留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2022年我国夏季极端高温阶段性特征及成因

齐道日娜 何立富

齐道日娜, 何立富. 2022年我国夏季极端高温阶段性特征及成因. 应用气象学报, 2023, 34(4): 385-399. DOI:  10.11898/1001-7313.20230401..
引用本文: 齐道日娜, 何立富. 2022年我国夏季极端高温阶段性特征及成因. 应用气象学报, 2023, 34(4): 385-399. DOI:  10.11898/1001-7313.20230401.
Chyi Dorina, He Lifu. Stage characteristics and mechanisms of extreme high temperature in China in summer of 2022. J Appl Meteor Sci, 2023, 34(4): 385-399. DOI:  10.11898/1001-7313.20230401.
Citation: Chyi Dorina, He Lifu. Stage characteristics and mechanisms of extreme high temperature in China in summer of 2022. J Appl Meteor Sci, 2023, 34(4): 385-399. DOI:  10.11898/1001-7313.20230401.

2022年我国夏季极端高温阶段性特征及成因

DOI: 10.11898/1001-7313.20230401
资助项目: 

国家自然科学基金国际合作与交流项目 42261144002

公益性行业(气象)科研专项 GYHY201506006

气象能力提升联合研究专项 22NLTSZ004

详细信息
    通信作者:

    何立富, 邮箱:helifu@cma.gov.cn

Stage Characteristics and Mechanisms of Extreme High Temperature in China in Summer of 2022

  • 摘要: 利用常规观测和自动气象站加密观测资料以及ERA5再分析资料分析2022年夏季我国大范围极端高温阶段性特征及其热动力成因,结果表明:此次极端高温存在两个不同阶段:6月高温区集中在华北黄淮地区,7—8月高温区位于四川盆地—长江中下游地区;两个阶段极端高温均发生在异常环流背景条件下,对流层上层为显著偏强的南亚高压控制区,其主导系统分别为500 hPa强烈发展的华北高压脊和异常强盛的副热带高压坝;Rossby波能量自上游向华北地区持续频散和瞬变天气扰动偏弱是华北高压脊增强和维持的主要成因,西北太平洋副热带高压南侧的大气热源增强、赤道附近热带辐合区异常偏强的上升气流在30°N副热带高压脊线附近下沉,有利于西北太平洋副热带高压的西伸加强且稳定维持。对流层低层强烈暖平流和边界层非绝热加热是华北黄淮地区高温形成的主要影响因子,高温的维持主要依靠异常强烈的非绝热加热;四川盆地—长江中下游地区高温的形成受深厚对流层内异常下沉增温和边界层内非绝热加热共同影响,高温长时间维持的影响因子除非绝热加热外,极端强盛的南亚高压控制区内异常绝热加热项(下沉增温)的贡献亦不可忽视。
  • 图  1  2022年6月1日—8月31日平均日最高气温和高温日数

    Fig. 1  Distributions of daily maximum temperature and high temperature days from 1 Jun to 31 Aug in 2022

    图  2  2022年6—8月平均日最高气温距平分布(黑色方框为高温关键区)

    Fig. 2  Distributions of daily maximum temperature anomaly from 1 Jun to 31 Aug in 2022 (black boxes denote high temperature critical regions)

    图  3  2022年6月1日—8月31日高温站数和日最高气温

    (a)华北黄淮高温关键区逐日高温站数(灰色柱状) 和区域平均日最高气温(红色实线),(b)四川盆地—长江中下游地区高温关键区逐日高温站数(灰色柱状) 和区域平均日最高气温(红色实线),(c)6月17—26日平均日最高气温(黑色方框表示华北黄淮地区),(d)7月10日—8月25日平均日最高气温(黑色方框表示四川盆地—长江中下游地区)

    Fig. 3  Station number with high temperature and daily maximum temperature from 1 Jun to 31 Aug in 2022

    (a)station number with high temperature (gray bars) and the area-mean daily maximum temperature (the red line) in North China and Huanghuai Region, (b)station number with high temperature (gray bars) and the area-mean daily maximum temperature (the red line) in Sichuan Basin and the middle and lower reaches of the Yangtze River, (c)daily maximum temperature from 17 Jun to 26 Jun in 2022 (the black box denotes high temperature critical region in North China and Huanghuai Region), (d)daily maximum temperature from 10 Jul to 25 Aug in 2022 (the black box denotes high temperature critical region in Sichuan Basin and the middle and lower reaches of the Yangtze River)

    图  4  2022年夏季环流形势(黑色方框为高温关键区)

    (a)第1阶段100 hPa高度场(等值线,单位:dagpm)(红色实线为该阶段1675 dagpm等值线,蓝色实线为气候态1675 dagpm等值线) 及其异常(填色),(b)第2阶段100 hPa高度场(等值线,单位:dagpm)(红色实线为该阶段1675 dagpm等值线,蓝色实线为气候态1675 dagpm等值线) 及其异常(填色), (c)第1阶段500 hPa高度场等值线(单位:dagpm)(红色实线为该阶段588 dagpm等值线,蓝色实线为气候态588 dagpm等值线) 及其异常(填色),(d)第2阶段500 hPa高度场等值线(单位:dagpm)(红色实线为该阶段588 dagpm等值线,蓝色实线为气候态588 dagpm等值线) 及其异常(填色),(e)第1阶段850 hPa温度标准化距平(填色) 和流场,(f)第2阶段850 hPa温度标准化距平(填色) 和流场

    Fig. 4  Circulations in summer of 2022 (black boxes denote high temperature critical regions)

    (a)geopotential height (the contour, unit:dagpm)(the red line denotes 1675 dagpm in stage 1, the blue line denotes climatic mean of 1675 dagpm) with its anomaly (the shaded) at 100 hPa in stage 1, (b)geopotential height (the contour, unit:dagpm)(the red line denotes 1675 dagpm in stage 2, the blue line denotes climatic mean of 1675 dagpm) with its anomaly (the shaded) at 100 hPa in stage 2, (c)geopotential height (the contour, unit:dagpm)(the red line denotes 588 dagpm in stage 1, the blue line denotes climatic mean of 588 dagpm) with its anomaly (the shaded) at 500 hPa in stage 1, (d)geopotential height (the contour, unit:dagpm)(the red line denotes 588 dagpm in stage 2, the blue line denotes climatic mean of 588 dagpm) with its anomaly (the shaded) at 500 hPa in stage 2, (e)850 hPa temperature standardized anomalies (the shaded) and flow fields in stage 1, (f)850 hPa temperature standardized anomalies (the shaded) and flow fields in stage 2

    图  5  2022年6月17—26日500 hPa位势高度场(等值线,单位:dagpm) 及其异常(填色) 和波作用通量(矢量) (a)及300 hPa波包函数异常(单位:m) (b)

    Fig. 5  500 geopotential height (the contour, unit:dagpm) with its anomaly (the shaded), wave-activity flux (the vector) (a) and 300 hPa envelope function (unit:m) (b) from 17 Jun to 26 Jun in 2022

    图  6  2022年7月10日—8月25日整层大气视热源(填色) 分布(红色和蓝色等值线分别为第2阶段和气候平均的588 dagpm等值线) (a)和110°~122°E平均垂直速度异常的纬度-高度剖面(b)

    Fig. 6  Vertically integrated atmospheric apparent heat source (the shaded) (the red line denotes 588 dagpm in stage 2, the blue line denotes climatic mean of 588 dagpm) (a) and vertical velocity anomaly averaged over 110°-122°E(b) from 10 Jul to 25 Aug in 2022

    图  7  2022年7—8月整层大气视热源(填色) 110°~150°E平均的时间-纬度剖面(a) 和15°~30°N平均的时间-经度剖面(b) (等值线为500 hPa位势高度588 dagpm等值线)

    Fig. 7  Time-latitude cross section over 110°-150°E(a) and time-longitude cross section over 15°-30°N(b) of vertically integrated atmospheric apparent heat source (the shaded) from Jul to Aug in 2022 (the black line denotes 588 dagpm)

    图  8  2022年夏季高温阶段区域平均热力学诊断量及其距平随时间变化

    Fig. 8  Evolutions of area average and anomalies of thermodynamic forcing terms for high temperature stages in summer of 2022

    图  9  2022年夏季高温形成期区域平均热力学诊断量的垂直廓线

    Fig. 9  Vertical profiles of area average thermodynamic forcing terms in summer of 2022

    图  10  2022年夏季高温形成期区域平均热力学诊断量距平随高度的变化

    Fig. 10  Vertical anomalies profiles of area average thermodynamic forcing terms in summer of 2022

    图  11  2022年夏季高温阶段的净短波辐射通量距平、净长波辐射通量距平和净辐射通量距平(黑色方框为高温关键区)

    Fig. 11  Net solar radiation flux, net longwave radiation flux and net radiation flux in summer of 2022 (black boxes denote high temperature critical regions)

  • [1] 翟盘茂, 潘晓华.中国北方近50年温度和降水极端事件变化.地理学报, 2003, 58(增刊Ⅰ):1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB2003S1000.htm

    Zhai P M, Pan X H. Change in extreme temperature and precipitation over northern China during the second half of the 20th century. Acta Geographica Sinica, 2003, 58(SupplⅠ): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB2003S1000.htm
    [2] 林昕, 管兆勇. 中国华东地区夏季高温的时空特征和年际变化. 南京气象学院学报, 2008, 31(1): 1-9. doi:  10.3969/j.issn.1674-7097.2008.01.001

    Lin X, Guan Z Y. Temporal-spatial characters and interannual variations of summer high temperature in East China. Journal of Nanjing Institute of Meteorology, 2008, 31(1): 1-9. doi:  10.3969/j.issn.1674-7097.2008.01.001
    [3] Ding T, Qian W H. Geographical patterns and temporal variations of regional dry and wet heatwave events in China during 1960-2008. Adv Atmos Sci, 2011, 28(2): 322-337. doi:  10.1007/s00376-010-9236-7
    [4] 孙建奇, 王会军, 袁薇. 我国极端高温事件的年代际变化及其与大气环流的联系. 气候与环境研究, 2011, 16(2): 199-208. doi:  10.3878/j.issn.1006-9585.2011.02.09

    Sun J Q, Wang H J, Yuan W. Decadal variability of the extreme hot event in China and its association with atmospheric circulations. Climatic Environ Res, 2011, 16(2): 199-208. doi:  10.3878/j.issn.1006-9585.2011.02.09
    [5] 董晓峣, 武炳义. 江淮地区夏季高温事件与北极冷异常的动力联系. 应用气象学报, 2019, 30(4): 431-442. doi:  10.11898/1001-7313.20190404

    Dong X Y, Wu B Y. Dynamic linkages between heat wave events in Jianghuai Region and Arctic summer cold anomaly. J Appl Meteor Sci, 2019, 30(4): 431-442. doi:  10.11898/1001-7313.20190404
    [6] 郑艳姣, 杨再强, 王琳, 等. 中国南方设施番茄高温热害风险区划. 应用气象学报, 2021, 32(4): 432-442. doi:  10.11898/1001-7313.20210405

    Zheng Y J, Yang Z Q, Wang L, et al. Refined risk zoning of high temperature and heat damage to greenhouse tomato in southern China. J Appl Meteor Sci, 2021, 32(4): 432-442. doi:  10.11898/1001-7313.20210405
    [7] 李化龙, 王景红, 张维敏, 等. 高温胁迫对猕猴桃叶片叶绿素荧光特性的影响. 应用气象学报, 2021, 32(4): 468-478. doi:  10.11898/1001-7313.20210408

    Li H L, Wang J H, Zhang W M, et al. Effects of high temperature stress on leaf chlorophyll fluorescence characteristics of kiwifruit. J Appl Meteor Sci, 2021, 32(4): 468-478. doi:  10.11898/1001-7313.20210408
    [8] 霍治国, 张海燕, 李春晖, 等. 中国玉米高温热害研究进展. 应用气象学报, 2023, 34(1): 1-14. doi:  10.11898/1001-7313.20230101

    Huo Z G, Zhang H Y, Li C H, et al. Review on high temperature heat damage of maize in China. J Appl Meteor Sci, 2023, 34(1): 1-14. doi:  10.11898/1001-7313.20230101
    [9] 李双双, 杨赛霓, 张东海, 等. 近54年京津冀地区热浪时空变化特征及影响因素. 应用气象学报, 2015, 26(5): 545-554. doi:  10.11898/1001-7313.20150504

    Li S S, Yang S N, Zhang D H, et al. Spatiotemporal variability of heat waves in Beijing-Tianjin-Hebei Region and influencing factors in recent 54 years. J Appl Meteor Sci, 2015, 26(5): 545-554. doi:  10.11898/1001-7313.20150504
    [10] 杨萍, 刘伟东, 王启光, 等. 近40年我国极端温度变化趋势和季节特征. 应用气象学报, 2010, 21(1): 29-36. http://qikan.camscma.cn/article/id/20100104

    Yang P, Liu W D, Wang Q G, et al. The climatic change trend and seasonal characteristics of daily temperature extremes in China for the latest 40 years. J Appl Meteor Sci, 2010, 21(1): 29-36. http://qikan.camscma.cn/article/id/20100104
    [11] 林爱兰, 谷德军, 彭冬冬, 等. 近60年我国东部区域性持续高温过程变化特征. 应用气象学报, 2021, 32(3): 302-314. doi:  10.11898/1001-7313.20210304

    Lin A L, Gu D J, Peng D D, et al. Climatic characteristics of regional persistent heat event in in the eastern China during recent 60 years. J Appl Meteor Sci, 2021, 32(3): 302-314. doi:  10.11898/1001-7313.20210304
    [12] Zhai P M, Sun A J, Ren F M, et al. Changes of climate extremes in China. Climate Change, 1999, 42: 203-218. doi:  10.1023/A:1005428602279
    [13] 严中伟, 杨赤. 近几十年中国极端气候变化格局. 气候与环境研究, 2000, 5(3): 267-272. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200003004.htm

    Yan Z W, Yang C. Geographic patterns of extreme climate changes in China during 1951-1997. Climatic Environ Res, 2000, 5(3): 267-272. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200003004.htm
    [14] 张勇, 曹丽娟, 许吟隆, 等. 未来我国极端温度事件变化情景分析. 应用气象学报, 2008, 19(6): 655-660. http://qikan.camscma.cn/article/id/20080603

    Zhang Y, Cao L J, Xu Y L, et al. Scenario analyses on future changes of extreme temperature events over China. J Appl Meteor Sci, 2008, 19(6): 655-660. http://qikan.camscma.cn/article/id/20080603
    [15] 谢庄, 崔继良, 刘海涛, 等. 华北和北京的酷暑天气: 历史概况及个例分析. 气候与环境研究, 1999, 4(4): 323-333. doi:  10.3878/j.issn.1006-9585.1999.04.01

    Xie Z, Cui J L, Liu H T, et al. A study on the severe hot weather in Beijing and North China Part Ⅰ. Statistics and synoptic case study. Climatic Environ Res, 1999, 4(4): 323-333. doi:  10.3878/j.issn.1006-9585.1999.04.01
    [16] 卫捷, 杨辉, 孙淑清. 西太平洋副热带高压东西位置异常与华北夏季酷暑. 气象学报, 2004, 62(3): 308-316. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200403004.htm

    Wei J, Yang H, Sun S Q. Relationship between the anomaly longitudinal position of subtropical high in the Western Pacific and severe hot weather in North China in summer. Acta Meteor Sinica, 2004, 62(3): 308-316. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200403004.htm
    [17] 卫捷, 孙建华. 华北地区夏季高温闷热天气特征的分析. 气候与环境研究, 2007, 12(3): 453-463. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200703024.htm

    Wei J, Sun J H. The analysis of summer heat wave and sultry weather in North China. Climatic Environ Res, 2007, 12(3): 453-463. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200703024.htm
    [18] 孙建华, 卫捷, 张小玲, 等. 2003年夏季的异常天气及预测试验. 气候与环境研究, 2004, 9(1): 203-217. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200401019.htm

    Sun J H, Wei J, Zhang X L, et al. The abnormal weather in the summer 2003 and its real-time prediction. Climatic Environ Res, 2004, 9(1): 203-217. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200401019.htm
    [19] 林建, 毕宝贵, 何金海. 2003年7月西太平洋副热带高压变异及中国南方高温形成机理研究. 大气科学, 2005, 29(4): 594-599. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200504009.htm

    Lin J, Bi B G, He J H. Physical mechanism responsible for Western Pacific subtropical high variation and hot wave in southern China in July 2003. Chinese J Atmos Sci, 2005, 29 (4): 594-599. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200504009.htm
    [20] 刘还珠, 赵声蓉, 赵翠光, 等. 2003年夏季异常天气与西太副高和南亚高压演变特征的分析. 高原气象, 2006, 25(2): 169-178. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200602000.htm

    Liu H Z, Zhao S R, Zhao C G, et al. Weather abnormal and evolutions of Western Pacific subtropical high and South Asian high in summer of 2003. Plateau Meteor, 2003, 25(2): 169-178. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200602000.htm
    [21] 方宇凌, 简茂球. 2003年夏季华南持续高温天气过程及热力诊断. 热带海洋学报, 2011, 30(3): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY201103006.htm

    Fang Y L, Jian M Q. Diagnosis study of persistent heat waves in South China during summer 2003. J Trop Ocean, 2011, 30(3): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY201103006.htm
    [22] 彭京备, 张庆云, 布和朝鲁. 2006年川渝地区高温干旱特征及其成因分析. 气候与环境研究, 2007, 12(3): 464-474. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200703025.htm

    Peng J B, Zhang Q Y, Bueh C. On the characteristics and possible causes of a severe drought and heat wave in the Sichuan-Chongqing Region in 2006. Climatic Environ Res, 2007, 12(3): 464-474. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200703025.htm
    [23] 邹旭恺, 高辉. 2006年夏季川渝高温干旱分析. 气候变化研究进展, 2007, 3(3): 149-153. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH200703006.htm

    Zou X K, Gao H. Analysis of severe drought and heat wave over the Sichuan Basin in the summer of 2006. Adv Climate Change Res, 2007, 3(3): 149-153. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH200703006.htm
    [24] 李永华, 徐海明, 刘德2006年夏季西南地区东部特大干旱及其大气环流异常. 气象学报, 2009, 67(1): 122-132. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200901014.htm

    Li Y H, Xu H M, Liu D. Features of the extremely severe drought in the east of Southwest China and anomalies of atmospheric circulation in summer 2006. Acta Meteor Sinica, 2009, 67(1): 122-132. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200901014.htm
    [25] 彭京备, 刘舸, 孙淑清. 2013年我国南方持续性高温天气及副热带高压异常维持的成因分析. 大气科学, 2016, 40(5): 897-906. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201605002.htm

    Peng J B, Liu G, Sun S Q. An analysis on the formation of the heat wave in southern China and its relation to the anomalous Western Pacific subtropical high in the summer of 2013. Chinese J Atmos Sci, 2016, 40 (5): 897-906. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201605002.htm
    [26] 邹海波, 吴珊珊, 单九生, 等. 2013年盛夏中国中东部高温天气的成因分析. 气象学报, 2015, 73(3): 481-495. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201503006.htm

    Zou H B, Wu S S, Shan J S, et al. Diagnostic study of the severe high temperature event over mid-eastern China in 2013 summer. Acta Meteor Sinica, 2015, 73(3): 481-495. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201503006.htm
    [27] 李娜, 肖子牛, 赵亮. 2018年夏季东北极端高温事件物理机制分析. 气候与环境研究, 2020, 25(5): 469-482. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH202005002.htm

    Li N, Xiao Z N, Zhao L. Analysis on the mechanism of the 2018 summer extreme high temperature event in Northeast China. Climatic Environ Res, 2020, 25(5): 469-482. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH202005002.htm
    [28] 马双梅, 祝从文, 刘伯奇. 2019年4~6月云南持续性高温天气的大气环流异常成因. 大气科学, 2021, 45(1): 165-180. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202101010.htm

    Ma S M, Zhu C W, Liu B Q. Possible causes of persistently extreme-hot-days-related circulation anomalies in Yunnan from April to June 2019. Chinese J Atmos Sci, 2021, 45(1): 165-180. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202101010.htm
    [29] Zhang T, Tam C Y, Lau N C, et al. Influences of the boreal winter Arctic Oscillation on the peak-summer compound heat waves over the Yangtze-Huaihe River Basin: The North Atlantic capacitor effect. Climate Dyn, 2022, 59(7): 2331-2343.
    [30] 林纾, 李红英, 黄鹏程, 等. 2022年夏季我国高温干旱特征及其环流形势分析. 干旱气象, 2022, 40(5): 748-763. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX202205003.htm

    Lin S, Li H Y, Huang P C, et al. Characteristics of high temperature, drought and circulation situation in summer 2022 in China. J Arid Meteor, 2022, 40(5): 748-763. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX202205003.htm
    [31] Wang Z Q, Luo H L, Yang S. Different mechanisms for the extremely hot central-eastern China in July-August 2022 from a Eurasian large-scale circulation perspective. Environ Res Lett, 2023, 18: 024023.
    [32] Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Quart J Roy Meteor Soc, 2020, 146: 1999-2049.
    [33] 丁婷, 钱维宏. 中国热浪前期信号及其模式预报. 地球物理学报, 2012, 55(5): 1472-1486. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201205006.htm

    Ding T, Qian W H. Statistical characteristics of heat wave precursors in China and model prediction. Acta Geophysica Sinica, 2012, 55(5): 1472-1486. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201205006.htm
    [34] 陈敏, 耿福海, 马雷鸣, 等. 近138年上海地区高温热浪事件分析. 高原气象, 2013, 32(2): 597-607. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201302027.htm

    Chen M, Geng F H, Ma L M, et al. Analyses on the heat wave events in Shanghai in recent 138 years. Plateau Meteor, 2013, 32(2): 597-607. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201302027.htm
    [35] Yanai M, Li C F, Song Z S. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J Meteor Soc Japan, 1992, 70(1B): 319-351.
    [36] Takaya K, Nakamura H. A formulation of a wave-activity flux for stationary Rossby waves on a zonally varying basic flow. Geophys Res Lett, 1997, 24(23): 2985-2988.
    [37] Takaya K, Nakamura H. A Formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J Atmos Sci, 2001, 58(6): 608-627.
    [38] 何立富, 齐道日娜, 余文. 引发东北极端暴雪的黄渤海气旋爆发性发展机制. 应用气象学报, 2022, 33(4): 385-399. doi:  10.11898/1001-7313.20220401

    He L F, Chyi D, Yu W. Development mechanisms of the Yellow Sea and Bohai Sea cyclone causing extreme snowstorm in Northeast China. J Appl Meteor Sci, 2022, 3(4): 385-399. doi:  10.11898/1001-7313.20220401
    [39] Nakamura H, Nakamura M, Anderson J L. The role of high-and low-frequency dynamics in blocking formation. Mon Wea Rev, 1997, 125(9): 2074-2093.
    [40] 陶诗言, 朱福康. 夏季亚洲南部100毫巴流型的变化及其与西太平洋副热带高压进退的关系. 气象学报, 1964, 34(4): 387-396. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB196404000.htm

    Tao S Y, Zhu F K. The 100-mb flow patterns in southern Asia in summer and its relation to the advance and retreat of the West-Pacific subtropical anticyclone over the Far East. Acta Meteor Sinica, 1964, 34(4): 387-396. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB196404000.htm
  • 加载中
图(11)
计量
  • 摘要浏览量:  1083
  • HTML全文浏览量:  237
  • PDF下载量:  331
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-28
  • 修回日期:  2023-06-16
  • 刊出日期:  2023-07-31

目录

    /

    返回文章
    返回