Impact of Climate Change on Potential Planting Areas of Rubber Trees in Yunnan
-
摘要: 利用1981—2020年气象观测数据, 从种植气候适宜性区划角度分析气候变化对云南橡胶潜在种植区的影响。结果显示: 2011—2020年与1981—1990年相比, 云南南部和东部地区橡胶种植县大部地区的年平均气温升高0.6~0.8℃, 西部大部地区升高1.0℃以上; 哀牢山以东橡胶种植县大部地区1月平均气温升高0~1.0℃, 以西大部地区则升高1.0~2.0℃; 2011—2020年云南橡胶潜在种植区区划与1981—1990年相比, 最适宜区增加55.3%, 适宜区增加18.6%, 增加区域主要分布在哀牢山以西。云南橡胶潜在种植区发生明显变化, 气候变化使哀牢山以西地区更适宜橡胶种植和产业的发展。Abstract: Based on the meteorological observations since 1981, the impact of climate change on rubber tree planting in Yunnan is analyzed from the aspect of the climatic suitability of rubber tree. The results show that annual average temperature of the main rubber producing counties in the south and east increases by 0.6-0.8℃ in most areas, and more than 1.0℃ in most areas in the west. In January, the average temperature in most areas of the main rubber producing counties in the east of the Ailao Mountain increases by 0-1.0℃, while that in the west increases by 1.0-2.0℃ in the 2010s compared with the 1980s. At the same time, the most suitable and suitable climate area for rubber tree planting increase by 55.3% and 18.6%, respectively. The increased areas are mainly distributed in the west of the Ailao Mountain, indicating that the west area of the Ailao Mountain is more suitable for rubber tree planting due to climate change.
-
Key words:
- climate change;
- rubber tree;
- climatic suitability zoning;
- Yunnan
-
表 1 云南橡胶潜在种植区区划指标
Table 1 Climatic suitability regionalization index of rubber tree planting in Yunnan
区划指标因子 最适宜 适宜 次适宜 不适宜 年平均气温/℃ >20.0 19.1~20.0 18.0~19.0 < 18.0 1月平均气温/℃ >15.0 12.1~15.0 10.0~12.0 < 10.0 年降水量/mm >1800 1301~1800 1000~1300 < 1000 表 2 1981—2020年橡胶潜在种植区面积(单位:106 hm2)
Table 2 Potential planting area of rubber tree from 1981 to 2020(unit: 106 hm2)
年份 次适宜 适宜 最适宜 1981—1990年 1.58 1.45 1.59 1991—2000年 1.72 1.60 1.89 2001—2010年 1.79 1.73 2.27 2011—2020年 1.78 1.72 2.47 -
[1] 宋艳红, 史正涛, 王连晓, 等. 云南橡胶树种植的历史、现状、生态问题及其应对措施. 江苏农业科学, 2019, 47(8): 171-175. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201908039.htmSong Y H, Shi Z T, Wang L X, et al. Development history, existing ecological problems and countermeasures of natural rubber in Yunnan. Jiangsu Agric Sci, 2019, 47(8): 171-175. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201908039.htm [2] 郭建平. 气候变化对中国农业生产的影响研究进展. 应用气象学报, 2015, 26(1): 1-11. doi: 10.11898/1001-7313.20150101Guo J P. Advances in impacts of climate change on agricultural production in China. J Appl Meteor Sci, 2015, 26(1): 1-11. doi: 10.11898/1001-7313.20150101 [3] 唐俊贤, 王培娟, 俄有浩, 等. 中国大陆茶树种植气候适宜性区划. 应用气象学报, 2021, 32(4): 397-407. doi: 10.11898/1001-7313.20210402Tang J X, Wang P J, E Y H, et al. Climatic suitability zoning of tea planting in Mainland China. J Appl Meteor Sci, 2021, 32(4): 397-407. doi: 10.11898/1001-7313.20210402 [4] 李璠, 校瑞香, 严应存, 等. 气候变化对青海省青稞物候期的影响. 麦类作物学报, 2022, 42(6): 755-763. https://www.cnki.com.cn/Article/CJFDTOTAL-MLZW202206013.htmLi F, Xiao R X, Yan Y C, et al. Impact of climate changes on the phenology of hulless barley in Qinghai Province. J Triticeae Crops, 2022, 42(6): 755-763. https://www.cnki.com.cn/Article/CJFDTOTAL-MLZW202206013.htm [5] 初征, 郭建平. 未来气候变化对东北玉米品种布局的影响. 应用气象学报, 2018, 29(2): 165-176. doi: 10.11898/1001-7313.20180204Chu Z, Guo J P. Effects of climatic change on maize varieties distribution in the future of Northeast China. J Appl Meteor Sci, 2018, 29(2): 165-176. doi: 10.11898/1001-7313.20180204 [6] 李星敏, 柏秦凤, 朱琳. 气候变化对陕西苹果生长适宜性影响. 应用气象学报, 2011, 22(2): 241-248. http://qikan.camscma.cn/article/id/20110213Li X M, Bai Q F, Zhu L. The influence of climate change on suitability of Shaanxi apple growth. J Appl Meteor Sci, 2011, 22(2): 241-248. http://qikan.camscma.cn/article/id/20110213 [7] 刘少军, 周广胜, 房世波, 等. 未来气候变化对中国天然橡胶种植气候适宜区的影响. 应用生态学报, 2015, 26(7): 2083-2090. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201507024.htmLiu S J, Zhou G S, Fang S B, et al. Effects of future climate change on climatic suitability of rubber plantation in China. Chinese J Appl Ecol, 2015, 26(7): 2083-2090. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201507024.htm [8] 李宁, 白蕤, 李玮, 等. 未来气候变化背景下我国橡胶树寒害事件的变化特征. 气候变化研究进展, 2018, 14(4): 402-410. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201804008.htmLi N, Bai R, Li W, et al. Changes of chilling injury events on China's rubber tree under future climate change. Adv Climate Change Res, 2018, 14(4): 402-410. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201804008.htm [9] 姚平, 寇卫利, 王秋华, 等. 近60年来西双版纳气候变化及其与橡胶种植关系研究. 林业调查规划, 2020, 45(3): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-LDGH202003006.htmYao P, Kou W L, Wang Q H, et al. Relationship between climate change and rubber planting in Xishuangbanna in recent 60 years. For Inventory Plann, 2020, 45(3): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-LDGH202003006.htm [10] 程建刚, 陈瑶, 徐远, 等. 中华人民共和国气象行业标准(QX/T 169—2012): 橡胶寒害等级. 北京: 气象出版社, 2013.Cheng J G, Chen Y, Xu Y, et al. Meteorological Industry Standard of the People's Republic of China(QX/T 169-2012): Grade of Chilling Injury to Hevea Brasiliensis Trees. Beijing: China Meteorological Press, 2013. [11] 刘少军, 周广胜, 房世波. 中国橡胶种植北界. 生态学报, 2016, 36(5): 1272-1280. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201605010.htmLiu S J, Zhou G S, Fang S B. Apreliminary study of the northern planting boundary of rubber tree cultivation in China. Acta Ecologica Sinica, 2016, 36(5): 1272-1280. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201605010.htm [12] 王利溥. 云南垦区橡胶树大面积高产的气候学基础. 云南热作科技, 1996(2): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-YNRJ602.006.htmWang L P. Climatological basis for large area and high yield of rubber trees in Yunnan reclamation area. Yunnan Sci Tech Trop Crops, 1996(2): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-YNRJ602.006.htm [13] 朱勇, 李春梅, 谭宗琨, 等. 特色林果气象灾害监测与预警关键技术. 北京: 气象出版社, 2017: 40-41.Zhu Y, Li C M, Tan Z K, et al. Key Technologies of Meteorological Disaster Monitoring and Early Warning of Characteristic Forest and Fruit. Beijing: China Meteorological Press, 2017: 40-41. [14] 王菱. 我国橡胶树生长北界的地理环境评价. 自然资源, 1987(2): 54-61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY198702007.htmWang L. Geographical environment evaluation of the northern boundary of rubber tree growth in China. Nat Resour, 1987(2): 54-61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY198702007.htm [15] 贾洋, 崔鹏. 高山区多时间尺度ANUSPLIN气温插值精度对比分析. 高原气象, 2018, 37(3): 757-766. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201803015.htmJia Y, Cui P. Contrastive analysis of temperature interpolation at different time scales in the alpine region by ANUSPLIN. Plateau Meteor, 2018, 37(3): 757-766. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201803015.htm [16] 李凯伟, 张继权, 魏思成, 等. 东北春大豆精细化气候区划. 应用气象学报, 2021, 32(4): 408-420. doi: 10.11898/1001-7313.20210403Li K W, Zhang J Q, Wei S C, et al. Refined climatic zoning of spring soybean in Northeast China. J Appl Meteor Sci, 2021, 32(4): 408-420. doi: 10.11898/1001-7313.20210403 [17] 谭剑波, 李爱农, 雷光斌. 青藏高原东南缘气象要素ANUSPLIN和Cokriging空间插值对比分析. 高原气象, 2016, 35(4): 875-886. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201604004.htmTan J B, Li A N, Lei G B. Contrast on ANUSPLIN and Cokriging meteorological spatial interpolation in southeastern margin of Qinghai-Xizang Plateau. Plateau Meteor, 2016, 35(4): 875-886. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201604004.htm [18] Hijmans R J, Cameron S E, Parra J L, et al. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol, 2005, 25(15): 1965-1978. [19] 刘聪, 李凯伟, 张继权, 等. 基于气候适宜度的南方柑橘种植精细化气候区划. 应用气象学报, 2021, 32(4): 421-431. doi: 10.11898/1001-7313.20210404Liu C, Li K W, Zhang J Q, et al. Refined climatic zoning for citrus cultivation in southern China based on climate suitability. J Appl Meteor Sci, 2021, 32(4): 421-431. doi: 10.11898/1001-7313.20210404 [20] 沈艳, 熊安元, 施晓晖, 等. 中国55年来地面水汽压网格数据集的建立及精度评价. 气象学报, 2008, 66(2): 283-291. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200802013.htmShen Y, Xiong A Y, Shi X H, et al. Development of the grid-based ground water vapor pressure over China in recent 55 years and its accuracy evaluation. Acta Meteor Sinica, 2008, 66(2): 283-291. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200802013.htm [21] 钱永兰, 吕厚荃, 张艳红. 基于ANUSPLIN软件的逐日气象要素插值方法应用与评估. 气象与环境学报, 2010, 26(2): 7-15. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201002002.htmQian Y L, Lv H Q, Zhang Y H. Application and assessment of spatial interpolation method on daily meteorological elements based on ANUSPHLIN software. J Meteor Environ, 2010, 26(2): 7-15. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201002002.htm [22] 邱美娟, 刘布春, 刘园, 等. 中国北方苹果种植需水特征及降水适宜性. 应用气象学报, 2021, 32(2): 175-187. doi: 10.11898/1001-7313.20210204Qiu M J, Liu B C, Liu Y, et al. Water requirement and precipitation suitability of apple planting in northern China. J Appl Meteor Sci, 2021, 32(2): 175-187. doi: 10.11898/1001-7313.20210204 [23] 程建刚, 解明恩. 近50年云南区域气候变化特征分析. 地理科学进展, 2008, 27(5): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ200805005.htmCheng J G, Xie M E. The Analysis of regional climate change features over Yunnan in recent 50 years. Prog Geogr, 2008, 27(5): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ200805005.htm [24] 杨明, 李维亮, 刘煜, 等. 近50年我国西部地区气象要素的变化特征. 应用气象学报, 2010, 21(2): 198-205. http://qikan.camscma.cn/article/id/20100209Yang M, Li W L, Liu Y, et al. Characteristics of the climate change in West China in recent 50 years. J Appl Meteor Sci, 2010, 21(2): 198-205. http://qikan.camscma.cn/article/id/20100209 [25] 徐铭志, 任国玉. 近40年中国气候生长期的变化. 应用气象学报, 2004, 15(3): 301-312. http://qikan.camscma.cn/article/id/20040339Xu M Z, Ren G Y. Change in growing season over China: 1961—2000. J Appl Meteor Sci, 2004, 15(3): 301-312. http://qikan.camscma.cn/article/id/20040339