留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度学习的7~15 d温度格点预报偏差订正

胡莹莹 庞林 王启光

胡莹莹, 庞林, 王启光. 基于深度学习的7~15 d温度格点预报偏差订正. 应用气象学报, 2023, 34(4): 426-437. DOI:  10.11898/1001-7313.20230404..
引用本文: 胡莹莹, 庞林, 王启光. 基于深度学习的7~15 d温度格点预报偏差订正. 应用气象学报, 2023, 34(4): 426-437. DOI:  10.11898/1001-7313.20230404.
Hu Yingying, Pang Lin, Wang Qiguang. Application of deep learning bias correction method to temperature grid forecast of 7-15 days. J Appl Meteor Sci, 2023, 34(4): 426-437. DOI:  10.11898/1001-7313.20230404.
Citation: Hu Yingying, Pang Lin, Wang Qiguang. Application of deep learning bias correction method to temperature grid forecast of 7-15 days. J Appl Meteor Sci, 2023, 34(4): 426-437. DOI:  10.11898/1001-7313.20230404.

基于深度学习的7~15 d温度格点预报偏差订正

DOI: 10.11898/1001-7313.20230404
资助项目: 

国家自然科学基金项目 41975100

详细信息
    通信作者:

    王启光, 邮箱:photon316@163.com

Application of Deep Learning Bias Correction Method to Temperature Grid Forecast of 7-15 Days

  • 摘要: 为了提高模式对于7~15 d温度格点预报准确性,基于U-Net模型以及U-Net残差连接模型,采用2018年12月25日—2022年7月5日多种组合气象数据作为输入数据特征,针对TIGGE数据中心提供的全球集合预报CMA-GEPS 2 m气温控制预报,开展168 ~360 h时效的格点预报误差订正试验。结果表明:对于240 h预报时效,两种深度学习模型中,U-Net模型表现较好;对于不同输入数据特征,加入起报时刻ERA5 2 m气温产品的U-Net模型表现最佳,在多个预报时效上有较好的订正效果,均方根误差减小率为10%~25%,可有效改善模式对于15.75°~55.25°N,73°~136.5°E区域北部的蒙古高原、西部的青藏高原及部分山地的预报误差较大的不足;而加入CMA-GEPS控制预报10 m风预报产品后改进不明显。总体上,基于U-Net模型构建的模式格点预报偏差订正模型可有效降低7~15 d温度格点预报误差,进一步提升复杂地形下格点预报的准确性。
  • 图  1  2022年4月8日—7月5日CMA-GEPS模式控制预报不同预报时效2 m气温产品均方根误差

    Fig. 1  Root mean square error of CMA-GEPS model control forecast for 2 m temperature with different lead times from 8 Apr to 5 Jul in 2022

    图  2  2022年4月8日—7月5日研究区域内不同预报时效2 m气温产品均方根误差

    Fig. 2  Root mean square error of different lead times for 2 m temperature in the target area from 8 Apr to 5 Jul in 2022

    图  3  CMA-GEPS模式控制预报与U-Net模型订正2 m气温平均绝对偏差

    折线为基于数据集Ⅱ的订正结果相对CMA-GEPS控制预报的平均绝对偏差减小率

    Fig. 3  Average absolute errors of 2 m temperature for CMA-GEPS model control forecast and U-Net model correction

    the line denotes average absolute error reduction rate of U-Net model correction based on dataset Ⅱ relative to CMA-GEPS control forecast

    图  4  图 3,但为均方根误差

    折线为基于数据集Ⅱ的订正结果相对CMA-GEPS控制预报的均方根误差减小率

    Fig. 4  The same as in Fig. 3, but for root mean square error

    the line denotes root mean square error reduction rate of U-Net model correction based on dataset Ⅱ relative to CMA-GEPS control forecast

    图  5  2022年4月8日—7月5日168 h时效CMA-GEPS模式控制预报及U-Net模型订正2 m气温逐日均方根误差

    Fig. 5  Daily root mean square error of 2 m temperature for 168 h lead time from 8 Apr to 5 Jul in 2022 by CMA-GEPS control forecast and U-Net model correction

    图  6  图 5,但为360 h时效

    Fig. 6  The same as in Fig. 5, but for 360 h lead time

    图  7  研究区域内360 h时效2 m气温CMA-GEPS模式控制预报及U-Net模型订正结果均方根误差

    Fig. 7  Root mean square error of 2 m temperature in the target area for 360 h lead time by CMA-GEPS control forecast and U-Net model correction

    表  1  CMA-GEPS模式控制预报2 m气温240 h预报时效与基于数据集Ⅰ订正结果评价指标(单位:℃)

    Table  1  Evaluation indicaters of CMA-GEPS model control forecast of 2 m temperature for 240 h lead time and deep learning model correction based on dataset Ⅰ (unit:℃)

    预报与订正结果 评价指标
    偏差 平均绝对偏差 均方根误差
    CMA-GEPS控制预报产品 0.41 2.57 3.56
    U-Net模型订正 0.51 2.40 3.16
    U-Net残差连接模型订正 0.10 2.73 3.68
    下载: 导出CSV

    表  2  表 1,但为基于数据集Ⅱ订正结果(单位:℃)

    Table  2  The same as in Table 1, but based on dataset Ⅱ (unit:℃)

    预报与订正结果 评价指标
    偏差 平均绝对偏差 均方根误差
    CMA-GEPS控制预报产品 0.41 2.57 3.56
    U-Net模型订正 -0.21 1.67 2.29
    U-Net残差连接模型订正 -0.03 1.77 2.44
    下载: 导出CSV
  • [1] 代刊, 曹勇, 钱奇峰, 等.中短期数字化天气预报技术现状及趋势.气象, 2016, 42(12):1445-1455. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201612003.htm

    Dai K, Cao Y, Qian Q F, et al. Situation and tendency of operation technologies in short-and medium-range weather forecast. Meteor Mon, 2016, 42(12): 1445-1455. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201612003.htm
    [2] 李泽椿, 毕宝贵, 金荣花, 等. 近10年中国现代天气预报的发展与应用. 气象学报, 2014, 72(6): 1069-1078. doi:  10.3969/j.issn.1004-4965.2014.06.007

    Li Z C, Bi B G, Jin R H, et al. The development and application of the modern weather forecast in China for the recent 10 years. Acta Meteor Sinica, 2014, 72(6): 1069-1078. doi:  10.3969/j.issn.1004-4965.2014.06.007
    [3] 端义宏, 金荣花. 我国现代天气业务现状及发展趋势. 气象科技进展, 2012, 2(5): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201205004.htm

    Duan Y H, Jin R H. The status quo of modern weather operations in China and its future. Adv Meteor Sci Tech, 2012, 2(5): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201205004.htm
    [4] 沈学顺, 王建捷, 李泽椿, 等. 中国数值天气预报的自主创新发展. 气象学报, 2020, 78(3): 451-476. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202003008.htm

    Shen X S, Wang J J, Li Z C, et al. China's independent and innovative development of numerical weather prediction. Acta Meteor Sinica, 2020, 78(3): 451-476. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202003008.htm
    [5] 丑纪范. 数值天气预报的创新之路——从初值问题到反问题. 气象学报, 2007, 65(5): 673-682. doi:  10.3321/j.issn:0577-6619.2007.05.003

    Chou J F. An innovative road to numerical weather prediction—From initial value problem to inverse problem. Acta Meteor Sinica, 2007, 65(5): 673-682. doi:  10.3321/j.issn:0577-6619.2007.05.003
    [6] 曾庆存. 天气预报——由经验到物理数学理论和超级计算. 物理, 2013, 42(5): 300-314. https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ201305001.htm

    Zeng Q C. Weather forecast—From empirical to physicomathematical theory and super-computing system engineering. Physics, 2013, 42(5): 300-314. https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ201305001.htm
    [7] 章大全, 郑志海, 陈丽娟, 等. 10~30 d延伸期可预报性与预报方法研究进展. 应用气象学报, 2019, 30(4): 416-430. doi:  10.11898/1001-7313.20190403

    Zhang D Q, Zheng Z H, Chen L J, et al. Advances on the predictability and prediction methods of 10-30 d extended range forecast. J Appl Meteor Sci, 2019, 30(4): 416-430. doi:  10.11898/1001-7313.20190403
    [8] 康志明, 鲍媛媛, 周宁芳. 我国中期和延伸期预报业务现状以及发展趋势. 气象科技进展, 2013, 3(1): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201301008.htm

    Kang Z M, Bao Y Y, Zhou N F. Current situation and development of medium-range and extended-range weather forecast in China. Adv Meteor Sci Tech, 2013, 3(1): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201301008.htm
    [9] 金荣花, 马杰, 任宏昌, 等. 我国10~30天延伸期预报技术进展与发展对策. 地球科学进展, 2019, 34(8): 814-825. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201908007.htm

    Jin R H, Ma J, Ren H C, et al. Advances and development countermeasures of 10-30 days extended-range forecasting technology in China. Adv Earth Science, 2019, 34(8): 814-825. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201908007.htm
    [10] 沈学顺, 陈起英, 孙健, 等. 中央气象台全球中期数值预报业务系统的发展. 气象, 2021, 47(6): 645-654. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202106001.htm

    Shen X S, Chen Q Y, Sun J, et al. Development of operation global medium-range forecast system in National Meteorological Centre. Meteor Mon, 2021, 47(6): 645-654. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202106001.htm
    [11] 吴曼丽, 陆忠艳, 王瀛. 未来8~17 d中期预报方法研究//中国气象学会2006年年会中尺度天气动力学、数值模拟和预测分会场论文集, 2006: 929-935.

    Wu M L, Lu Z Y, Wang Y. The Method for Mid-range Forecast in Future 8-17 Days//Proceedings of the 2006 Annual Conference of the Chinese Meteorological Society on Mesoscale Weather Dynamics, Numerical Simulation and Prediction, 2006: 929-935.
    [12] 沈学顺, 苏勇, 胡江林, 等. GRAPES_GFS全球中期预报系统的研发和业务化. 应用气象学报, 2017, 28(1): 1-10. doi:  10.11898/1001-7313.20170101

    Shen X S, Su Y, Hu J L, et al. Development and operation transformation of GRAPES global middle-range forecast system. J Appl Meteor Sci, 2017, 28(1): 1-10. doi:  10.11898/1001-7313.20170101
    [13] 尹姗, 李勇, 马杰, 等. 延伸期温度预报误差订正技术初探. 气象, 2020, 46(3): 412-419. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202003012.htm

    Yin S, Li Y, Ma J, et al. Preliminary study on bias correction for the extended-range temperature forecast. Meteor Mon, 2020, 46(3): 412-419. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202003012.htm
    [14] Bauer P, Thorpe A, Brunet G. The quiet revolution of numerical weather prediction. Nature, 2015, 525(7567): 47-55.
    [15] Lorenz E N. Deterministic nonperiodic flow. J Atmos Sci, 1963, 20(2): 130-141.
    [16] 赵声蓉, 赵翠光, 赵瑞霞, 等. 我国精细化客观气象要素预报进展. 气象科技进展, 2012, 2(5): 12-21. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201205005.htm

    Zhao S R, Zhao C G, Zhao R X, et al. The development of objective meteorological element forecast in China. Adv Meteor Sci Tech, 2012, 2(5): 12-21. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201205005.htm
    [17] 纪立人, 陈嘉滨, 张道民, 等. 数值预报模式动力框架发展的若干问题综述. 大气科学, 2005, 29(1): 120-130. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200501013.htm

    Ji L R, Chen J B, Zhang D M, et al. Review of some numerical aspects of the dynamic framework of NWP model. Chinese J Atmos Sci, 2005, 29(1): 120-130. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200501013.htm
    [18] 黄嘉佑. 气象统计分析与预报方法. 北京: 气象出版社, 1990.

    Huang J Y. Meteorological Statistical Analysis and Forecasting Methods. Beijing: China Meteorological Press, 1990.
    [19] 施能. 气象统计预报. 北京: 气象出版社, 2009.

    Shi N. Meteorological Statistical Forecasting. Beijing: China Meteorological Press, 2009.
    [20] 史久恩, 瞿栋根, 孙山泽, 等. 统计学长期天气预报方法的若干研究(一)——逐步回归技术的应用. 气象学报, 1964, 34(4): 507-518. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB196404010.htm

    Shi J E, Qu D G, Sun S Z, et al. Studies on long-range forecasting by statistical methods: Part Ⅰ—Application of stepwise multiple regression technique. Acta Meteor Sinica, 1964, 34(4): 507-518. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB196404010.htm
    [21] 张玉涛, 佟华, 孙健. 一种偏差订正方法在平昌冬奥会气象预报的应用. 应用气象学报, 2020, 31(1): 27-41. doi:  10.11898/1001-7313.20200103

    Zhang Y T, Tong H, Sun J. Application of a bias correction method to meteorological forecast for the Pyeongchang Winter Olympic Games. J Appl Meteor Sci, 2020, 31(1): 27-41. doi:  10.11898/1001-7313.20200103
    [22] Klein W H, Lewis B M, Enger I. Objective prediction of five-day mean temperatures during winter. J Meteor, 1959, 16(6): 672-682.
    [23] Glahn H R, Lowry D A. The use of model output statistics (MOS) in objective weather forecasting. J Appl Meteor, 1972, 11(8): 1203-1211.
    [24] 丁士晟. 中国MOS预报的进展. 气象学报, 1985, 43(3): 332-338. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198503008.htm

    Ding S S. The advance of model output statistics method in China. Acta Meteor Sinica, 1985, 43(3): 332-338. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198503008.htm
    [25] 陈豫英, 陈晓光, 马金仁, 等. 风的精细化MOS预报方法研究. 气象科学, 2006, 26(2): 210-216. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200602013.htm

    Chen Y Y, Chen X G, Ma J R, et al. A study on subtle MOS forecasting method of wind. Sci Meteor Sinica, 2006, 26(2): 210-216. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200602013.htm
    [26] 罗菊英, 周建山, 闫永财. 基于数值预报及上级指导产品的本地气温MOS预报方法. 气象科技, 2014, 42(3): 443-450. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201403016.htm

    Luo J Y, Zhou J S, Yan Y C. Local temperature MOS forecast method based on numerical forecast products and superior guidance. Meteor Sci Technol, 2014, 42(3): 443-450. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201403016.htm
    [27] 佟华, 郭品文, 朱跃建, 等. 基于大尺度模式产品的误差订正与统计降尺度气象要素预报技术. 气象, 2014, 40(1): 66-75. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201401008.htm

    Tong H, Guo P W, Zhu Y J, et al. Bias correction and statistical downscaling meteorological parameters forecast technique based on large-scale numerical model products. Meteor Mon, 2014, 40(1): 66-75. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201401008.htm
    [28] 孙健, 曹卓, 李恒, 等. 人工智能技术在数值天气预报中的应用. 应用气象学报, 2021, 32(1): 1-11. doi:  10.11898/1001-7313.20210101

    Sun J, Cao Z, Li H, et al. Application of artificial intelligence technology to numerical weather prediction. J Appl Meteor Sci, 2021, 32(1): 1-11. doi:  10.11898/1001-7313.20210101
    [29] 许小峰. 从物理模型到智能分析——降低天气预报不确定性的新探索. 气象, 2018, 44(3): 341-350. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201803001.htm

    Xu X F. From physical model to intelligent analysis: A new exploration to reduce the uncertainty of weather forecast. Meteor Mon, 2018, 44(3): 341-350. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201803001.htm
    [30] 马雷鸣. 天气预报中的人工智能技术进展. 地球科学进展, 2020, 35(6): 551-560. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202006001.htm

    Ma L M. Development of artificial intelligence technology in weather forecast. Adv Earth Science, 2020, 35(6): 551-560. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202006001.htm
    [31] Han L, Chen M X, Chen K K, et al. A deep learning method for bias correction of ECMWF 24-240 h forecasts. Adv Atmos Sci, 2021, 38(9): 1444-1459.
    [32] 张延彪, 陈明轩, 韩雷, 等. 数值天气预报多要素深度学习融合订正方法. 气象学报, 2022, 80(1): 153-167. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202201011.htm

    Zhang Y B, Chen M X, Han L, et al. Multi-element deep learning fusion correction method for numerical weather prediction. Acta Meteor Sinica, 2022, 80(1): 153-167. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202201011.htm
    [33] 韩念霏, 杨璐, 陈明轩, 等. 京津冀站点风温湿要素的机器学习订正方法. 应用气象学报, 2022, 33(4): 489-500. doi:  10.11898/1001-7313.20220409

    Han N F, Yang L, Chen M X, et al. Machine learning correction of wind, temperature and humidity elements in Beijing-Tianjin-Hebei Region. J Appl Meteor Sci, 2022, 33(4): 489-500. doi:  10.11898/1001-7313.20220409
    [34] 赵琳娜, 卢姝, 齐丹, 等. 基于全连接神经网络方法的日最高气温预报. 应用气象学报, 2022, 33(3): 257-269. doi:  10.11898/1001-7313.20220301

    Zhao L N, Lu S, Qi D, et al. Daily maximum air temperature forecast based on fully connected neural network. J Appl Meteor Sci, 2022, 33(3): 257-269. doi:  10.11898/1001-7313.20220301
    [35] 尹晓燕, 胡志群, 郑佳锋, 等. 利用深度学习填补双偏振雷达回波遮挡. 应用气象学报, 2022, 33(5): 581-593. doi:  10.11898/1001-7313.20220506

    Yin X Y, Hu Z Q, Zheng J F, et al. Filling in the dual polarization radar echo occlusion based on deep learning. J Appl Meteor Sci, 2022, 33(5): 581-593. doi:  10.11898/1001-7313.20220506
    [36] 金子琪, 王新敏, 鲍艳松, 等. 基于卷积神经网络的飑线识别算法. 应用气象学报, 2021, 32(5): 580-591. doi:  10.11898/1001-7313.20210506

    Jin Z Q, Wang X M, Bao Y S, et al. Squall line identification method based on convolution neural network. J Appl Meteor Sci, 2021, 32(5): 580-591. doi:  10.11898/1001-7313.20210506
    [37] 陈永义, 俞小鼎, 高学浩, 等. 处理非线性分类和回归问题的一种新方法(Ⅰ)——支持向量机方法简介. 应用气象学报, 2004, 15(3): 345-354. http://qikan.camscma.cn/article/id/20040344

    Chen Y Y, Yu X D, Gao X H, et al. A new method for non-linear classify and non-linear regression Ⅰ: Introduction to support vector machine. J Appl Meteor Sci, 2004, 15(3): 345-354. http://qikan.camscma.cn/article/id/20040344
    [38] 冯汉中, 陈永义. 处理非线性分类和回归问题的一种新方法(Ⅱ)——支持向量机方法在天气预报中的应用. 应用气象学报, 2004, 15(3): 355-365. http://qikan.camscma.cn/article/id/20040345

    Feng H Z, Chen Y Y. A new method for non-linear classify and non-linear regression Ⅱ: Application of support vector machine to weather forecast. J Appl Meteor Sci, 2004, 15(3): 355-365. http://qikan.camscma.cn/article/id/20040345
    [39] 张延彪, 宋林烨, 陈明轩, 等. 基于卷积神经网络的京津冀地区高分辨率格点预报偏差订正试验. 大气科学学报, 2022, 45(6): 850-862. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202206005.htm

    Zhang Y B, Song L Y, Chen M X, et al. A study of error correction for high-resolution gridded forecast based on a convolutional neural network in the Beijing-Tianjing-Hebei Region. Trans Atmos Sci, 2022, 45(6): 850-862. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202206005.htm
    [40] 陈昱文, 黄小猛, 李熠, 等. 基于ECMWF产品的站点气温预报集成学习误差订正. 应用气象学报, 2020, 31(4): 494-503. doi:  10.11898/1001-7313.20200411

    Chen Y W, Huang X M, Li Y, et al. Ensemble learning for bias correction of station temperature forecast based on ECMWF products. J Appl Meteor Sci, 2020, 31(4): 494-503. doi:  10.11898/1001-7313.20200411
    [41] 金荣花, 代刊, 赵瑞霞, 等. 我国无缝隙精细化网格天气预报技术进展与挑战. 气象, 2019, 45(4): 445-457. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201904001.htm

    Jin R H, Dai K, Zhao R X, et al. Progress and challenge of seamless fine gridded weather forecasting technology in China. Meteor Mon, 2019, 45(4): 445-457. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201904001.htm
    [42] Richardson D, Buizza R, Hagedom R. First Workshop on the THORPEX Interactive Grand Global Ensemble(TIGGE). WMO/TD-No. 1273, WWRP/THORPEX-No. 05, 2005.
    [43] 李嘉晨. 基于TIGGE资料的洪安涧河流域径流预报研究. 郑州: 华北水利水电大学, 2019.

    Li J C. Study on Runoff Forecasting of Honganjian River Basin Based on TIGGE Data. Zhengzhou: North China University of Water and Electric Power, 2019.
    [44] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention(MICCAI), 2015, 9351: 234-241.
  • 加载中
图(7) / 表(2)
计量
  • 摘要浏览量:  1108
  • HTML全文浏览量:  159
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-10
  • 修回日期:  2023-06-06
  • 刊出日期:  2023-07-31

目录

    /

    返回文章
    返回