留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南极中山站国产地面太阳辐射观测系统运行评估

郑向东 赵勇

郑向东, 赵勇. 南极中山站国产地面太阳辐射观测系统运行评估. 应用气象学报, 2023, 34(3): 348-361. DOI:  10.11898/1001-7313.20230308..
引用本文: 郑向东, 赵勇. 南极中山站国产地面太阳辐射观测系统运行评估. 应用气象学报, 2023, 34(3): 348-361. DOI:  10.11898/1001-7313.20230308.
Zheng Xiangdong, Zhao Yong. Performance of domestically made surface solar radiation observation system at Zhongshan Station, Antarctica. J Appl Meteor Sci, 2023, 34(3): 348-361. DOI:  10.11898/1001-7313.20230308.
Citation: Zheng Xiangdong, Zhao Yong. Performance of domestically made surface solar radiation observation system at Zhongshan Station, Antarctica. J Appl Meteor Sci, 2023, 34(3): 348-361. DOI:  10.11898/1001-7313.20230308.

南极中山站国产地面太阳辐射观测系统运行评估

DOI: 10.11898/1001-7313.20230308
资助项目: 

国家自然科学基金项目 41775031

中国气象科学研究院科技发展基金 2023KJ014

详细信息
    通信作者:

    郑向东, 邮箱:xdzheng@cma.gov.cn

Performance of Domestically Made Surface Solar Radiation Observation System at Zhongshan Station, Antarctica

  • 摘要: 对2017年国产地面太阳辐射观测系统在南极中山站运行状况进行评估,结果表明:FS-6A日射表夜间热偏移平均绝对值低于3 W·m-2,通风加热器的加热效应在一定程度上影响了该日射表夜间热偏移,表现在夜间热偏移与近地面风速相关关系降低。与二等标准日射表CM22测值相比,全云天FS-6A日射表测值较CM22日射表偏低,辐照度在约500 W·m-2时低6 W·m-2或-1%,太阳天顶角θ≤86°时绝对(相对)差值平均值小于2.6 W·m-2(小于4.0%)。晴天FS-6A总辐射测值与(投射到水平面)直射辐射和散射辐射之和一致性较好,根据本底地面辐射观测站网(BSRN)设定的总辐射与直射和散射之和的差值阈值,θ<80°时满足阈值(小于2%或小于15 W·m-2)比率为80%以上,而θ≥80°时四象限跟踪太阳模式下满足阈值(小于3.5%或小于20 W·m-2)的比率仅为44%。晴天总辐射、直射辐射、散射辐射测值与参数化模式模拟的辐射值可比性和一致性高、相关系数均大于0.95,但随着太阳辐照度增加,总辐射、直射辐射、散射辐射测值均高于模拟值。
  • 图  1  2017年夜间FS-6A观测的总辐射和散射辐射、CM21和CM22观测的总辐射小时平均热偏移

    Fig. 1  Hourly night-time thermal offset in pyranometers for GSR observations by FS-6A, CM21 and CM22, and for DIF observations by FS-6A in 2017

    图  2  FS-6A观测的总辐射和散射辐射、CM21和CM22观测的总辐射夜间热偏移的小时平均值与小时净长波值的关系

    Fig. 2  Relationship between hourly night-time thermal offset and the net longwave radiation for GSR observations by FS-6A, CM21 and CM22, and for DIF observations by FS-6A

    图  3  FS-6A观测的总辐射和散射辐射、CM21和CM22观测的总辐射夜间热偏移的小时平均值与风速的关系

    Fig. 3  Relationship between hourly night-time thermal offset and wind speed for GSR observations by FS-6A, CM21 and CM22, and for DIF observations by FS-6A

    图  4  所有天气情形下FS-6A日射表与CM21日射表(a)和CM22日射表(b)20 min总辐射平均测值比较

    Fig. 4  Comparison of the 20-minute average GSR measured by FS-6A with those by CM21(a) and CM22(b) under all weather conditions

    图  5  全云天FS-6A总辐射、散射辐射和CM21小时平均总辐射与CM22测值比较

    Fig. 5  Hourly irradiance from the pyranometers of FS-6A GSR, FS-6A DIF and CM21 GSR observations compared with those by CM22 under cloudy overcast condition

    图  6  GSR测值一致性

    Fig. 6  Consistence of measured GSR irradiances

    图  7  晴天FS-6A日射表小时平均总辐射、直射辐射和散射辐射测值与模式模拟值比较

    Fig. 7  Comparisons of hourly GSR, DIR and DIF between observations and model simulations under cloud-free condition

    表  1  中山站日射表主要性能和ISO9060标准表的对应要求

    Table  1  Main specifications of pyranometers deployed at Zhongshan Station and those meet ISO9060 standards

    性能 FS-6A** CM21 CM22 ISO9060(二等标准表) ISO9060(一级日射表)
    优化测量的光谱范围/nm 280~3200 310~2800 200~3600
    热偏移热辐射
    (净热辐射200 W·m-2)/(W·m-2)
    <15 <15 <3 <7 <15
    余弦效应/(W·m-2)* ±20 ±10 ±5 ±10 ±30
    95%响应时间/s 18 5 5 <10 <30
    辐照度测量范围/(W·m-2) 0~1400 0~4000 0~4000
    小时测量误差/% 2 2 3 8
    日测值误差/% ±5 2 2 2 5
    注:*表示法线方向入射辐照度为1000 W·m-2的光束从入射角到80°时的任何方向测量时引起的误差范围, **表示该仪器由厂家标定,其余仪器一般由国家级气象计量站定期标定。
    下载: 导出CSV

    表  2  全云天FS-6A日射表与CM22日射表的GSR和DIF绝对差值和相对差值的平均值

    Table  2  The mean of absolute bias and relative bias of GSR and DIF between FS-6A and CM22 under cloudy overcast condition

    统计量 θ<80° 80°≤θ≤86°
    GSR DIF GSR DIF
    小时平均绝对差值/(W·m-2) 1.7±1.3 2.6±1.6 0.6±0.7 0.7±0.6
    小时平均相对差值/% 1.1 ±0.7 1.8±0.7 3.5±4.4 3.8±4.7
    日平均绝对差值/(W·m-2) 1.7±1.4 2.5±1.6 0.6±0.5 0.7±0.6
    日平均相对差值/% 1.1±1.0 2.6±1.9 3.3±4.8 3.7±4.7
    月平均绝对差值/(W·m-2) 1.5±0.7 2.3±1.2 0.5±0.2 0.7±0.2
    月平均相对差值/% 0.9±0.3 1.4±0.6 2.2±1.3 2.7±1.4
    注:所有数值均为绝对差值的平均值±1个标准差。
    下载: 导出CSV
  • [1] 程纯枢.泰山日观峰日射观测结果分析.气象学报, 1956, 27(3):181-194. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB195603001.htm

    Cheng C S. Solar radiation observation of Mount Tai-shan observatory. Acta Meteor Sinica, 1956, 27(3): 181-194. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB195603001.htm
    [2] 程纯枢, 严开伟. 十年来我国气象观测技术与仪器研究的进展. 气象学报, 1959, 30(3): 212-217. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB195903003.htm

    Cheng C S, Yan K W. Advances in research on meteorological observation technology and instruments in China in recent ten years. Acta Meteor Sinica, 1959, 30(3): 212-217. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB195903003.htm
    [3] 王炳忠, 莫月琴, 杨云, 等. 现代太阳辐射和地球辐射测量及标准. 北京: 气象出版社, 2018.

    Wang B Z, Mo Y Q, Yang Y, et al. Modern Solar and Earth Radiation Measurements and Standards. Beijing: China Meteorological Press, 2018.
    [4] 李晓文, 李维亮, 周秀骥. 中国近30年太阳辐射状况研究. 应用气象学报, 1998, 9(1): 24-31. http://qikan.camscma.cn/article/id/19980104

    Li X W, Li W L, Zhou X J. Analysis of the solar radiation variations of China region in recent 30 years. J Appl Meteor Sci, 1998, 9(1): 24-31. http://qikan.camscma.cn/article/id/19980104
    [5] 李德平, 程兴宏, 孙治安, 等. 北京不同区域气溶胶辐射效应. 应用气象学报, 2018, 29(5): 609-618. doi:  10.11898/1001-7313.20180509

    Li D P, Cheng X H, Sun Z A, et al. Radiative effects of aerosols in different region areas of Beijing. J Appl Meteor Sci, 2018, 29(5): 609-618. doi:  10.11898/1001-7313.20180509
    [6] 卞林根, 贾朋群, 陆龙骅, 等. 南极中山站1990年地表能量通量变化观测研究. 中国科学(B辑), 1992, 11: 1224-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199211014.htm

    Bian L G, Jia P Q, Lu L H, et al. Observational study on the variation of surface energy flux at Zhongshan Station in Antarctica in 1990. Science China(Series B), 1992, 11: 1223-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199211014.htm
    [7] 中国气象局. 气象辐射观测方法. 北京: 气象出版社, 1996.

    China Meteorological Administration. Methods of Meteorological Radiation Observation. Beijing: China Meteorological Press, 2018.
    [8] Shi G Y, Hayasaka T, Ohmura A, et al. Data quality assessment and the long-term trend of ground solar radiation in China. J Appl Meteor Climatol, 2008, 47(4): 1006-1016. doi:  10.1175/2007JAMC1493.1
    [9] Iqbal M. An Introduction to Solar Radiation. Vol XVⅢ. Toronto: Academic Press, 1983.
    [10] Tooming H. Dependence of global radiation on cloudiness and surface albedo in Tartu, Estonia. Theor Appl Climatol, 2002, 72(1): 165-172. doi:  10.1007/s00704-002-0671-y
    [11] 王丹, 盛立芳, 石广玉, 等. 中国地表太阳辐射再分析数据与观测的比较. 应用气象学报, 2012, 23(6): 729-738. doi:  10.3969/j.issn.1001-7313.2012.06.010

    Wang D, Sheng L F, Shi G Y, et al. Comparison of surface solar radiation reanalysis data and observations over China. J Appl Meteor Sci, 2012, 23(6): 729-738. doi:  10.3969/j.issn.1001-7313.2012.06.010
    [12] 刘波, 马利斌, 容新尧, 等. 高分辨率模式对中国地表短波辐射季节预测. 应用气象学报, 2022, 33(3): 341-352. doi:  10.11898/1001-7313.20220308

    Liu B, Ma L B, Rong X Y, et al. High-resolution model for seasonal prediction of surface shortwave radiation in China. J Appl Meteor Sci, 2022, 33(3): 341-352. doi:  10.11898/1001-7313.20220308
    [13] 杨云, 权继梅, 丁蕾, 等. 国家级太阳辐射测量标准及其质量控制. 应用气象学报, 2015, 26(1): 95-102. doi:  10.11898/1001-7313.20150110

    Yang Y, Quan J M, Ding L, et al. National solar radiation measurement standards and quality control. J Appl Meteor Sci, 2015, 26(1): 95-102. doi:  10.11898/1001-7313.20150110
    [14] Michel D, Philipona R, Ruckstuhl C, et al. Performance and uncertainty of CNR1 net radiometers during a one-year field comparison. J Atmos Oceanic Technol, 2008, 25(3): 442-451. doi:  10.1175/2007JTECHA973.1
    [15] Sanchez G, Cancillo M L, Serrano A. An intercomparison of the thermal offset for different pyranometers. J Geophys Res Atmos, 2016, 121: 7901-7912. doi:  10.1002/2016JD024815
    [16] Kipp Zonen Manual CMP CMA series Pyranometers albedometers V1610. pdf. [2022-09-07]. http://www.kippzonen.com.
    [17] Gubler S, Gruber S, Purves R S. Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation. Atmos Chem Phys, 2012, 2(11): 5077-5098.
    [18] 刘梦琪, 赵春生, 郑向东. 夏季西藏4个站点大气向下长波辐射观测分析. 应用气象学报, 2018, 29(5): 596-608. doi:  10.11898/1001-7313.20180508

    Liu M Q, Zhao C S, Zheng X D. Analysis of summer downward longwave radiation observation at 4 stations in Tibet. J Appl Meteor Sci, 2018, 29(5): 596-608. doi:  10.11898/1001-7313.20180508
    [19] Liu M Q, Zheng X D, Zhang J Q, et al. A revisiting of the parametrization of downward longwave radiation in summer over the Tibetan Plateau based on high-temporal-resolution measurements. Atmos Chem Phys, 2020, 20(11): 4415-4426.
    [20] 江苏省无线电科学技术研究所有限公司. FUSH-RS辐射观测站用户手册. 无锡: 江苏省无线电科学技术研究所有限公司, 2015.

    Jiangsu Radio Science and Technology Research Institute Co., Ltd. FUSH-RS Radiation Observation Station User's Manual. Wuxi: Jiangsu Radio Science and Technology Research Institute Co., Ltd., 2015.
    [21] McArthur L J B. Baseline Surface Radiation Network(BSRN) Operations Manual Version 2.1. WCRP-121, WMO/TD-No. 1274, Geneva: WMO, 2005.
    [22] World Meteorological Organization(WMO). Guide to Meteorological Instruments and Methods of Observation. WMO-No. 8, Geneva: WMO, 1996.
    [23] 宋建洋, 郑向东, 程兴宏, 等. 临安与龙凤山辐射数据质量及初步结果比较. 应用气象学报, 2013, 24(1): 65-74. http://qikan.camscma.cn/article/id/20130107

    Song J Y, Zheng X D, Cheng X H, et al. Quality evaluations and comparisons of radiation data at Lin'an and Longfengshan Stations. J Appl Meteor Sci, 2013, 24(1): 65-74. http://qikan.camscma.cn/article/id/20130107
    [24] 权维俊, 陈洪滨, 高燕虎, 等. 上甸子大气本底站太阳辐射观测数据的质量评价. 高原气象, 2009, 28(1): 136-142. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200901017.htm

    Quan W J, Chen H B, Gao Y H, et al. The quality evaluation of solar radiation data measured in Shangdianzi background station. Plateau Meteor, 2009, 28(1): 136-142. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200901017.htm
    [25] 程兴宏, 张小玲, 郑向东, 等. PSP总日射表热偏移特征及其测量总辐射误差分析. 太阳能学报, 2009, 30(1): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX200901006.htm

    Cheng X H, Zhang X L, Zheng X D, et al. Characteristics of thermal offset of a precision spectral pyranometer(PSP) and its error in global solar radiation measurements. Acta Energiae Solaris Sinica, 2009, 30(1): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX200901006.htm
    [26] 杨云, 丁蕾, 程兴宏, 等. PSP总日射表灵敏度系数的热偏移订正方法. 应用气象学报, 2012, 23(5): 585-592. http://qikan.camscma.cn/article/id/20120509

    Yang Y, Ding L, Cheng X H, et al. Thermal offset correction methods for sensitivity of PSP pyranometer. J Appl Meteor Sci, 2012, 23(5): 585-592. http://qikan.camscma.cn/article/id/20120509
    [27] Bush B C, Valero F P J, Simpson A S. Characterization of thermal effects in pyranometers: A data correction algorithm for improved measurement of surface insolation. J Atmos Oceanic Technol, 2000, 17: 165-175.
    [28] Haeffelin M, Kato S, Smith A M, et al. Determination of the thermal offset of the Eppley precision spectral pyranometer. Appl Opt, 2001, 4: 472-484.
    [29] Zhang Y, Seidel D J, Golaz J C, et al. Climatological characteristics of Arctic and Antarctic surface-based inversions. J Climate, 2011, 24: 5167-5186.
    [30] Nygärd T, Valkonen T, Vihma T. Antarctic low tropospheric humidity inversions: 10-yr Climatology. J Climate, 2013, 26: 5205-5219.
    [31] Vignon T, Traullé O, Berne A. On the fine vertical structure of the low troposphere over the coastal margins of East Antarctica. Atmos Chem Phys, 2019, 19: 4659-4683.
    [32] 张晓娟, 阮祥, 王国安, 等. 国产与荷兰CM6B型总辐射仪观测数据对比分析. 气象科技, 2017, 45(6): 1002-1005;1016. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201706008.htm

    Zhang X J, Ruan X, Wang G A, et al. Comparative analysis of solar radiation observation data between domestic instruments and Holland CM6B. Meteor Sci Technol, 2017, 45(6): 1002-1005;1016. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201706008.htm
    [33] 邱金桓, 许潇锋, 杨景梅. 北京等7个气象台站太阳总辐射观测资料的准确度评估. 应用气象学报, 2008, 19(3): 287-296. http://qikan.camscma.cn/article/id/20080348

    Qiu J H, Xu X F, Yang J M. Accuracy evaluation of the observational data of the global solar radiation at 7 meteorological observatories including Beijing. J Appl Meteor Sci, 2008, 19(2): 287-296. http://qikan.camscma.cn/article/id/20080348
    [34] 陈爱军, 周芬, 梁学伟, 等. 中国地区MODIS地表反照率反演结果的时空分布研究. 大气科学学报, 2018, 41(2): 267-274. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201802013.htm

    Chen A J, Zhou F, Liang X W, et al. Temporal and spatial distribution of MODIS surface albedo retrieval results in China. Trans Atmos Sci, 2018, 41(2): 267-274. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201802013.htm
    [35] Tomasi C, Kokhanovskya A A, Lupia A, et al. Aerosol remote sensing in polar regions. Earth-Science Review, 2015, 140: 104-158. https://www.sciencedirect.com/science/article/pii/S0012825214001913
    [36] 郑向东, 程海轩. 南极中山站太阳紫外辐射测值比较. 应用气象学报, 2020, 31(4): 482-493. doi:  10.11898/1001-7313.20200410

    Zheng X D, Chen H X. Comparisons of solar ultraviolet irradiance measurements at Zhongshan Station, Antarctica. J Appl Meteor Sci, 2020, 31(4): 482-493. doi:  10.11898/1001-7313.20200410
    [37] Dutton E G, Michalsky J J, Stoffel T, et al. Measurement of broadband diffuse solar irradiance using current commercial instrumentation with a correction for thermal offset errors. J Atmos Oceanic Technol, 2001, 18: 297-314.
    [38] Reda I, Hickey J, Long C, et al. Using a blackbody to calculate net longwave responsivity of shortwave solar pyranometers to correct for their thermal offset error during outdoor calibration using the component sum method. J Atmos Oceanic Technol, 2005, 22(10): 1531-1540.
    [39] Sanchez G, Serrano A, Cancillo M L. Effect of mechanical ventilation on the thermal offset of pyranometers during cloud-free summer conditions. J Atmos Oceanic Technol, 2017, 34(5): 1155-1173.
    [40] Serrano A, Sanchez G, Cancillo M L. Correcting daytime thermal offset in unventilated pyranometers. J Atmos Oceanic Technol, 2015, 32(11): 2088-2099.
    [41] Baumgartner D J, Pötzi W, Freislich H, et al. An automated method for the evaluation of the pointing accuracy of sun-tracking devices. Atmos Meas Technol, 2017, 10(3): 1181-1190.
    [42] Wang P, Knap W H, Kuipers P, et al. Clear-sky shortwave radiative closure for the Chabauw baseline surface radiation network site, Netherlands. J Geophys Res, 2009, 114: D14206. doi:  10.1029/2009JD011978
  • 加载中
图(7) / 表(2)
计量
  • 摘要浏览量:  1991
  • HTML全文浏览量:  127
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-09
  • 修回日期:  2023-03-27
  • 刊出日期:  2023-05-31

目录

    /

    返回文章
    返回