Effects of Meteorological Conditions on the Yield of Lianyu No.1 Maize
-
摘要: 厘清气象条件对玉米产量影响是确保玉米稳产高产的基础。基于2018—2021年河北固城农业气象国家野外科学观测研究站廉玉1号玉米不同播种期的田间试验对气象条件影响玉米产量的分析表明: 播种期推迟导致发育期延长, 改变发育期的气象条件。廉玉1号玉米播种期推迟20 d较提前10 d的平均发育期长度延长2.5 d, 出苗-拔节期平均气温增加0.7℃, 乳熟-成熟期平均气温减少5.9℃。玉米单产总体随播种期推迟呈降低趋势, 6月8—18日期间播种可获得较高产量。出苗-拔节期的气温日较差以及抽雄-乳熟期的平均气温是影响廉玉1号玉米单产的关键气象因子。Abstract: Understanding the influence of meteorological conditions on maize yield is an important basis for ensuring stable and high yield. The effects of meteorological conditions on the yield of Lianyu No.1 maize in North China are analyzed, based on the four-year field experimental data of different sowing dates (8 June(S1), 18 June(S2), 28 June(S3) and 8 July(S4)) conducted at Hebei Gucheng Agricultural Meteorological National Field Scientific Observation and Research Station from 2018 to 2021. The results show that the delay of sowing dates leads to the extension of growing period and changes in the meteorological conditions during the growing period. When the sowing date is delayed by 20 days, the average growth period is 2.5 days longer compared with sowed 10 days earlier, and the average air temperature from emergence to jointing stages increases by 0.7℃, while the average air temperature from milk-ripening to maturity stage decreases by 5.9℃. The average yield of Lianyu No.1 maize decreases with the delay of sowing dates, and the highest yield would be achieved when the sowing date is during 8-18 June. The key meteorological factors affecting maize yield per unit area are the daily temperature range from seedling emergence to jointing stage and the average temperature from tasseling to milk-ripening stage. The results provide a reference for scientific sowing date of Lianyu No.1 maize to ensure stable and high yield.
-
Key words:
- North China;
- Lianyu No.1;
- sowing dates;
- yield;
- meteorological conditions
-
表 1 2018—2021年不同播种期玉米平均产量结构
Table 1 Average components of maize yield under different sowing dates during 2018-2021
处理 果穗粗/cm 果穗长/cm 单株籽粒数 百粒重/g S1 5.1 20.0 622.5 34.467 S2 5.1 19.0 611.2 31.246 S3 5.1 18.9 623.5 29.940 S4 5.0 17.3 566.6 27.286 表 2 2018—2021年玉米产量结构与各发育阶段气象因子的偏相关系数
Table 2 Partial correlation coefficients of maize yield's components with meteorological factors at different growth stages during 2018-2021
发育阶段 产量构成要素 平均气温/℃ 气温日较差/℃ 有效积温/(℃·d) 日照时数/h 播种-出苗期 果穗粗 -0.059 0.349* 0.352* -0.368* 果穗长 0.368* 0.022 -0.270 0.133 单株籽粒数 0.059 0.230 -0.069 0.009 百粒重 -0.211 0.310 -0.280 -0.065 出苗-拔节期 果穗粗 -0.288 -0.353* 0.077 0.309 果穗长 0.466** 0.361* 0.313* -0.214 单株籽粒数 -0.542** 0.538** 0.441** -0.449** 百粒重 -0.585** 0.627** 0.462** -0.116 拔节-抽雄期 果穗粗 -0.179 -0.132 0.473** -0.381* 果穗长 0.802** 0.234 0.227 -0.258 单株籽粒数 0.130 0.702** 0.290 -0.651** 百粒重 0.287 0.705** 0.682** -0.739** 抽雄-乳熟期 果穗粗 0.001 -0.012 0.287 0.007 果穗长 0.697** 0.177 0.435** -0.068 单株籽粒数 0.681** 0.434** 0.523** -0.561** 百粒重 0.811** 0.688** 0.828** -0.690** 乳熟-成熟期 果穗粗 -0.056 -0.099 0.362* 0.140 果穗长 0.521** 0.794** 0.434** -0.625** 单株籽粒数 0.750** 0.012 0.509** 0.073 百粒重 0.666** 0.530** 0.243 -0.258 播种-成熟期 果穗粗 0.198 -0.352* 0.398* 0.288 果穗长 0.810** 0.115 0.613** 0.047 单株籽粒数 0.578** 0.643** 0.730** -0.653** 百粒重 0.747** 0.633** 0.886** -0.514** 注:*表示达到0.05显著性水平,**表示达到0.01显著性水平。 表 3 2018—2021年不同播种期玉米单产(单位:t·hm-2)
Table 3 Maize yield per unit area under different sowing dates during 2018-2021(unit: t·hm-2)
处理 2018年 2019年 2020年 2021年 S1 13.556 13.632 14.827 S2 14.972 11.347 11.817 S3 9.819 12.415 11.571 11.066 S4 8.465 10.377 9.482 8.667 表 4 2018—2021年玉米单产与各发育阶段气象因子的偏相关关系
Table 4 Partial correlations of maize yield per unit area with meteorological factors at different growth stages during 2018-2021
发育阶段 平均气温/℃ 气温日较差/℃ 有效积温/(℃·d) 日照时数/h 播种-出苗期 -0.112 0.343* -0.212 -0.081 出苗-拔节期 -0.648** 0.637** 0.520** -0.316* 拔节-抽雄期 0.278 0.776** 0.638** -0.783** 抽雄-乳熟期 0.807** 0.618** 0.761** -0.662** 乳熟-成熟期 0.724** 0.384* 0.363* -0.145 播种-成熟期 0.737** 0.738** 0.898** -0.691** 注:*表示达到0.05显著性水平,**表示达到0.01显著性水平。 -
[1] 刘维, 宋迎波. 基于气象要素的逐日玉米产量气象影响指数. 应用气象学报, 2022, 33(3): 364-374. doi: 10.11898/1001-7313.20220310Liu W, Song Y B. A daily meteorological impact index of maize yield based on weather elements. J Appl Meteor Sci, 2022, 33(3): 364-374. doi: 10.11898/1001-7313.20220310 [2] Fang Q, Zhang X, Chen S, et al. Selecting traits to reduce seasonal yield variation of summer maize in the North China Plain. Agronomy Journal, 2019, 111(1): 343-353. doi: 10.2134/agronj2018.05.0301 [3] 陈雨烨, 王培娟, 张源达, 等. 基于3种遥感指数的东北春玉米干旱识别对比. 应用气象学报, 2022, 33(4): 466-476. doi: 10.11898/1001-7313.20220407Chen Y Y, Wang P J, Zhang Y D, et al. Comparison of drought recognition of spring maize in Northeast China based on 3 remote sensing indices. J Appl Meteor Sci, 2022, 33(4): 466-476. doi: 10.11898/1001-7313.20220407 [4] 蔡福, 米娜, 明惠青, 等. WOFOST模型蒸散过程改进对玉米干旱模拟影响. 应用气象学报, 2021, 32(1): 52-64. doi: 10.11898/1001-7313.20210105Cai F, Mi N, Ming H Q, et al. Effects of improving evapotranspiration parameterization scheme on WOFOST model performance in simulating maize drought stress process. J Appl Meteor Sci, 2021, 32(1): 52-64. doi: 10.11898/1001-7313.20210105 [5] 国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2020.National Bureau of Statistics of China. China Statistical Yearbook. Beijing: China Statistic Press, 2020. [6] Huang S B, Lv L H, Zhu J C, et al. Extending growing period is limited to offsetting negative effects of climate changes on maize yield in the North China Plain. Field Crops Research, 2018, 215: 66-73. doi: 10.1016/j.fcr.2017.09.015 [7] 霍治国, 张海燕, 李春晖, 等. 中国玉米高温热害研究进展. 应用气象学报, 2023, 34(1): 1-14. doi: 10.11898/1001-7313.20230101Huo Z G, Zhang H Y, Li C H, et al. Review on high temperature heat damage of maize in China. J Appl Meteor Sci, 2023, 34(1): 1-14. doi: 10.11898/1001-7313.20230101 [8] 马青荣, 左璇, 胡程达, 等. 涝渍对夏花生光合特性及产量影响. 应用气象学报, 2021, 32(4): 479-490. doi: 10.11898/1001-7313.20210409Ma Q R, Zuo X, Hu C D, et al. Effects of waterlogging on photosynthetic characteristics and yield of summer peanut. J Appl Meteor Sci, 2021, 32(4): 479-490. doi: 10.11898/1001-7313.20210409 [9] 宋艳玲, 周广胜, 郭建平, 等. 北方冬小麦冬季冻害及播期延迟应对. 应用气象学报, 2022, 33(4): 454-465. doi: 10.11898/1001-7313.20220406Song Y L, Zhou G S, Guo J P, et al. Freezing injury of winter wheat in northern China and delaying sowing date to adapt. J Appl Meteor Sci, 2022, 33(4): 454-465. doi: 10.11898/1001-7313.20220406 [10] 陈金秋, 施晓晖. 青藏高原-孟加拉湾大气热力差异与夏季暴雨. 应用气象学报, 2022, 33(2): 244-256. doi: 10.11898/1001-7313.20220210Chen J Q, Shi X H. Possible effects of the difference in atmospheric heating between the Tibetan Plateau and the Bay of Bengal on spatiotemporal evolution of rainstorms. J Appl Meteor Sci, 2022, 33(2): 244-256. doi: 10.11898/1001-7313.20220210 [11] Xu F, Wang B, He C, et al. Optimizing sowing date and planting density can mitigate the impacts of future climate on maize yield: A case study in the Guanzhong Plain of China. Agronomy, 2021, 11(8): 1452-1470. [12] Srivastava R, Panda R, Chakraborty A, et al. Enhancing grain yield, biomass and nitrogen use efficiency of maize by varying sowing dates and nitrogen rate under rainfed and irrigated conditions. Field Crops Research, 2018, 221: 339-349. [13] Maresma A, Ballesta A, Santiveri F, et al. Sowing date affects maize development and yield in irrigated Mediterranean environments. Agriculture, 2019, 9(3): 67-81. [14] Lv Z F, Li F F, Lu G Q. Adjusting sowing date and cultivar shift improve maize adaption to climate change in China. Mitigation and Adaptation Strategies for Global Change, 2020, 25(1): 87-106. [15] Gao Z, Feng H Y, Liang X G, et al. Adjusting the sowing date of spring maize did not mitigate against heat stress in the North China Plain. Agricultural and Forest Meteorology, 2021, 298/299: 108274. [16] Bonea D. Phenology, yield and protein content of maize(Zea mays L.) hybrids as affected by different sowing dates. Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development, 2020, 20(3): 145-150. [17] Zhu G, Liu Z, Qiao S, et al. How could observed sowing dates contribute to maize potential yield under climate change in Northeast China based on APSIM model. European Journal of Agronomy, 2022, 136: 126511. [18] Zhai L, Zhang L, Yao H, et al. The optimal cultivar×sowing date×plant density for grain yield and resource use efficiency of summer maize in the northern Huang-Huai-Hai Plain of China. Agriculture, 2021, 12(1): 7. [19] Zhou B, Yue Y, Sun X, et al. Maize kernel weight responses to sowing date-associated variation in weather conditions. The Crop Journal, 2017, 5(1): 43-51. [20] Alam M J, Ahmed K S, Nahar M K, et al. Effect of different sowing dates on the performance of maize. Journal of Krishi Vigyan, 2020, 8(2): 75-81. [21] Cao Q, Li G, Yang F, et al. Maize yield, biomass and grain quality traits responses to delayed sowing date and genotypes in rain-fed condition. Emirates Journal of Food and Agriculture, 2019, 31(6): 415-425. [22] 冯晓钰, 周广胜. 碳四植物光合生化机理模型的叶片含水量修正. 应用气象学报, 2022, 33(3): 375-384. doi: 10.11898/1001-7313.20220311Feng X Y, Zhou G S. Modification of leaf water content for the photosynthetic and biochemical mechanism model of C4 plant. J Appl Meteor Sci, 2022, 33(3): 375-384. doi: 10.11898/1001-7313.20220311 [23] Bonelli L E, Monzon J P, Cerrudo A, et al. Maize grain yield components and source-sink relationship as affected by the delay in sowing date. Field Crops Research, 2016, 198: 215-225. [24] 王婧瑄, 郭建平, 李蕊. 春玉米积温稳定性及在发育期预报中的应用. 应用气象学报, 2019, 30(5): 577-585. doi: 10.11898/1001-7313.20190506Wang J X, Guo J P, Li R. Accumulated temperature stability of spring maize and its application to growth period forecast. J Appl Meteor Sci, 2019, 30(5): 577-585. doi: 10.11898/1001-7313.20190506 [25] Wang Y, Wang C, Zhang Q. Synergistic effects of climatic factors and drought on maize yield in the east of Northwest China against the background of climate change. Theoretical and Applied Climatology, 2021, 143(3): 1017-1033. [26] Tian B, Zhu J, Nie Y, et al. Mitigating heat and chilling stress by adjusting the sowing date of maize in the North China Plain. Journal of Agronomy and Crop Science, 2019, 205(1): 77-87. [27] 郭春明, 任景全, 曹铁华, 等. 春玉米穗分化期低温对产量构成因素的影响. 应用气象学报, 2018, 29(4): 505-512. doi: 10.11898/1001-7313.20180411Guo C M, Ren J Q, Cao T H, et al. Effects of low temperature during ear differentiation stage on yield components of spring maize. J Appl Meteor Sci, 2018, 29(4): 505-512. doi: 10.11898/1001-7313.20180411 [28] Chen C, Pang Y. Response of maize yield to climate change in Sichuan Province, China. Global Ecology and Conservation, 2020, 22: e00893.