Response of Winter Wheat Tanmai 98 to Sowing Date Adjustments
-
摘要: 播种期调整被广泛用于作物适应气候变化, 但播种期调整对作物生长发育过程的影响仍需探讨。基于2017—2022年华北平原北部冬小麦郯麦98的播种期调整大田试验资料, 分析播种期变化对郯麦98的生长发育、产量形成和品质影响。结果表明: 播种期推迟使郯麦98的生长季缩短、有效穗数和籽粒产量减少, 9月30日—10月30日播种期的籽粒产量减少率达569.71 kg·hm-2·(10 d)-1, 但对穗粒数、穗粒重无显著影响。播种期推迟还影响郯麦98成熟期地上干物质分配, 茎秆随播种期推迟呈减少趋势, 为2.44%·(10 d)-1; 而穗部呈增加趋势, 为2.44%·(10 d)-1。播种期变化对郯麦98的叶片光合特性和籽粒品质影响不显著。研究结果可为华北平原北部冬小麦播种期调整提供依据。Abstract: Sowing date adjustments have been widely used for crop adaptation to climate change, but its impact on crop growth and development is still unclear. Based on field sowing date adjustment experiment of winter wheat Tanmai 98 in the northern part of North China Plain from 2017 to 2022, the responses of growth and development, yield formation and quality of Tanmai 98 are analyzed. The results show that delaying sowing date has no significant effect on the growth stage of overwintering stage and regreening stage of winter wheat. The total growth period is 256 days and 228 days for early sowing and late sowing based on the field experiment, and shortening 10 days to 8 days in turn, which is basically consistent with the interval of 10 d during sowing period. The shortening of whole growth period is mainly caused by the shortening of seedling growth period before overwintering. Late sowing date reduces effective panicles number and grain yield of Tanmai 98. The decrease rate of grain yield is 569.71 kg·hm-2·(10 d)-1 during the sowing date from 30 September to 30 October, but few significant effects are found on grain number and weight per spike. The delay of sowing date also affects the aboveground dry matter distribution of Tanmai 98 during maturity stage. The stem weight decreases with the delay of sowing date by 2.44%·(10 d)-1, but the spike of wheat increases by 2.44%·(10 d)-1. The harvest index increases with the delay of sowing date. The harvest index of S2, S3 and CK are all higher than 0.5000, while the harvest index of S1 is 0.4878. There is no significant effect on leaf photosynthetic characteristics and grain quality of Tanmai 98 by sowing date adjustments. Therefore, under the background of climate change, the winter wheat sowing date should be postponed in the northern part of the North China Plain from 1 October to 15 October. At the same time, the planting amount should be increased in steps, and basic seedlings should be increased, so as to offset the adverse effects of late sowing of wheat seedlings with fewer tillers and fewer panicle number, ensuring high yield. However, very late sowing date would still lead to yield reduction. The results provide information for the decision-making of winter wheat to climate change adaptation in the northern part of the North China Plain.
-
Key words:
- winter wheat Tanmai 98;
- sowing date;
- growth period;
- yield;
- quality
-
图 1 郯麦98分期播种试验籽粒(1000粒)灌浆变化
(a)2017—2022年年平均籽粒干物质累积,(b)2019—2020年籽粒灌浆速率,(c)2021—2022年籽粒灌浆速率
Fig. 1 Variation of grain(1000 seeds) filling of winter wheat Tanmai 98 staged sowing date experiment
(a)annual grain dry matter accumulation during 2017-2022, (b)grain filling rate during 2019-2020, (c)grain filling rate during 2021-2022
表 1 2017—2022年郯麦98分期播种试验关键发育期特征
Table 1 Characteristics of key growth periods of winter wheat Tanmai 98 under different sowing date experiments from 2017 to 2022
发育期及发育阶段 CK S1 S2 S3 出苗期 10-18 10-05 10-29 11-11 分蘖期 11-12 10-27 拔节期 次年04-04 次年04-04 次年04-06 次年04-10 孕穗期 次年04-19 次年04-18 次年04-19 次年04-22 抽穗期 次年04-28 次年04-27 次年04-28 次年04-30 开花期 次年05-05 次年05-06 次年05-06 次年05-08 成熟期 次年06-13 次年06-13 次年06-13 次年06-15 生长季/d 246 256 236 228 越冬前幼苗期/d 45 58 34 21 营养生长期(返青后苗期)/d 48 48 49 52 生殖生长期(孕穗-成熟)/d 55 56 55 54 籽粒灌浆期(开花-成熟)/d 39 38 38 38 表 2 2017—2022年郯麦98分期播种试验的籽粒灌浆特征
Table 2 Grain filling characteristics of winter wheat Tanmai 98 under different sowing date experiments from 2017 to 2022
处理 开花普期 灌浆开始测定日期 灌浆结束日期 灌浆持续日数/d 灌浆峰值日期 灌浆速率峰值/(g·(5 d)-1) 平均灌浆速率/(g·(5 d)-1) CK 05-05 05-15 06-13 29 05-30 11.560 6.577 S1 05-06 05-16 06-14 29 05-30 11.080 6.479 S2 05-06 05-16 06-15 30 05-30 11.020 6.688 S3 05-08 05-18 06-17 30 05-29 11.390 6.349 表 3 2019—2020年和2021—2022年郯麦98分期播种试验的籽粒灌浆特征
Table 3 Grain filling characteristics of winter wheat Tanmai 98 under different sowing date experiments during 2019-2020 and 2021-2022
年份 处理 开花普期 灌浆开始测定日期 灌浆结束日期 灌浆持续日数/d 灌浆峰值日期 灌浆速率峰值/(g·(5 d)-1) 平均灌浆速率/(g·(5 d)-1) 2019—2020 CK 05-05 05-15 06-13 29 05-30 12.301 6.961 S1 05-06 05-16 06-13 28 05-29 11.866 6.743 S2 05-05 05-15 06-14 30 05-30 11.328 7.200 S3 05-06 05-16 05-24 11.879 6.905 2021—2022 CK 05-03 05-13 06-14 32 05-28 13.198 6.204 S1 05-04 05-14 06-18 35 05-29 12.702 6.020 S2 05-04 05-14 06-15 32 05-28 12.620 6.175 S3 05-04 05-14 06-12 29 05-29 12.580 6.829 表 4 2017—2022年郯麦98分期播种试验收获期地上干物质分配率(单位:%)
Table 4 Above-ground dry matter distribution rate during the harvest period of winter wheat Tanmai 98 under different sowing date experiments from 2017 to 2022(unit: %)
处理 茎秆 颖壳和穗轴 籽粒 穗部 CK 36.52 12.70 50.78 63.48 S1 38.61 12.33 49.07 61.39 S2 33.04 13.59 53.37 66.96 S3 31.64 14.60 53.77 68.36 表 5 2017—2022年郯麦98分期播种试验平均产量要素
Table 5 Average yield components of winter wheat Tanmai 98 under different sowing date experiments from 2017 to 2022
处理 有效穗数 小穗数 不孕小穗数 穗粒数 穗粒重/g 籽粒重/g 千粒重/g 收获指数 理论产量/(kg·hm-2) CK 541.4 16.9 0.8 47.7 2.285 893.7 48.385 0.5055 8937.2 S1 581.8 17.8 1.0 49.1 2.344 937.1 48.043 0.4878 9371.3 S2 519.6 16.0 0.8 45.6 2.171 847.7 48.048 0.5299 8477.8 S3 448.4 15.6 0.7 45.8 2.091 762.5 45.647 0.5381 7625.4 表 6 2018—2022年郯麦98分期播种试验的叶片平均光合特性
Table 6 Average leaf photosynthetic characteristics of winter wheat Tanmai 98 under different sowing date experiments from 2018 to 2022
处理 净光合速率/(μmol·m-2·s-1) 蒸腾速率/(mol·m-2·s-1) 水分利用效率/(μmol·mmol-1) 拔节期 抽穗期 乳熟期 平均 拔节期 抽穗期 乳熟期 平均 拔节期 抽穗期 乳熟期 平均 CK 17.372 20.287 17.602 18.420 4.068 6.569 9.189 6.608 4.271 3.088 1.916 3.092 S1 16.866 19.282 17.982 18.043 3.799 6.228 9.110 6.379 4.440 3.096 1.974 3.170 S2 19.458 20.473 17.519 19.150 4.724 6.788 8.871 6.794 4.119 3.016 1.975 3.037 S3 19.288 18.826 17.908 18.674 4.582 6.570 9.275 6.809 4.210 2.866 1.931 3.002 表 7 2017—2021年郯麦98分期播种试验籽粒品质
Table 7 Grain quality of winter wheat Tanmai 98 under different sowing date experiments from 2017 to 2021
指标 CK S1 S2 S3 标准差 苏氨酸/(g·kg-1) 3.18 3.21 3.13 3.04 0.08 必需 缬氨酸/(g·kg-1) 4.79 4.93 4.74 4.70 0.10 蛋氨酸/(g·kg-1) 1.46 1.35 1.30 1.28 0.08 异亮氨酸/(g·kg-1) 4.11 4.30 4.11 4.11 0.09 亮氨酸/(g·kg-1) 7.56 7.68 7.50 7.37 0.13 苯丙氨酸(g·kg-1) 5.29 5.44 5.27 5.26 0.09 赖氨酸/(g·kg-1) 3.79 4.04 4.09 3.92 0.14 合计/(g·kg-1) 30.19 30.95 30.14 29.68 0.53 组氨酸/(g·kg-1) 4.66 3.90 4.71 4.90 0.44 半必需 精氨酸/(g·kg-1) 5.18 4.95 4.98 4.84 0.14 合计/(g·kg-1) 9.84 8.85 9.69 9.74 0.46 天冬氨酸/(g·kg-1) 10.80 10.68 10.70 9.88 0.43 非必需 谷氨酸/(g·kg-1) 36.04 37.34 34.27 35.28 1.29 胱氨酸/(g·kg-1) 3.55 3.62 3.43 2.90 0.33 丝氨酸/(g·kg-1) 4.62 5.02 4.60 4.59 0.21 甘氨酸/(g·kg-1) 4.72 4.80 4.81 4.65 0.08 丙氨酸/(g·kg-1) 4.01 3.95 3.90 3.77 0.10 脯氨酸/(g·kg-1) 14.73 14.81 14.48 15.26 0.32 酪氨酸/(g·kg-1) 2.37 2.30 2.07 2.14 0.14 蛋白质/(g·(100 g)-1) 13.08 13.03 12.43 12.95 0.30 脂肪/(g·(100 g)-1) 1.20 1.18 1.23 1.20 0.02 淀粉/(g·(100 g)-1) 54.95 55.03 55.73 55.63 0.40 -
[1] 杨明智, 裴源生, 李旭东. 中国粮食自给率研究——粮食、谷物和口粮自给率分析. 自然资源学报, 2019, 34(4): 881-889. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201904016.htmYang M Z, Pei Y S, Li X D. Study on grain self-sufficiency rate in China: An analysis of grain, cereal grain and edible grain. Journal of Natural Resources, 2019, 34(4): 881-889. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201904016.htm [2] 田展, 刘纪远, 曹明奎. 气候变化对中国黄淮海农业区小麦生产影响模拟研究. 自然资源学报, 2006, 21(4): 598-607. doi: 10.3321/j.issn:1000-3037.2006.04.013Tian Z, Liu J Y, Cao M K. Simulation of the impact of climate change on Chinese wheat production in Huang-Huai-Hai Plain. Journal of Natural Resources, 2006, 21(4): 598-607. doi: 10.3321/j.issn:1000-3037.2006.04.013 [3] 王纯枝, 霍治国, 郭安红, 等. 中国北方冬小麦蚜虫气候风险评估. 应用气象学报, 2021, 32(2): 160-174. doi: 10.11898/1001-7313.20210203Wang C Z, Huo Z G, Guo A H, et al. Climatic risk assessment of winter wheat aphids in northern China. J Appl Meteor Sci, 2021, 32(2): 160-174. doi: 10.11898/1001-7313.20210203 [4] 陈晓琳, 谭晓悦, 李露凝, 等. 北方冬小麦主产区的高产与稳产关联性及其影响因素. 自然资源学报, 2022, 37(1): 263-276. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX202201018.htmChen X L, Tan X Y, Li L N, et al. The association between high-yield and stable-yield characteristics of winter wheat and its influencing factors in the main producing areas in northern China. Journal of Natural Resources, 2022, 37(1): 263-276. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX202201018.htm [5] 尚莹, 霍治国, 张蕾, 等. 土壤相对湿度对冬小麦干热风灾害发生的影响. 应用气象学报, 2019, 30(5): 598-607. doi: 10.11898/1001-7313.20190508Shang Y, Huo Z G, Zhang L, et al. The influence of soil relative moisture on dry-hot wind disaster of winter wheat. J Appl Meteor Sci, 2019, 30(5): 598-607. doi: 10.11898/1001-7313.20190508 [6] 王培娟, 马玉平, 霍治国, 等. 土壤水分对冬小麦叶片光合速率影响模型构建. 应用气象学报, 2020, 31(3): 267-279. doi: 10.11898/1001-7313.20200302Wang P J, Ma Y P, Huo Z G, et al. Construction of the model for soil moisture effects on leaf photosynthesis rate of winter wheat. J Appl Meteor Sci, 2020, 31(3): 267-279. doi: 10.11898/1001-7313.20200302 [7] 王纯枝, 霍治国, 张蕾, 等. 北方地区小麦蚜虫气象适宜度预报模型构建. 应用气象学报, 2020, 31(3): 280-289. doi: 10.11898/1001-7313.20200303Wang C Z, Huo Z G, Zhang L, et al. Construction of forecasting model of meteorological suitability for wheat aphids in the northern China. J Appl Meteor Sci, 2020, 31(3): 280-289. doi: 10.11898/1001-7313.20200303 [8] 陈峪, 任国玉, 王凌, 等. 近56年我国暖冬气候事件变化. 应用气象学报, 2009, 20(5): 539-545. doi: 10.3969/j.issn.1001-7313.2009.05.004Chen Y, Ren G Y, Wang L, et al. Temporal change of warm winter events over the last 56 years in China. J Appl Meteor Sci, 2009, 20(5): 539-545. doi: 10.3969/j.issn.1001-7313.2009.05.004 [9] 黄嘉佑, 胡永云. 中国冬季气温变化的趋向性研究. 气象学报, 2006, 64(5): 614-621. doi: 10.3321/j.issn:0577-6619.2006.05.008Huang J Y, Hu Y Y. Trends of winter temperatures in China. Acta Meteor Sinica, 2006, 64(5): 614-621. doi: 10.3321/j.issn:0577-6619.2006.05.008 [10] 李克南, 杨晓光, 慕臣英, 等. 全球气候变暖对中国种植制度可能影响Ⅷ——气候变化对中国冬小麦冬春性品种种植界限的影响. 中国农业科学, 2013, 46(8): 1583-1594. doi: 10.3864/j.issn.0578-1752.2013.08.007Li K N, Yang X G, Mu C Y, et al. The possible effects of global warming on cropping systems in China Ⅷ-The effects of climate change on planting boundaries of different winter-spring varieties of winter wheat in China. Scientia Agricultura Sinica, 2013, 46(8): 1583-1594. doi: 10.3864/j.issn.0578-1752.2013.08.007 [11] 孟繁圆, 冯利平, 张丰瑶, 等. 北部冬麦区冬小麦越冬冻害时空变化特征. 作物学报, 2019, 45(10): 1576-1585. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201910013.htmMeng F Y, Feng L P, Zhang F Y, et al. Temporal and spatial variations of winter wheat freezing injury in northern winter wheat region. Acta Agronomica Sinica, 2019, 45(10): 1576-1585. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201910013.htm [12] 宋艳玲, 周广胜, 郭建平, 等. 北方冬小麦冬季冻害及播期延迟应对. 应用气象学报, 2022, 33(4): 454-465. doi: 10.11898/1001-7313.20220406Song Y L, Zhou G S, Guo J P, et al. Freezing injury of winter wheat in northern China and delaying sowing date to adapt. J Appl Meteor Sci, 2022, 33(4): 454-465. doi: 10.11898/1001-7313.20220406 [13] 周广胜, 郭建平, 霍治国, 等. 中国农业应对气候变化. 北京: 气象出版社, 2014.Zhou G S, Guo J P, Huo Z G, et al. China's Agriculture Responds to Climate Change. Beijing: China Meteorological Press, 2014. [14] 郭建平, 等. 气候变化对农业气候资源有效性的影响评估. 北京: 气象出版社, 2016.Guo J P, et al. Assessment of the Impact of Climate Change on the Availability of Agricultural Climate Resources. Beijing: China Meteorological Press, 2016. [15] 钱凤魁, 王文涛, 刘燕华. 农业领域应对气候变化的适应措施与对策. 中国人口·资源与环境, 2014, 24(5): 19-24. doi: 10.3969/j.issn.1002-2104.2014.05.004Qian F K, Wang W T, Liu Y H. Research of adaptive countermeasures of addressing climate change in agriculture field. China Population, Resources and Environment, 2014, 24(5): 19-24. doi: 10.3969/j.issn.1002-2104.2014.05.004 [16] 徐玲玲, 吕厚荃, 方利. 气候变化对黄淮海地区夏玉米气候适宜度的影响. 资源科学, 2014, 36(4): 782-787. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201404014.htmXu L L, Lv H Q, Fang L. Effect of climate change on the climate suitability of summer maize on the Huang-Huai-Hai Plain. Resources Science, 2014, 36(4): 782-787. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201404014.htm [17] 居煇, 许吟隆, 熊伟. 气候变化对我国农业的影响. 环境保护, 2007(6A): 71-73. https://www.cnki.com.cn/Article/CJFDTOTAL-HJBU200711020.htmJu H, Xu Y L, Xiong W. The impact of climate change on agriculture in China. Environ Protection, 2007(6A): 71-73. https://www.cnki.com.cn/Article/CJFDTOTAL-HJBU200711020.htm [18] 周新保. 河南小麦品种更新及发展. 种子世界, 2005(5): 5-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZZ200505005.htmZhou X B. Renewal and development of wheat varieties in Henan. Seed World, 2005(5): 5-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZZ200505005.htm [19] 云雅如, 方修琦, 王丽岩, 等. 我国作物种植界线对气候变暖的适应性响应. 作物杂志, 2007(3): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZZ200703005.htmYun Y R, Fang X Q, Wang L Y, et al. Adaptive response of crop boundaries to climate warming in China. Crops, 2007(3): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZZ200703005.htm [20] 徐朝霞, 苏海报, 江晓东, 等. 气候变暖对冬小麦生长发育、产量和品质的影响. 中国农学通报, 2020, 36(25): 101-105. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB202025016.htmXu Z X, Su H B, Jiang X D, et al. Climate warming: Effects on the growth, yield and quality of winter wheat. Chinese Agricultural Science Bulletin, 2020, 36(25): 101-105. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB202025016.htm [21] 谢立勇, 李悦, 徐玉秀, 等. 气候变化对农业生产与粮食安全影响的新认知. 气候变化研究进展, 2014, 10(4): 235-239. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201404001.htmXie L Y, Li Y, Xu Y X, et al. Updated understanding on the impacts of climate change on food production and food security. Climate Change Research, 2014, 10(4): 235-239. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201404001.htm [22] 谭凯炎, 周广胜, 任三学, 等. 气候变化可能不会引起我国北方冬小麦营养品质下降. 气候变化研究进展, 2019, 15(3): 282-289. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201903007.htmTan K Y, Zhou G S, Ren S X, et al. Climate change will probably not cause the decline of winter wheat nutritional quality in northern China. Climate Change Research, 2019, 15(3): 282-289. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201903007.htm [23] 魏思成, 李凯伟, 张继权, 等. 黄淮海地区春花生旱涝灾害危险性评估. 应用气象学报, 2021, 32(5): 629-640. doi: 10.11898/1001-7313.20210510Wei S C, Li K W, Zhang J Q, et al. Hazard assessment of peanut drought and flood disasters in Huang-Huai-Hai Region. J Appl Meteor Sci, 2021, 32(5): 629-640. doi: 10.11898/1001-7313.20210510 [24] 宋艳玲. 全球干旱指数研究进展. 应用气象学报, 2022, 33(5): 513-526. doi: 10.11898/1001-7313.20220501Song Y L. Global research progress of drought indices. J Appl Meteor Sci, 2022, 33(5): 513-526. doi: 10.11898/1001-7313.20220501 [25] 霍治国, 张海燕, 李春晖, 等. 中国玉米高温热害研究进展. 应用气象学报, 2023, 34(1): 1-14. doi: 10.11898/1001-7313.20230101Huo Z G, Zhang H Y, Li C H, et al. Review on high temperature heat damage of maize in China. J Appl Meteor Sci, 2023, 34(1): 1-14. doi: 10.11898/1001-7313.20230101 [26] 王培娟, 唐俊贤, 金志凤, 等. 中国茶树春霜冻害研究进展. 应用气象学报, 2021, 32(2): 129-145. doi: 10.11898/1001-7313.20210201Wang P J, Tang J X, Jin Z F, et al. Review on spring frost disaster for tea plant in China. J Appl Meteor Sci, 2021, 32(2): 129-145. doi: 10.11898/1001-7313.20210201 [27] 齐永青, 孙宏勇, 沈彦俊. 太行山山前平原近50年气候变暖特征及其对冬小麦-夏玉米作物系统的影响. 中国生态农业学报, 2011, 19(5): 1048-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201105010.htmQi Y Q, Sun H Y, Shen Y J. Characteristics and effects of climate warming on winter wheat/summer maize cropping system in recent 50 years in the piedmont of Mount Taihang. Chinese Journal of Eco-Agriculture, 2011, 19(5): 1048-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201105010.htm [28] 白帆, 杨晓光, 刘志娟, 等. 气候变化背景下播期对东北三省春玉米产量的影响. 中国生态农业学报, 2020, 28(4): 480-491. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN202004002.htmBai F, Yang X G, Liu Z J, et al. Effects of sowing dates on grain yield of spring maize in the three-province of the Northeast China under climate change. Chinese Journal of Eco-Agriculture, 2020, 28(4): 480-491. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN202004002.htm [29] 张娟, 马丰刚, 蒋明洋, 等. 播期对夏玉米生长发育、籽粒灌浆特性和产量的影响. 山东农业科学, 2016, 48(8): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-AGRI201608010.htmZhang J, Ma F G, Jiang M Y, et al. Effects of sowing date on growth, kernel filling and yield of summer maize. Shandong Agriculture Sciences, 2016, 48(8): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-AGRI201608010.htm [30] 钤太峰, 董秀春, 张秀, 等. 播期对冬小麦干物质积累、分配与产量的影响. 山东农业科学, 2019, 51(3): 24-28;35. https://www.cnki.com.cn/Article/CJFDTOTAL-AGRI201903005.htmQian T F, Dong X C, Zhang X, et al. Effect of sowing date on dry matter accumulation, distribution and yield of winter wheat. Shandong Agriculture Sciences, 2019, 51(3): 24-28;35. https://www.cnki.com.cn/Article/CJFDTOTAL-AGRI201903005.htm [31] 刘战东, 肖俊夫, 南纪琴, 等. 播期对夏玉米生育期、形态指标及产量的影响. 西北农业学报, 2010, 19(6): 91-94. https://www.cnki.com.cn/Article/CJFDTOTAL-XBNX201006021.htmLiu Z D, Xiao J F, Nan J Q, et al. Effect of sowing date on growth stages, morphological index and yield of summer maize. Acta Agriculturae Boreali-occidentalis Sinica, 2010, 19(6): 91-94. https://www.cnki.com.cn/Article/CJFDTOTAL-XBNX201006021.htm [32] 张宁, 杜雄, 江东岭, 等. 播期对夏玉米生长发育及产量影响的研究. 河北农业大学学报, 2009, 32(5): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-CULT200905003.htmZhang N, Du X, Jiang D L, et al. Effect of sowing date on growth and yield of summer corn(Zea mays. L). Journal of Agricultural University of Hebei, 2009, 32(5): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-CULT200905003.htm [33] 李令伟, 崔丽娜, 杨连俊, 等. 不同播期对夏玉米产量及产量构成的影响. 安徽农业科学, 2013, 41(18): 7786-7787. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201318020.htmLi L W, Cui L N, Yang L J, et al. Effects of different sowing dates on grain yield and its components of summer maize. J Anhui Agri Sci, 2013, 41(18): 7786-7787. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201318020.htm [34] 国家气象局. 农业气象观测规范(上卷). 北京: 气象出版社, 1993.China Meteorological Administration. Code for Agricultural Meteorological Observation(Volume 1). Beijing: China Meteorological Press, 1993. [35] 郭建平. 气候变化对中国农业生产的影响研究进展. 应用气象学报, 2015, 26(1): 1-11. doi: 10.11898/1001-7313.20150101Guo J P. Advances in impacts of climate change on agricultural production in China. J Appl Meteor Sci, 2015, 26(1): 1-11. doi: 10.11898/1001-7313.20150101 [36] Zhu G X, Liu Z J, Qiao S L, et al. How could observed sowing dates contribute to maize potential yield under climate change in Northeast China based on APSIM model. European Journal of Agronomy, 2022, 136: 126511. [37] 付雪丽, 张惠, 贾继增, 等. 冬小麦-夏玉米"双晚"种植模式的产量形成及资源效率研究. 作物学报, 2009, 35(9): 1708-1714. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW200909020.htmFu X L, Zhang H, Jia J Z, et al. Yield performance and resources use efficiency of winter wheat and summer maize in double late-cropping system. Acta Agronomica Sinica, 2009, 35(9): 1708-1714. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW200909020.htm [38] 王方. 科学告诉你气候变化关乎收成. 中国科学报, 2018-01-17.Wang F. Science Tells You that Climate Change is About Harvests. Chinese Science News, 2018-01-17. [39] 覃志豪, 唐华俊, 李文娟, 等. 气候变化对农业和粮食生产影响的研究进展与发展方向. 中国农业资源与区划, 2013, 34(5): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNZ201305001.htmQin Z H, Tang H J, Li W J, et al. Progress and direction in studying the impacts of climate change on agriculture and grain production in China. Chinese Journal of Agricultural Resources and Region Planning, 2013, 34(5): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNZ201305001.htm [40] 陈群, 于欢, 侯雯嘉, 等. 气候变暖对黄淮海地区冬小麦生育进程与产量的影响. 麦类作物学报, 2014, 34(10): 1363-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-MLZW201410010.htmChen Q, Yu H, Hou W J, et al. Impacts of climate warming on growth development process and yield of winter wheat in Huang-Huai-Hai Region of China. Journal of Triticeae Crops, 2014, 34(10): 1363-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-MLZW201410010.htm [41] 陈源源. 气候变化对中国粮食生产的影响. 中国农学通报, 2021, 37(12): 51-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB202112008.htmChen Y Y. The impact of climate change on China's grain production. Chinese Agricultural Science Bulletin, 2021, 37(12): 51-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB202112008.htm [42] 任三学, 赵花荣, 齐月, 等. 气候变化背景下麦田沟金针虫爆发性发生为害. 应用气象学报, 2020, 31(5): 620-630. doi: 10.11898/1001-7313.20200509Ren S X, Zhao H R, Qi Y, et al. The outbreak and damage of the pleonomus canaliculatus in wheat field under the background of climate change. J Appl Meteor Sci, 2020, 31(5): 620-630. doi: 10.11898/1001-7313.20200509 [43] Zhang L L, Zhang Z, Zhang J, et al. Response of rice phenology to climate warming weakened across China during 1981-2018: Did climatic or anthropogenic factors play a role?. Environmental Research Letters, 2022, 17(6): 064029. [44] Muleke A, Harrison M, Voil P D, et al. Earlier crop flowering caused by global warming alleviated by irrigation. Environmental Research Letters, 2022, 17(4): 044032. [45] Tao F L, Zhang L L, Zhang Z, et al. Climate warming outweighed agricultural managements in affecting wheat phenology across China during 1981-2018. Agricultural and Forest Meteorology, 2022, 316(1): 108865. [46] 肖登攀, 陶福禄. 过去30年气候变化对华北平原冬小麦物候的影响研究. 中国生态农业学报, 2012, 20(11): 1539-1545. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201211023.htmXiao D P, Tao F L. Impact of climate change in 1981-2009 on winter wheat phenology in the North China Plain. Chinese Journal of Eco-Agriculture, 2012, 20(11): 1539-1545. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201211023.htm [47] 尚艳, 赵鸿, 柴守玺. 气候变化与品种更新对黄土高原半干旱雨养农业区冬小麦的影响. 干旱地区农业研究, 2017, 35(5): 66-72. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201705011.htmShang Y, Zhao H, Chai S X. Effects of climate change and cultivars change on winter wheat in semi-arid region of loess plateau in Northwest China. Agricultural Research in the Arid Areas, 2017, 35(5): 66-72. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201705011.htm [48] 孙倩, 黄耀, 姬兴杰, 等. 气候变化背景下河南省冬小麦品种更新特征. 气候变化研究进展, 2014, 10(4): 282-288. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201404011.htmSun Q, Huang Y, Ji X J, et al. Characteristic of winter wheat cultivar shift in Henan Province under climate change. Climate Change Research, 2014, 10(4): 282-288. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201404011.htm [49] 初征, 郭建平. 未来气候变化对东北玉米品种布局的影响. 应用气象学报, 2018, 29(2): 165-176. doi: 10.11898/1001-7313.20180204Chu Z, Guo J P. Effects of climatic change on maize varieties distribution in the future of Northeast China. J Appl Meteor Sci, 2018, 29(2): 165-176. doi: 10.11898/1001-7313.20180204 [50] Zhang T Y, He Y, DePauw R, et al. Climate change may outpace current wheat breeding yield improvements in North America. Nature Communications, 2022, 13: 5591. [51] Tester R F, Morrison W R, Ellis R H, et al. Effects of elevated growth temperature and carbon dioxide levels on some physicochemical properties of wheat starch. Journal of Cereal Science, 1995, 22(1): 63-71. [52] 苗建利, 王晨阳, 郭天财, 等. 高温与干旱互作对两种筋力小麦品种籽粒淀粉及其组分含量的影响. 麦类作物学报, 2008, 28(2): 254-259. https://www.cnki.com.cn/Article/CJFDTOTAL-MLZW200802015.htmMiao J L, Wang C Y, Guo T C, et al. Effects of post-anthesis interactions of high temperature and drought stresses on content and drought stresses on content and composition of grain starch in two wheat cultivars with different gluten strength. Journal of Triticeae Crops, 2008, 28(2): 254-259. https://www.cnki.com.cn/Article/CJFDTOTAL-MLZW200802015.htm [53] Xiao G J, Zhang Q, Zhang F J, et al. Warming influences the yield and water use efficiency of winter wheat in the semiarid regions of Northwest China. Field Crops Research, 2016, 199: 129-135. [54] 田云录, 陈金, 邓艾兴, 等. 非对称性增温对冬小麦籽粒淀粉和蛋白质含量及其组分的影响. 作物学报, 2011, 37(2): 302-308. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201102018.htmTian Y L, Chen J, Deng A X, et al. Effects of asymmetric warming on contents and components of starch and protein in grains of winter wheat under FATI facility. Acta Agronomica Sinica, 2011, 37(2): 302-308. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201102018.htm