Refined Verification of Numerical Forecast of Subtropical High Edge Precipitation in Huanghuai Region
-
摘要: 以2020—2021年5—10月副高边缘型明显降水过程作为研究对象,针对黄淮地区太行山南麓、伏牛山东麓、东部平原3个典型区域,采用多种检验方法对CMA-MESO,CMA-SH9两模式降水日变化预报性能进行评估。结果表明:在山区,CMA-MESO预报有效降水时次占比与降水强度均偏小,CMA-SH9则相反,两模式分别在伏牛山东麓的04:00—10:00(北京时,下同)和太行山南麓的10:00—16:00预报有效降水时次占比偏小(大)更为显著;在平原,CMA-MESO对03:00—07:00和17:00—20:00有效降水时次占比显著低估,CMA-SH9对于17:00—20:00降水量的高估则主要来源于降水强度预报明显偏大。FSS(fractional skill score)评分结果显示:CMA-MESO对于伏牛山东麓15:00—17:00及21:00—22:00、东部平原02:00—04:00等时段10 mm·h-1以上降水预报能力优于CMA-SH9,在太行山南麓17:00—23:00则相反。基于STFSS(spatial temporal fractional skill score)评分的评估表明:CMA-SH9对于太行山南麓前一日14:00—当日02:00的降水预报较实况显著偏晚,CMA-MESO对于伏牛山东麓02:00—08:00及平原地区08:00—14:00的降水预报均表现出较实况偏早的特征。Abstract: Taking precipitation processes at the edge of subtropical high as target objects, three typical sub-regions including the southern foothills of Taihang Mountains, the eastern foothills of Funiu Mountains, and the eastern plains in Huanghuai Region are investigated, according to the topography and precipitation distribution characteristics. On this basis, using multi-source fusion precipitation data of National Meteorological Information Center, the precipitation refinement verification index, FSS (fractional skill score) and STFSS (spatial temporal fractional skill score) that adds the temporal neighborhood are used to evaluate the forecasting performance of the precipitation diurnal variation of CMA-MESO and CMA-SH9. The results show that the precipitation frequency and intensity by CMA-MESO in mountainous areas are smaller than observations, leading to significant underestimation, while results by CMA-SH9 are both stronger. The deviation of precipitation amount forecast of CMA-MESO in plain area mainly comes from the deviation of precipitation frequency. The precipitation intensity forecast by CMA-SH9 is stronger than observations in the southern foothills of Taihang Mountains, and the forecast precipitation frequency in the afternoon is significantly larger. For the early morning to morning period in the eastern foothills of Funiu Mountains, the frequency of precipitation by CMA-MESO is significantly lower than observations, while the diurnal variation of precipitation intensity is better than that of CMA-SH9. For the eastern plains, the overestimation of precipitation in early evening by CMA-SH9 mainly comes from the significantly larger precipitation intensity, while CMA-MESO significantly underestimates the frequency of precipitation in early evening and early morning. Based on the analysis of FSS, CMA-MESO is superior to CMA-SH9 in hourly precipitation forecast of more than 10 mm during afternoon to mid-night in the eastern foothills of Funiu Mountains and 0200 BT to 0400 BT in the night in the eastern plains, but the conclusion is opposite in the southern foothills of Taihang Mountains in the nighttime. STFSS can better evaluate the temporal and spatial uncertainty of hourly precipitation forecasts. Precipitation forecasts of CMA-SH9 in southern foothills of Taihang Mountains from the afternoon to the first half of the night significantly lag behind observations, but its spatial-deviation-scale and performance is better than CMA-MESO. The precipitation forecast of CMA-MESO from 0200 BT to 0800 BT in the eastern foothills of Funiu Mountains is significantly ahead of observations, and the advance time is more obvious in the eastern plains in the morning.
-
图 4 不同区域实况和预报的平均降水量、有效降水时次占比、降水强度日变化特征
短竖线代表预报与观测差值在0.1显著性水平上显著大于(小于)0
Fig. 4 Diurnal variation characteristics of average precipitation, percentage of effective precipitation and average precipitation intensity in different areas of the selected precipitation days
short vertical lines denote the difference between forecast and observation significantly greater(less) than zero at 0.1 level
图 5 不同区域、不同空间邻域下CMA-MESO,CMA-SH9预报10 mm以上小时降水的FSS评分日变化及两者差值
★代表模式评分差值在0.1显著性水平上显著大于(小于)0
Fig. 5 Diurnal variation of FSS for hourly precipitation above 10 mm forecast and the difference between CMA-MESO and CMA-SH9 of different spatial neighborhoods in different areas
★ denotes the difference significantly greater(less) than zero at 0.1 level
图 6 CMA-MESO和CMA-SH9两模式在不同时间、空间邻域下对太行山南麓大于10 mm阈值小时降水预报的STFSS评分及两者差值
▲代表任一时间领域的STFSS评分与0 h评分的差值在0.1显著性水平上显著大于(小于)0,★代表模式评分差值在0.1显著性水平上显著大于(小于)0
Fig. 6 STFSS for hourly precipitation forecasts greater than 10 mm threshold and the difference between CMA-MESO and CMA-SH9 at southern foothills of Taihang Mountains under different time and space neighbors
▲ denotes the difference between STFSS score of the neighborhood at any time and 0 h score significantly greater(less) than zero at 0.1 level, ★ denotes the difference between STFSS of CMA-MESO and CMA-SH9 significantly greater(less) than zero at 0.1 level
表 1 黄淮地区副高边缘型降水日起止时间
Table 1 Beginning and ending time of subtropical high edge precipitation samples in Huanghuai Region
编号 起始时间 结束时间 1 2020-06-15T20:00 2020-06-16T20:00 2 2020-06-16T20:00 2020-06-17T20:00 3 2020-08-02T20:00 2020-08-03T20:00 4 2020-08-03T20:00 2020-08-04T20:00 5 2020-08-04T20:00 2020-08-05T20:00 6 2020-08-05T20:00 2020-08-06T20:00 7 2020-08-06T20:00 2020-08-07T20:00 8 2020-08-11T20:00 2020-08-12T20:00 9 2020-08-14T20:00 2020-08-15T20:00 10 2020-08-17T20:00 2020-08-18T20:00 11 2020-08-18T20:00 2020-08-19T20:00 12 2020-08-19T20:00 2020-08-20T20:00 13 2020-08-21T20:00 2021-08-22T20:00 14 2021-08-27T20:00 2021-08-28T20:00 15 2021-08-29T20:00 2021-08-30T20:00 16 2021-08-30T20:00 2021-08-31T20:00 17 2021-08-31T20:00 2021-09-01T20:00 18 2021-09-03T20:00 2021-09-04T20:00 19 2021-09-05T20:00 2021-09-06T20:00 20 2021-09-16T20:00 2021-09-17T20:00 21 2021-09-17T20:00 2021-09-18T20:00 22 2021-09-23T20:00 2021-09-24T20:00 23 2021-09-24T20:00 2021-09-25T20:00 24 2021-09-25T20:00 2021-09-26T20:00 25 2021-10-03T20:00 2021-10-04T20:00 26 2021-10-04T20:00 2021-10-05T20:00 27 2021-10-05T20:00 2021-10-06T20:00 -
[1] 陶诗言, 赵思雄, 周晓平, 等.天气学和天气预报的研究进展.大气科学, 2003, 27(4):451-467. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200304002.htmTao S Y, Zhao S X, Zhou X P, et al. The research progress of the synoptic meteorology and synoptic forecast. Chinese J Atmos Sci, 2003, 27(4): 451-467. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200304002.htm [2] 陶诗言, 卫捷. 再论夏季西太平洋副热带高压的西伸北跳. 应用气象学报, 2006, 17(5): 513-525. http://qikan.camscma.cn/article/id/20060591Tao S Y, Wei J. The westward, northward advance of the subtropical high over the West Pacific in summer. J Appl Meteor Sci, 2006, 17(5): 513-525. http://qikan.camscma.cn/article/id/20060591 [3] 孙兴池, 郭俊建, 王业宏, 等. 低涡和副热带高压共同影响下的暴雨落区分析. 气象, 2015, 41(4): 401-408. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201504002.htmSun X C, Guo J J, Wang Y H, et al. Analysis of the common effect of vortex and subtropical high on rainstorm fall area. Meteor Mon, 2015, 41(4): 401-408. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201504002.htm [4] 侯淑梅, 郭俊建, 张磊, 等. 西风槽与副高相互作用的暴雨过程动热力场结构特征分析. 气象, 2017, 43(2): 151-165. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201702003.htmHou S M, Guo J J, Zhang L, et al. Analysis of dynamic and thermal field structure characteristics on rainstorm area in interaction process between westerly trough and subtropical high. Meteor Mon, 2017, 43(2): 151-165. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201702003.htm [5] 邱贵强, 赵桂香, 董春卿, 等. 一次副热带高压边缘突发性暴雨的锋生及水汽特征分析. 高原气象, 2018, 37(4): 946-957. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201804007.htmQiu G Q, Zhao G X, Dong C Q, et al. Frontogenesis and moisture characteristic analysis on a sudden rainstorm at the edge of subtropical high. Plateau Meteor, 2018, 37(4): 946-957. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201804007.htm [6] 任丽, 赵柠, 赵美玲, 等. 两次副热带高压北侧暖锋暴雨动力热力诊断. 高原气象, 2021, 40(1): 61-73. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202101006.htmRen L, Zhao N, Zhao M L, et al. Diagnosis of dynamic and thermal mechanisms of two rainstorm processes by the warm front frontogenesis north of the subtropical high. Plateau Meteor, 2021, 40(1): 61-73. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202101006.htm [7] 陈金秋, 施晓晖. 青藏高原-孟加拉湾大气热力差异与夏季暴雨. 应用气象学报, 2022, 33(2): 244-256. doi: 10.11898/1001-7313.20220210Chen J Q, Shi X H. Possible effects of the difference in atmospheric heating between the Tibetan Plateau and the Bay of Bengal on spatiotemporal evolution of rainstorms. J Appl Meteor Sci, 2022, 33(2): 244-256. doi: 10.11898/1001-7313.20220210 [8] 兰明才, 周莉, 蒋帅, 等. 副热带高压控制下湖南两次短时暴雨发生及系统维持机制对比分析. 气象科技, 2022, 50(4): 512-525. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202204007.htmLan M C, Zhou L, Jiang S, et al. Comparative analysis on occurrence and maintenance mechanism of two short-term rainstorms in Hunan Province under control of subtropical high. Meteor Sci Technol, 2022, 50(4): 512-525. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202204007.htm [9] 郑婧, 许爱华, 孙素琴, 等. 高空西北气流下特大暴雨的预报误差分析及思考. 气象, 2018, 44(1): 93-106. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201801008.htmZheng J, Xu A H, Sun S Q, et al. Forecast error analysis of extremely heavy rain under high-level northwest flow. Meteor Mon, 2018, 44(1): 93-106. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201801008.htm [10] 赵玮, 郝翠, 曹洁, 等. 近40年北京地区夏季降水日变化及不同持续时间降水事件的特征. 大气科学, 2022, 46(5): 1167-1176. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202205006.htmZhao W, Hao C, Cao J, et al. Diurnal variation characteristics of summer precipitation and precipitation events with different durations in Beijing in the past 40 years. Chinese J Atmos Sci, 2022, 46(5): 1167-1176. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202205006.htm [11] 程鹏, 罗汉, 常祎, 等. 祁连山一次地形云降水微物理特征飞机观测. 应用气象学报, 2021, 32(6): 691-705. doi: 10.11898/1001-7313.20210605Cheng P, Luo H, Chang Y, et al. Aircraft measurement of microphysical characteristics of a topographic cloud precipitation in Qilian Mountains. J Appl Meteor Sci, 2021, 32(6): 691-705. doi: 10.11898/1001-7313.20210605 [12] 高洋, 蔡淼, 曹治强, 等. "21·7"河南暴雨环境场及云的宏微观特征. 应用气象学报, 2022, 33(6): 682-695. doi: 10.11898/1001-7313.20220604Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. doi: 10.11898/1001-7313.20220604 [13] 张宏芳, 潘留杰, 陈昊明, 等. 秦岭及周边地区暖季降水日变化及其成因分析. 高原气象, 2020, 39(5): 935-946. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202005004.htmZhang H F, Pan L J, Chen H M, et al. Diurnal variations and causes of warm season precipitation in Qinling and surrounding areas. Plateau Meteor, 2020, 39(5): 935-946. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202005004.htm [14] 谌芸, 陈涛, 汪玲瑶, 等. 中国暖区暴雨的研究进展. 暴雨灾害, 2019, 38(5): 483-493. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201905011.htmChen Y, Chen T, Wang L Y, et al. A review of the warm-sector rainstorms in China. Torrential Rain and Disasters, 2019, 38(5): 483-493. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201905011.htm [15] 李欣, 张璐. 北上台风强降水形成机制及微物理特征. 应用气象学报, 2022, 33(1): 29-42. doi: 10.11898/1001-7313.20220103Li X, Zhang L. Formation mechanism and microphysics characteristics of heavy rainfall caused by northward-moving typhoons. J Appl Meteor Sci, 2022, 33(1): 29-42. doi: 10.11898/1001-7313.20220103 [16] 金荣花, 代刊, 赵瑞霞, 等. 我国无缝隙精细化网格天气预报技术进展与挑战. 气象, 2019, 45(4): 445-457. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201904001.htmJin R H, Dai K, Zhao R X, et al. Progress and challenge of seamless fine gridded weather forecasting technology in China. Meteor Mon, 2019, 45(4): 445-457. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201904001.htm [17] 谌芸, 曹勇, 孙健, 等. 中央气象台精细化网格降水预报技术的发展和思考. 气象, 2021, 47(6): 655-670. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202106002.htmChen Y, Cao Y, Sun J, et al. Progress of fine gridded quantitative precipitation forecast technology of National Meteorological Centre. Meteor Mon, 2021, 47(6): 655-670. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202106002.htm [18] 谢舜, 孙效功, 张苏平, 等. 基于SVD与机器学习的华南降水预报订正方法. 应用气象学报, 2022, 33(3): 293-304. doi: 10.11898/1001-7313.20220304Xie S, Sun X G, Zhang S P, et al. Precipitation forecast correction in South China based on SVD and machine learning. J Appl Meteor Sci, 2022, 33(3): 293-304. doi: 10.11898/1001-7313.20220304 [19] 宇如聪, 李建, 陈昊明, 等. 中国大陆降水日变化研究进展. 气象学报, 2014, 72(5): 948-968. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201405012.htmYu R C, Li J, Chen H M, et al. Progress in studies of the precipitation diurnal variation over contiguous China. Acta Meteor Sinica, 2014, 72(5): 948-968. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201405012.htm [20] 孙健, 曹卓, 李恒, 等. 人工智能技术在数值天气预报中的应用. 应用气象学报, 2021, 32(1): 1-11. doi: 10.11898/1001-7313.20210101Sun J, Cao Z, Li H, et al. Application of artificial intelligence technology to numerical weather prediction. J Appl Meteor Sci, 2021, 32(1): 1-11. doi: 10.11898/1001-7313.20210101 [21] 钟琦, 孙卓, 陈昊明, 等. 京津冀强降水日变化的多模式预报偏差及成因分析. 中国科学(D辑), 2022, 52(9): 1831-1848. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202209010.htmZhong Q, Sun Z, Chen H M, et al. Multi model forecast biases of the diurnal variations of intense rainfall in the Beijing- Tianjin-Hebei Region. Science China (Series D), 2022, 65(8): 1490-1509. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202209010.htm [22] Rodwell M J, Richardson D S, Hewson T D, et al. A new equitable score suitable for verifying precipitation in numerical weather prediction. Quart J Roy Meteor Soc, 2010, 136(650): 1344-1363. [23] Ebert E E. Neighborhood verification: A strategy for rewarding close forecasts. Wea Forecasting, 2009, 24(6): 1498-1510. [24] 潘留杰, 张宏芳, 陈小婷, 等. 基于邻域法的高分辨率模式降水的预报能力分析. 热带气象学报, 2015, 31(5): 632-642. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201505006.htmPan L J, Zhang H F, Chen X T, et al. Neighborhood-based precipitation forecasting capability analysis of high-resolution models. J Trop Meteor, 2015, 31(5): 632-642. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201505006.htm [25] Ebert E E, Gallus W A. Toward better understanding of the contiguous rain area(CRA) method for spatial forecast verification. Wea Forecasting, 2009, 24(5): 1401-1415. [26] Chen Y, Ebert E E, Davidson N E, et al. Application of contiguous rain area(CRA) methods to tropical cyclone rainfall forecast verification. Earth and Space Science, 2018, 5(11): 736-752. [27] Davis C A, Brown B G, Bullock R, et al. The method for object-based diagnostic evaluation(MODE) applied to numerical forecasts from the 2005 NSSL/SPC spring program. Wea Forecasting, 2009, 24(5): 1252-1267. [28] 常煜, 温建伟, 杨雪峰, 等. 基于CMA-TYM和SCMOC的嫩江流域暴雨检验. 应用气象学报, 2023, 34(2): 154-165. doi: 10.11898/1001-7313.20230203Chang Y, Wen J W, Yang X F, et al. Verification of rainstorm based on numerical model about CMA-TYM and SCMOC in Nenjiang Basin. J Appl Meteor Sci, 2023, 34(2): 154-165. doi: 10.11898/1001-7313.20230203 [29] Duc L, Saito K, Seko H. Spatial-temporal fractions verification for high-resolution ensemble forecasts. Tellus A, 2013, 65: 18171-18193. [30] 李子良, 赵滨, 李国平. 邻域空间检验技术在集合降水预报检验中的应用. 大气科学学报, 2021, 44(2): 189-198. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202102003.htmLi Z L, Zhao B, Li G P. An extended spatial verification technique for ensemble precipitation forecasts. Trans Atmos Sci, 2021, 44(2): 189-198. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202102003.htm [31] 陈昊明, 李普曦, 赵妍. 千米尺度模式降水的检验评估进展及展望. 气象科技进展, 2021, 11(3): 155-164. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ202103023.htmChen H M, Li P X, Zhao Y. A review and outlook of verification and evaluation of precipitation forecast at convection-permitting resolution. Adv Meteor Sci Tech, 2021, 11(3): 155-164. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ202103023.htm [32] 张舒婷, 仲跻芹, 卢冰, 等. CMA-BJ V2.0系统华北地区降水预报性能评估. 应用气象学报, 2023, 34(2): 129-141. doi: 10.11898/1001-7313.20230201Zhang S T, Zhong J Q, Lu B, et al. Performance evaluation of CMA-BJ V2.0 System for precipitation forecast in North China. J Appl Meteor Sci, 2023, 34(2): 129-141. doi: 10.11898/1001-7313.20230201 [33] 黄丽萍, 邓莲堂, 王瑞春, 等. CMA-MESO关键技术集成及应用. 应用气象学报, 2022, 33(6): 641-654. doi: 10.11898/1001-7313.20220601Huang L P, Deng L T, Wang R C, et al. Key technologies of CMA-MESO and application to operational forecast. J Appl Meteor Sci, 2022, 33(6): 641-654. doi: 10.11898/1001-7313.20220601 [34] 徐同, 杨玉华, 李佳, 等. SMS-WARMSV2.0模式对中国西南地区降水预报能力的客观检验. 气象, 2019, 45(8): 1065-1074. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201908003.htmXu T, Yang Y H, Li J, et al. An objective verification of forecasting ability of SMS-WARMS V2.0 model precipitation in Southwest China. Meteor Mon, 2019, 45(8): 1065-1074. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201908003.htm [35] 潘旸, 谷军霞, 徐宾, 等. 多源降水数据融合研究及应用进展. 气象科技进展, 2018, 8(1): 143-152. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201801035.htmPan Y, Gu J X, Xu B, et al. Advances in multi-source precipitation merging research. Adv Meteor Sci Tech, 2018, 8(1): 143-152. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201801035.htm [36] 赵滨, 张博. 邻域空间检验方法在降水评估中的应用. 暴雨灾害, 2018, 37(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201801001.htmZhao B, Zhang B. Application of neighborhood spatial verification method on precipitation evaluation. Torrential Rain and Disasters, 2018, 37(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201801001.htm [37] Mittermaier M, Roberts N. Intercomparison of spatial forecast verification methods: Identifying skillful spatial scales using the fractions skill score. Wea Forecasting, 2010, 25(1): 343-354.