol, 2008, 26: 1040-1056.
    [11] Po-Chedley S, Thorsen T J, Fu Q. Removing diurnal cycle contamination in satellite-derived tropospheric temperatures: Understanding tropical tropospheric trend discrepancies. J Climate, 2015, 28: 2274-2290. doi:  10.1175/JCLI-D-13-00767.1
    [12] Spencer R W, Christy J R. Precise monintoring of global temperature trends from satellite. Science, 1990, 247: 1558-1562. doi:  10.1126/science.247.4950.1558
    [13] Fu Q, Johanson C M. Stratospheric influences on MSU-derived tropospheric temperature trends: A direct error analysis. J Climate, 2004, 17: 4636-4640. doi:  10.1175/JCLI-3267.1
    [14] 邹成治, 高梅. 交叉定标产生的NOAA卫星长期大气温度观测资料. 应用气象学报, 2008, 19(5): 582-587. doi:  10.3969/j.issn.1001-7313.2008.05.009

    Zou C Z, Gao M. A long-term atmospheric temperature dataset derived from NOAA microwave sounding unit with cross-calibration. J Appl Meteor Sci, 2008, 19(5): 582-587. doi:  10.3969/j.issn.1001-7313.2008.05.009
    [15] Thorne P W, Lanzante J R, Peterson T C, et al. Tropospheric temperature trends: History of an ongoing controversy. WIREs Clim Change, 2011, 2(1): 66-88. doi:  10.1002/wcc.80
    [16] Melbourne W G, Davis E S, Duncan C B, et al. The Application of Spaceborne GPS to Atmospheric Limb Sounding and Global Change Monitoring. Pasadena, Calif: Jet Propulsion Laboratory, 1994.
    [17] Ware R, Rocken C, Solheim F, et al. GPS sounding of the atmosphere from lower earth orbit: Preliminary results. Bull Amer Meteor Soc, 1996, 77: 19-40. doi:  10.1175/1520-0477(1996)077<0019:GSOTAF>2.0.CO;2
    [18] Sokolovskiy S V. Tracking tropospheric radio occultation signals from low earth orbit. Radio Sci, 2001, 36(3): 483-498. doi:  10.1029/1999RS002305
    [19] Steiner A K, Ladstädter F, Randel W J, et al. Observed temperature changes in the troposphere and stratosphere from 1979 to 2018. J Climate, 2020, 33: 8165-8194. doi:  10.1175/JCLI-D-19-0998.1
    [20] Gleisner H, Ringer M A, Healy S B. Monitoring global climate change using GNSS radio occultation. npj Climate Atmos Sci, 2022, 5: 6. doi:  10.1038/s41612-022-00229-7
    [21] Kursinski E, Hajj G A, Bertiger W I, et al. Initial results of radio occultation observations of earth's atmosphere using the Global Positioning System. Science, 1996, 271: 1107-1110. doi:  10.1126/science.271.5252.1107
    [22] Rocken C, Anthes R, Exner M, et al. Analysis and validation of GPS/MET data in the neutral atmosphere. J Geophys Res, 1997, 102: 29849-29866. doi:  10.1029/97JD02400
    [23] Schreiner W S, Weiss J P, Anthes R A, et al. COSMIC-2 radio occultation constellation: First results. Geophys Res Lett, 2020, 47: e2019GL086841.
    [24] Anthes R, Sjoberg J, Feng, X L, et al. Comparison of COSMIC and COSMIC-2 radio occultation refractivity and bending angle uncertainties in August 2006 and 2021. Atmosphere, 2022, 13(5): 790. doi:  10.3390/atmos13050790
    [25] Kursinski E R, Hajj G A, Schofield J T, et al. Observing earth's atmosphere with radio occultation measurements using the Global Positioning System. J Geophys Res, 1997, 102(D19): 23429-23465. doi:  10.1029/97JD01569
    [26] SteinerA K, Ladstädter F, Ao C O, et al. Consistency and structural uncertainity of multi-mission GPS radio occultation records. Atmos Meas Tech, 2020, 13(5): 2547-2575. doi:  10.5194/amt-13-2547-2020
    [27] Ho S P, Hunt D C, Steiner A K, et al. Reproducibility of GPS radio occultation data for climate monitoring: Profile-to-profile intercomparison of CHAMP climate records 2002 to 2008 from six data centers. J Geophys Res, 2012, 117: D18111.
    [28] Ladstädter F, Steiner A K, Schwärz M, et al. Climate intercomparison of GPS radio occultation, RS90/92 radiosondes and GRUAN from 2002 to 2013. Atmos Meas Tech, 2015, 8: 1819-1834. doi:  10.5194/amt-8-1819-2015
    [29] Gleisner H, Lauritsen K B, Nielsen J K, et al. Evaluation of the 15-year ROM SAF monthly mean GPS radio occultation climate data record. Atmos Meas Tech, 2020, 13: 3081-3098. doi:  10.5194/amt-13-3081-2020
    [30] 廖蜜, 张鹏, 毕研盟等. 风云三号气象卫星掩星大气产品精度的初步检验. 气象学报, 2015, 73(6): 1131-1140. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201506011.htm

    Liao M, Zhang P, Bi Y M, et al. A preliminary estimation of the radio occultation products accuracy from the Fengyun-3C meteorological satellite. Acta Meteor Sinica, 2015, 73(6): 1131-1140. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201506011.htm
    [31] Liao M, Healy S B, Zhang P. Processing and quality control of FY-3C GNOS data used in numerical weather prediction applications. Atmos Meas Tech, 2019, 12(5): 2679-2692. doi:  10.5194/amt-12-2679-2019
    [32] Liao M, Zhang P, Yang G L, et al. Preliminary validation of the refractivity from the new radio occultation sounder GNOS/FY-3C. Atmos Meas Tech, 2016, 9: 781-792. doi:  10.5194/amt-9-781-2016
    [33] 王树志, 朱光武, 白伟华, 等. 风云三号C星全球导航卫星掩星探测仪首次实现北斗掩星探测. 物理学报, 2015, 64(8): 089301. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201508054.htm

    Wang S Z, Zhu G W, Bai W H, et al. For the first time Fengyun3 C satellite-global navigation satellite system occultation sounder achieved spaceborne Bei Dou system radio occultation. Acta Physica Sinica, 2015, 64(8): 089301. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201508054.htm
    [34] Healy S, Eyre J. Retrieving temperature water vapour and surface pressure information from a refractive-index profiles derived by radio occultation: A simulation study. Quart J Roy Meteor Soc, 2000, 126: 1661-1683.
    [35] Poli P, Joiner J, Kursinski E R. 1DVAR analysis of temperature and humidity using GPS radio occultation refractivity data. J Geophys Res, 2002, 107(D20): 4448.
    [36] Phinney R A, Anderson D L. On the radio occultation method for studing planetary atmospheres. J Geophys Res, 1968, 73(5): 1819-1827.
    [37] Smith E K, Weintraub S. The constants in the equation for atmosphere index at radio frequencies. Proc IRE, 1953, 41(8): 1035-1037.
    [38] Danzer J, Foelsche U, Scherllin-Pirscher B, et al. Influence of changes in humidity on dry temperature in GPS RO climatologies. Atmos Meas Tech, 2014, 7: 2883-2896.
    [39] Schwärz M, Scherllin-Pirscher B, Kirchengast G, et al. Multi-mission Validation by Satellite Radio Occultation. Final Report for ESA/ESRIN No. 01/2013, WEGC, University of Graz, Austria, 2013.
    [40] 周雪松, 郭启云, 夏元彩, 等. 基于往返式平漂探空的FY-3D卫星反演温度检验. 应用气象学报, 2023, 34(1): 52-64. doi:  10.11898/1001-7313.20230105

    Zhou X S, Guo Q Y, Xia Y C, et al. Inspection of FY-3D satellite temperature data based on horizontal drift round-trip sounding data. J Appl Meteor Sci, 2023, 34(1): 52-64. doi:  10.11898/1001-7313.20230105
    [41] 刘健, 王锡津. 主要卫星云气候数据集评述. 应用气象学报, 2017, 28(6): 654-665. doi:  10.11898/1001-7313.20170602

    Liu J, Wang X J. Assessment on main kinds of satellite cloud climate datasets. J Appl Meteor Sci, 2017, 28(6): 654-665. doi:  10.11898/1001-7313.20170602
    [42] 郭启云, 杨荣康, 程凯琪, 等. 基于探空观测的多源掩星折射率质量控制及对比. 应用气象学报, 2020, 31(1): 13-26. doi:  10.11898/1001-7313.20200102

    Guo Q Y, Yang R K, Cheng K Q, et al. Refractive index quality control and comparative analysis of multi-source occultation based on sounding observation. J Appl Meteor Sci, 2020, 31(1): 13-26. doi:  10.11898/1001-7313.20200102
  • 加载中
图(8) / 表(2)
计量
  • 摘要浏览量:  616
  • HTML全文浏览量:  73
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-21
  • 修回日期:  2023-03-20
  • 刊出日期:  2023-05-31

目录

    /

    返回文章
    返回