留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微波辐射计和探空的FY-4A温度廓线检验

王洪 周后福 王琛 夏一楠

王洪, 周后福, 王琛, 等. 基于微波辐射计和探空的FY-4A温度廓线检验. 应用气象学报, 2023, 34(3): 295-308. DOI:  10.11898/1001-7313.20230304..
引用本文: 王洪, 周后福, 王琛, 等. 基于微波辐射计和探空的FY-4A温度廓线检验. 应用气象学报, 2023, 34(3): 295-308. DOI:  10.11898/1001-7313.20230304.
Wang Hong, Zhou Houfu, Wang Chen, et al. Accuracy validation of FY-4A temperature profile based on microwave radiometer and radiosonde. J Appl Meteor Sci, 2023, 34(3): 295-308. DOI:  10.11898/1001-7313.20230304.
Citation: Wang Hong, Zhou Houfu, Wang Chen, et al. Accuracy validation of FY-4A temperature profile based on microwave radiometer and radiosonde. J Appl Meteor Sci, 2023, 34(3): 295-308. DOI:  10.11898/1001-7313.20230304.

基于微波辐射计和探空的FY-4A温度廓线检验

DOI: 10.11898/1001-7313.20230304
资助项目: 

山东省自然科学基金项目 ZR2020MD054

华东区域气象科技协同创新基金合作项目 QYHZ202103

山东省气象局重点项目 2022sdqxz10

山东省气象局重点项目 2020sdqxz08

中国气象局创新发展专项 CXFZ2022J034

详细信息
    通信作者:

    周后福, 邮箱:zhf_ahqx@163.com

Accuracy Validation of FY-4A Temperature Profile Based on Microwave Radiometer and Radiosonde

  • 摘要: 选取2021年1月1日—2022年3月31日山东济南地区探空、微波辐射计和FY-4A的温度廓线,评估FY-4A温度廓线偏差特征。结果表明:10 km以下,FY-4A温度比探空偏小0.51℃,两者偏差的标准差为0.50℃;FY-4A温度比微波辐射计偏大0.53℃,两者偏差的标准差为0.75℃。FY-4A与探空在00:00(世界时,下同)和12:00的温度偏差趋势一致;相对于00:00,12:00的FY-4A与探空温度偏差的离散程度较小。有降水时,600 m高度以上微波辐射计与FY-4A的温度偏差逐渐增大,在1500 m高度附近偏差达到最大值(约为9.35℃),在3000~8500 m高度内偏差为1.35~5.10℃,偏差的标准差为1.41~4.99℃。有降水时,FY-4A与探空的温度偏差和标准差在不同高度上不同,偏差变化范围为-0.31~3.60℃。有云时,微波辐射计与FY-4A的温度偏差为-0.40℃,偏差的标准差为3.79℃;探空与FY-4A的温度偏差为0.31℃,偏差的标准差为2.66℃。相对于有云时,晴空背景下FY-4A与另外两种设备的温度偏差和标准差均较小。
  • 图  1  2021年1月1日—2022年3月31日不同高度温度偏差的归一化等高度频率

    Fig. 1  Temperature deviation NCFADs at different heights from 1 Jan 2021 to 31 Mar 2022

    图  2  2021年1月1日—2022年3月31日微波辐射计与FY-4A温度偏差和探空与FY-4A温度偏差的频数分布

    Fig. 2  Temperature deviation frequency distribution of microwave radiometer and radiosonde from FY-4A from 1 Jan 2021 to 31 Mar 2022

    图  3  2021年1月1日—2022年3月31日微波辐射计和探空相对于FY-4A的温度偏差在不同高度的频数分布

    Fig. 3  Temperature deviation frequency distribution of microwave radiometer and radiosonde from FY-4A at different heights from 1 Jan 2021 to 31 Mar 2022

    图  4  2021年1月1日—2022年3月31日不同时次微波辐射计和探空相对于FY-4A的温度偏差的归一化等高度频率

    Fig. 4  Temperature deviation NCFADs of microwave radiometer and radiosonde from FY-4A at different times from 1 Jan 2021 to 31 Mar 2022

    图  5  2021年1月1日—2022年3月31日不同降水背景下微波辐射计和探空相对于FY-4A的温度偏差的归一化等高度频率

    Fig. 5  Temperature deviation NCFADs of microwave radiometer and radiosonde from FY-4A under different precipitation backgrounds from 1 Jan 2021 to 31 Mar 2022

    图  6  2021年1月1日—2022年3月31日不同云背景下微波辐射计和探空相对于FY-4A的温度偏差的归一化等高度频率

    Fig. 6  Temperature deviation NCFADs of microwave radiometer and radiosonde from FY-4A under different cloud backgrounds from 1 Jan 2021 to 31 Mar 2022

    表  1  微波辐射计、探空和FY-4A温度廓线探测概况

    Table  1  Temperature profile information of microwave radiometer, radiosonde and FY-4A satellite

    参数 微波辐射计 探空 FY-4A/GIIRS
    最大探测高度 10 km 25 km 大气层顶
    垂直层数 93 约90 101
    垂直分辨率 20~400 m 6~700 m 200~1000 m
    时间分辨率 2~3 s 12 h 2 h
    下载: 导出CSV

    表  2  FY-4A相对于微波辐射计和探空的温度偏差在不同层次统计量(单位:℃)

    Table  2  Deviation statistics of microwave radiometer and radiosonde relative to FY-4A at different levels(unit:℃)

    高度 探空与FY-4A的温度偏差 微波辐射计与FY-4A的温度偏差
    平均值 标准差 平均值 标准差
    0~220 m -0.04 0.72 -1.61 0.59
    250~1000 m 0.16 0.71 -0.43 0.92
    1040~3000 m 0.69 0.21 0.06 0.53
    3100~8700 m 0.74 0.12 -0.73 0.10
    9000~10000 m 0.48 0.15 0.75 0.10
    下载: 导出CSV
  • [1] 鲍艳松, 钱程, 闵锦忠, 等.利用地基微波辐射计资料反演0~10 km大气温湿廓线试验研究.热带气象学报, 2016, 32(2):163-171. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201602003.htm

    Bao Y S, Qian C, Min J Z, et al. 0~10 km temperature and humidity profiles retrieval from ground-based microwave radiometer. J Trop Meteor, 2016, 32(2): 163-171. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201602003.htm
    [2] 刘红燕, 李炬, 曹晓彦, 等. 遥感大气结构的地基12通道微波辐射计测量结果分析. 遥感技术与应用, 2007, 22(2): 222-229. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS200702019.htm

    Liu H Y, Li J, Cao X Y, et al. Characteristics of the atmosphere remote sensed by the ground-based 12-channel radiometer. Remote Sens Technol Appl, 2007, 22(2): 222-229. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS200702019.htm
    [3] 崔新东, 汤鹏宇, 姚志刚, 等. 机载微波大气温度探测仪多高度飞行观测试验结果分析. 热带气象学报, 2019, 35(2): 224-233. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201902008.htm

    Cui X D, Tang P Y, Yao Z G, et al. Result analysis of observations by airborne microwave instruments on multi-altitude flights. J Trop Meteor, 2019, 35(2): 224-233. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201902008.htm
    [4] 杨雨晗, 尹球, 束炯. FY-4A大气垂直探测仪(GⅡRS)温度探测通道优选. 红外与毫米波学报, 2018, 37(5): 545-552. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201805007.htm

    Yang Y H, Yin Q, Shu J. Channel selection of atmosphere vertical sounder(GⅡRS) onboard the FY-4A geostationary satellite. J Infrared Millim Waves, 2018, 37(5): 545-552. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201805007.htm
    [5] 韩丰, 杨璐, 周楚炫, 等. 基于探空数据集成学习的短时强降水预报试验. 应用气象学报, 2021, 32(2): 188-199. doi:  10.11898/1001-7313.20210205

    Han F, Yang L, Zhou C X, et al. An experimental study of the short-time heavy rainfall event forecast based on ensemble learning and sounding data. J Appl Meteor Sci, 2021, 32(2): 188-199. doi:  10.11898/1001-7313.20210205
    [6] 周雪松, 郭启云, 夏元彩, 等. 基于往返式平漂探空的FY-3D卫星反演温度检验. 应用气象学报, 2023, 34(1): 52-64. doi:  10.11898/1001-7313.20230105

    Zhou X S, Guo Q Y, Xia Y C, et al. Inspection of FY-3D satellite temperature data based on horizontal drift round-trip sounding data. J Appl Meteor Sci, 2023, 34(1): 52-64. doi:  10.11898/1001-7313.20230105
    [7] 刘红燕, 王迎春, 王京丽, 等. 由地基微波辐射计测量得到的北京地区水汽特性的初步分析. 大气科学, 2009, 33(2): 388-396. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200902017.htm

    Liu H Y, Wang Y C, Wang J L, et al. Preliminary analysis of the characteristics of precipitable water vapor measured by the ground-based 12-channel microwave radiometer in Beijing. Chinese J Atmos Sci, 2009, 33(2): 388-396. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200902017.htm
    [8] 林晓萌, 尉英华, 张楠, 等. 基于地基遥感设备构建遥感探空廓线. 应用气象学报, 2022, 33(5): 568-580. doi:  10.11898/1001-7313.20220505

    Lin X M, Wei Y H, Zhang N, et al. Construction of air-sounding-profile system based on foundation-remote-sensing equipment. J Appl Meteor Sci, 2022, 33(5): 568-580. doi:  10.11898/1001-7313.20220505
    [9] 陈树成, 李晓波, 崔明, 等. 不同天气条件下微波辐射计和风廓线雷达探测数据误差特征分析. 气象与环境学报, 2021, 37(1): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX202101009.htm

    Chen S C, Li X B, Cui M, et al. Error analysis of detection data of microwave radiometer and wind profiler radar under different weather conditions. J Meteor Environ, 2021, 37(1): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX202101009.htm
    [10] 徐桂荣, 孙振添, 李武阶, 等. 地基微波辐射计与GPS无线电探空和GPS/MET的观测对比分析. 暴雨灾害, 2010, 29(4): 315-321. doi:  10.3969/j.issn.1004-9045.2010.04.003

    Xu G R, Sun Z T, Li W J, et al. Observational comparison among microwave water radiometer, GPS radiosonde and GPS/MET. Torrential Rain Disaster, 2010, 29(4): 315-321. doi:  10.3969/j.issn.1004-9045.2010.04.003
    [11] 姚志刚, 陈洪滨. 利用神经网络从118.75 GHz附近通道亮温反演大气温度. 气象科学, 2006, 26(3): 3252-3259. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200603002.htm

    Yang Z G, Chen H B. Retrieval of atmospheric temperature profiles with neural network inversion of microwave radiometer data in 6 channels near 118.75 GHz. Scientia Meteor Sinica, 2006, 26(3): 3252-3259. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200603002.htm
    [12] 李刚, 王颢樾, 柴素盈, 等. 利用探空资料对对流层-平流层热力结构的分析. 云南大学学报(自然科学版), 2014, 36(3): 384-391. https://www.cnki.com.cn/Article/CJFDTOTAL-YNDZ201403015.htm

    Li G, Wang H Y, Chai S Y, et al. An analysis on troposphere and stratosphere thermal structure by radiosonde data. Journal of Yunnan University(Nat Sci Ed), 2014, 36(3): 384-391. https://www.cnki.com.cn/Article/CJFDTOTAL-YNDZ201403015.htm
    [13] 梁智豪, 王东海, 梁钊明. 探空观测的边界层高度时空变化特征. 应用气象学报, 2020, 31(4): 447-459. doi:  10.11898/1001-7313.20200407

    Liang Z H, Wang D H, Liang Z M. Spatio-temporal characteristics of boundary layer height derived from soundings. J Appl Meteor Sci, 2020, 31(4): 447-459. doi:  10.11898/1001-7313.20200407
    [14] 吴泓锟, 陈起英, 华维, 等. 基于秒级探空资料分析四川重力波统计特征. 应用气象学报, 2019, 30(4): 491-501. doi:  10.11898/1001-7313.20190409

    Wu H K, Chen Q Y, Hua W, et al. A statistical study of gravity wave with second-level radiosonde data in Sichuan. J Appl Meteor Sci, 2019, 30(4): 491-501. doi:  10.11898/1001-7313.20190409
    [15] 曹玥瑶, 张鹏, 马刚, 等. FY-3 IRAS水汽通道亮温正演精度改进方法. 应用气象学报, 2016, 27(6): 698-708. doi:  10.11898/1001-7313.20160606

    Cao Y Y, Zhang P, Ma G, et al. An improvement of brightness temperature simulation of FY-3 IRAS infrared water vapor channel. J Appl Meteor Sci, 2016, 27(6): 698-708. doi:  10.11898/1001-7313.20160606
    [16] 罗清, 闵文彬, 彭骏. FY-2E卫星和探空湿度资料的对比分析. 高原山地气象研究, 2014, 34(1): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX201401005.htm

    Luo Q, Min W B, Peng J. Contrastive analysis of humidity data between FY-2E and sounding. Plateau Mountain Meteor Res, 2014, 34(1): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX201401005.htm
    [17] 唐维尧, 鲍艳松, 张兴赢, 等. FY-3A/MERSI、MODISC5.1和C6气溶胶光学厚度产品在中国区域与地面观测站点的对比分析. 气象学报, 2018, 76(3): 449-460. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201803009.htm

    Tang W Y, Bao Y S, Zhang X Y, et al. Comparison of FY-3A/MERSI, MODIS C5.1, C6 and AERONET aerosol optical depth in China. Acta Meteor Sinica, 2018, 76(3): 449-460. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201803009.htm
    [18] 周爱明. 基于风云四号高光谱红外模拟资料反演大气温湿廓线试验研究. 南京: 南京信息工程大学, 2017.

    Zhou A M. Atmospheric Temperature and Humidity Profiles Retrieval from Hyperspectral Infrared Simulation Data Based on FY-4. Nanjing: Nanjing University of Information Science & Technology, 2017.
    [19] 王素娟, 崔鹏, 张鹏, 等. FY-3B/VIRR海表温度算法改进及精度评估. 应用气象学报, 2014, 25(6): 701-710. http://qikan.camscma.cn/article/id/20140606

    Wang S J, Cui P, Zhang P, et al. The improvement of FY-3B/VIRR SST algorithm and its accuracy. J Appl Meteor Sci, 2014, 25(6): 701-710. http://qikan.camscma.cn/article/id/20140606
    [20] Kuo Y H, Schreiner W S, Wang J, et al. Comparison of GPS radio occultation soundings with radiosondes. Geophys Res Lett, 2005, 32(5). DOI: / 10.1029/2004GL021443.
    [21] 张秋晨, 龚佃利, 王俊, 等. 基于地基微波辐射计反演的济南地区水汽及云液态水特征. 气象与环境学报, 2017, 33(5): 35-43. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201705005.htm

    Zhang Q C, Gong D L, Wang J, et al. Characteristics of water vapor and liquid water content retrieved by ground-based microwave radiometer in Jinan. J Meteor Environ, 2017, 33(5): 35-43. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201705005.htm
    [22] 张秋晨, 龚佃利, 冯俊杰. RPG-HATPRO-G3地基微波辐射计反演产品评估. 海洋气象学报, 2017, 37(1): 104-110. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201701012.htm

    Zhang Q C, Gong D L, Feng J J. Analysis and evaluation of retrieval products of RPG-HATPRO-G3 ground-based microwave radiometers. J Mar Meteor, 2017, 37(1): 104-110. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201701012.htm
    [23] 张佃国, 王洪, 崔雅琴, 等. 山东济南地区2015年大气边界层逆温特征. 干旱气象, 2017, 35(1): 43-50. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201701006.htm

    Zhang D G, Wang H, Cui Y Q, et al. Analysis of atmospheric boundary layer inversion characteristics based on microwave radiometer observations in Jinan in 2015. Arid Meteor, 2017, 35(1): 43-50. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201701006.htm
    [24] 崔雅琴, 张佃国, 龚佃利, 等. 新探测仪器资料在短时强降水过程中的应用. 气象科技, 2016, 44(6): 875-881. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201606005.htm

    Cui Y Q, Zhang D G, Gong D L, et al. Application of new detecting instrument data in short-time heavy rainfall. Meteor Sci Technol, 2016, 44(6): 875-881. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201606005.htm
    [25] 崔雅琴, 张佃国, 王洪, 等. 2015年济南地区雾霾天气过程大气物理量特征初步分析. 大气科学, 2019, 43(4): 705-718. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201904001.htm

    Cui Y Q, Zhang D G, Wang H, et al. Preliminary analysis of atmospheric physical quantity characteristics during haze weather in Jinan area in 2015. Chinese J Atmos Sci, 2019, 43(4): 705-718. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201904001.htm
    [26] 刘斌成, 周宝才, 连萍. GFE(L)1型二次测风雷达天馈线分系统典型故障分析. 黑龙江气象, 2010, 27(6): 35-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJQ201002017.htm

    Liu B C, Zhou B C, Lian P. Typical error analysis of antenna feeder subsystem of GFE(L)1 secondary wind measuring radar. Heilongjiang Meteor, 2010, 27(6): 35-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJQ201002017.htm
    [27] Fu Y F, Lin Y H, Liu G S, et al. Seasonal characteristics of precipitation in 1998 over East Asia as derived from TRMM PR. Adv Atmos Sci, 2003, 20(4): 511-529.
    [28] Luo Y, Zhang R H, Wang H. Comparing occurrences and vertical structures of hydrometeors between eastern China and the Indian monsoon region using Cloud Sat/CALIPSO data. J Climate, 2009, 22(4): 1052.
    [29] 尹金方, 王东海, 翟国庆, 等. 基于星载云雷达资料的东亚大陆云垂直结构特征分析. 气象学报, 2013, 71(1): 121-133. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201301010.htm

    Yin J F, Wang D H, Zhai G Q, et al. A study of cloud vertical profiles from the Cloudsat data over the East Asian Continent. Acta Meteor Sinica, 2013, 71(1): 121-133. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201301010.htm
    [30] Yuter S E, Houze Jr R A. Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part Ⅱ: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon Wea Rev, 1995, 123(7): 1941-1963.
    [31] He M, Wang D H, Ding W Y, et al. A validation of Fengyun4A temperature and humidity profile products by radiosonde observations. Remote Sens-Basel, 2019, 11(17): 2039.
    [32] Yang J, Zhang Z Q, Wei C Y, et al. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull Amer Meteor Soc, 2017, 98(8): 1637-1658.
    [33] 薛秋蒙. 基于FY-4A/GⅡRS的全天空大气温湿度廓线反演算法研究. 南京: 南京信息工程大学, 2022.

    Xue Q M. Research on Retrieval Algorithm of All Sky Atmospheric Temperature and Humidity Profiles from the FY-4A GⅡRS. Nanjing: Nanjing University of Information Science & Technology, 2022.
    [34] 黄艺伟, 刘琼, 何敏, 等. 基于探空资料的上海台风季GⅡRS/FY-4A卫星温度廓线反演精度研究. 红外, 2019, 40(9): 28-38. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201909006.htm

    Huang Y W, Liu Q, He M, et al. Research on inversion precision of temperature profile of GⅡRS/FY-4A satellite in Shanghai typhoon season based on radiosonde data. Infrared, 2019, 40(9): 28-38. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201909006.htm
    [35] 马颖, 姚雯, 黄炳勋. 用初估场对比中芬探空仪温度和位势高度记录. 应用气象学报, 2011, 22(3): 336-345. http://qikan.camscma.cn/article/id/20110310

    Ma Y, Yao W, Huang B X. Comparison of temperature and geopotential height records between L-band and RS90/92 radiosonde systems using first-guess field. J Appl Meteor Sci, 2011, 22(3): 336-345. http://qikan.camscma.cn/article/id/20110310
    [36] 马颖, 姚雯, 黄炳勋. 59型与L波段探空仪温度和位势高度记录对比. 应用气象学报, 2010, 21(2): 214-220. http://qikan.camscma.cn/article/id/20100211

    Ma Y, Yao W, Huang B X. Comparison of temperature and geopotential height records between 59 type and L-band radiosonde systems. J Appl Meteor Sci, 2010, 21(2): 214-220. http://qikan.camscma.cn/article/id/20100211
    [37] 姚雯, 马颖. 秒级探空数据随机误差评估. 应用气象学报, 2015, 26(5): 600-609. doi:  10.11898/1001-7313.20150509

    Yao W, Ma Y. Evaluation on the random error of second level sounding data. J Appl Meteor Sci, 2015, 26(5): 600-609. doi:  10.11898/1001-7313.20150509
    [38] 贺黔阳, 李彦军, 冉光辉, 等. 三种新型数字探空仪GTS11、GTS12、GTS13性能评估. 中低纬山地气象, 2022, 46(2): 114-117. https://www.cnki.com.cn/Article/CJFDTOTAL-GZQX202202019.htm

    He Q Y, Li Y J, Ran G H, et al. Performance evaluation of three new digital radiosondes: GTS11, GTS12 and GTS13. Mid-low Latitude Mountain Meteorology, 2022, 46(2): 114-117. https://www.cnki.com.cn/Article/CJFDTOTAL-GZQX202202019.htm
    [39] 陈荣, 李琨, 杨文军, 等. 银川站探空仪换型平行观测数据对比分析. 宁夏工程技术, 2022, 21(2): 114-117;123. https://www.cnki.com.cn/Article/CJFDTOTAL-NXGJ202202004.htm

    Chen R, Li K, Yang W J, et al. Comparative analysis of parallel observation data of changeover sondes at Yinchuan Station. Ningxia Eng Technol, 2022, 21(2): 114-117;123. https://www.cnki.com.cn/Article/CJFDTOTAL-NXGJ202202004.htm
    [40] 王洪, 雷恒池, 杨超, 等. 济南地区大气可降水量三种观测反演资料的对比分析. 海洋气象学报, 2017, 37(2): 83-89. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201702010.htm

    Wang H, Lei H C, Yang C, et al. A comparison of datasets of precipitable water vapor over Jinan retrieved by three kinds of equipments. J Mar Meteor, 2017, 37(2): 83-89. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201702010.htm
    [41] 张文刚, 徐桂荣, 颜国跑, 等. 微波辐射计与探空仪测值对比分析. 气象科技, 2014, 42(5): 737-741. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201405002.htm

    Zhang W G, Xu G R, Yan G P, et al. Comparative analysis of microwave radiometer and radiosonde data. Meteor Sci Technol, 2014, 42(5): 737-741. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201405002.htm
    [42] 陈英英, 杨凡, 徐桂荣, 等. 基于雨雪天气背景的微波辐射计斜路径与天顶观测的反演结果对比分析. 暴雨灾害, 2015, 34(4): 375-383. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201504011.htm

    Chen Y Y, Yang F, Xu G R, et al. Comparative analysis of the zenith and off-zenith retrieved results from microwave radiometer in rain and snow weather conditions. Torrential Rain Disaster, 2015, 34(4): 375-383. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201504011.htm
    [43] 李喆, 陈炯, 马占山, 等. CMA-GFS云预报的偏差分布特征. 应用气象学报, 2022, 33(5): 527-540. doi:  10.11898/1001-7313.20220502

    Li Z, Chen J, Ma Z S, et al. Deviation distribution features of CMA-GFS cloud precipitation. J Appl Meteor Sci, 2022, 33(5): 527-540. doi:  10.11898/1001-7313.20220502
    [44] 常越, 陈洪滨, 施红蓉, 等. 复合翼无人机不同传感器探测大气温湿度对比. 应用气象学报, 2023, 34(1): 78-90. doi:  10.11898/1001-7313.20230107

    Chang Y, Chen H B, Shi H R, et al. Comparison of atmospheric temperature and humidity sounding by different sensors onboard a new composite wing UAV. J Appl Meteor Sci, 2023, 34(1): 78-90. doi:  10.11898/1001-7313.20230107
    [45] 任素玲, 牛宁, 覃丹宇, 等. 2021年2月北美极端低温暴雪的卫星遥感监测. 应用气象学报, 2022, 33(6): 696-710. doi:  10.11898/1001-7313.20220605

    Ren S L, Niu N, Qin D Y, et al. Extreme cold and snowstorm event in North America in February 2021 based on satellite data. J Appl Meteor Sci, 2022, 33(6): 696-710. doi:  10.11898/1001-7313.20220605
  • 加载中
图(6) / 表(2)
计量
  • 摘要浏览量:  629
  • HTML全文浏览量:  104
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-14
  • 修回日期:  2023-02-28
  • 刊出日期:  2023-05-31

目录

    /

    返回文章
    返回