留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微型智能气象站降雨观测对比试验

王振超 陈雪娇 刘姝 花家嘉 刘文忠

王振超, 陈雪娇, 刘姝, 等. 微型智能气象站降雨观测对比试验. 应用气象学报, 2023, 34(4): 438-450. DOI:  10.11898/1001-7313.20230405..
引用本文: 王振超, 陈雪娇, 刘姝, 等. 微型智能气象站降雨观测对比试验. 应用气象学报, 2023, 34(4): 438-450. DOI:  10.11898/1001-7313.20230405.
Wang Zhenchao, Chen Xuejiao, Liu Shu, et al. Comparison experiment for rainfall observation of micro-smart weather stations. J Appl Meteor Sci, 2023, 34(4): 438-450. DOI:  10.11898/1001-7313.20230405.
Citation: Wang Zhenchao, Chen Xuejiao, Liu Shu, et al. Comparison experiment for rainfall observation of micro-smart weather stations. J Appl Meteor Sci, 2023, 34(4): 438-450. DOI:  10.11898/1001-7313.20230405.

微型智能气象站降雨观测对比试验

DOI: 10.11898/1001-7313.20230405
资助项目: 

河北省气象局科研开发项目 21kyd07

详细信息
    通信作者:

    刘文忠, 邮箱:470807863@qq.com

Comparison Experiment for Rainfall Observation of Micro-smart Weather Stations

  • 摘要: 为了增强对微型(一体式)智能气象站(简称微智站)测雨性能的认识,2021年6—11月河北雄安新区气象局开展了不同测雨原理微智站的对比试验。分析表明:过程雨量不低于10 mm时,翻斗式微智站相对于标准站能够满足观测误差的控制要求,雷达式微智站测值偏大,光电式和压电式微智站测值偏小;过程雨量小于10 mm时,翻斗式微智站和压电式微智站相对于标准站能够满足观测误差的控制要求,雷达式微智站测值偏大,光电式微智站测值偏小。在雨强方面,双翻斗式微智站适合降雨极大值观测,光电式微智站和压电式微智站降雨极大值测值偏小;微智站雨强累积占比大于95%的雨强为[0.3 mm·min-1,0.6 mm·min-1],雨量累积占比大于50%的雨强为[0.1 mm·min-1,0.4 mm·min-1]。雷达式微智站对降雨响应比较快。微智站雨量传感器的分辨力越精细,对细微降雨观测越有效,有效降雨率也越大。
  • 图  1  微型站外场对比试验场地布设示意图

    Fig. 1  Schematic layout of comparison experiment for micro-smart weather stations

    图  2  微智站过程雨量相对误差箱线图

    (方框上边界和下边界分别表示总样本的75%和25%比例的数值,上下虚线端点分别表示最大值和最小值,方框中黑色横线表示中位数,绿色菱形表示平均值,蓝色虚线为±4%的误差线)

    Fig. 2  Box plots of relative error for process precipitation of micro-smart weather stations

    (upper and lower boundaries of the box denote 75 and 25 percentiles, top and bottom ends of the whiskers denote the maximum and minimum, the black horizontal line inside the box denotes the median, green diamonds denote the mean, blue dashed lines denote ±4% of bias)

    图  3  不同降雨时长最大雨量的误差散点图

    Fig. 3  Scatter plot of maximum rainfall bias at different duration

    图  4  标准站和微智站的雨强占比及其累积占比

    Fig. 4  Proportion and accumulated proportion of rainfall intensity measured by standard station and micro-smart weather stations

    图  5  标准站和微智站雨强对雨量的贡献及其累积占比

    Fig. 5  Contribution and accumulated proportion of rainfall intensity to rainfall measured by standard station and micro-smart weather stations

    表  1  微智站基本信息

    Table  1  Basic information of micro-smart stations

    微智站编号 分辨力/(mm·min-1) 雨强/(mm·min-1) 传感器类型 承水口(翻斗) 直径/mm 设备型号
    C00 0.1 电阻感雨 HY-SKY3
    C01 0.01 0~24 雷达式 ZY3140
    C02 0.01 0~24 雷达式 CY-YTJ-S06
    C03 0.1 0~4 单翻斗 159 jy-wx-qx
    C04 0.01 0~24 雷达式 WS60
    C05 0.01 0~4 光电式 P-IIS-MWS
    C06 0.1 0.1~4 压电式 DZZ4-XVSA
    C07 0.2 0~4 双翻斗式 200 SAMS-Ⅱ
    C08 0.01 0~24 雷达式 Theaty-Ⅱ
    C09 0.2 0~4 双翻斗式 200 SAMS
    C10 0.01 0~24 雷达式 ZQX-36
    C11 0.01 0~24 雷达式 SW600
    下载: 导出CSV

    表  2  2021年6月15日—10月15日降雨过程(单位:mm)

    Table  2  Rainfall events from 15 Jun to 15 Oct in 2021 (unit:mm)

    起止时间 C01 C02 C03 C04 C05 C06 C07 C08 C09 C10 C11 标准站
    07-01T18:01—21:00 14.2 24.4 2.6 7.2 16.8 21.5 18.2 17.5
    07-02T23:01—03T20:00 46.3 53.9 4.4 17.9 38.4 49.6 47.2 39.2
    07-10T23:01—12T07:00 101.7 87.9 173.2 18.3 41.9 112.4 142.2 124.9 32.3 111.7
    07-18T09:01—19:00 20.6 20.3 18.2 27.7 1.4 8.2 18.6 15.5 21.8 24.5 7.0 18.6
    07-21T10:01—22T06:00 19.1 16.7 12.1 15.3 0.3 5.8 15.0 12.4 17.2 20.3 5.9 13.9
    07-27T15:01—30T09:00 46.8 35.8 5.8 13.7 42.6 43.8 52.7 13.2 37.0
    08-04T03:01—07:00 11.9 9.9 17.0 0.8 5.2 12.2 9.0 15.6 15.3 4.2 11.9
    08-05T12:01—14:00 21.4 14.3 24.2 8.2 7.1 17.8 13.6 21.4 22.5 6.4 18.5
    08-09T00:01—03:00 3.2 0.0 2.2 0.0 1.6 1.4 2.0 1.6 3.5 1.5 1.2
    08-14T06:01—08:00 7.9 30.0 8.2 0.0 3.1 5.6 5.0 6.8 9.9 3.1 5.7
    08-16T03:01—17T02:00 2.5 0.0 0.0 0.3 0.0 0.3 1.6 1.6 2.2 2.6 0.9 1.3
    08-19T06:01—20:00 19.9 30.0 17.6 0.0 5.9 19.7 23.3 5.6 23.1
    08-23T19:00—24T02:00 29.8 54.5 45.3 5.2 12.7 32.0 23.7 31.6 38.6 11.6 32.9
    08-26T20:01—21:00 0.7 0.0 0.4 0.0 0.3 0.2 0.5 0.2 0.8 0.5 0.2
    08-31T02:01—09:00 4.7 0.9 0.0 0.0 2.0 2.2 2.0 5.9 1.3 1.7
    09-04T01:01—06T11:00 10.5 10.8 3.5 0.5 0.0 12.0 8.9 11.6 11.7 2.5 10.6
    09-16T08:01—17T00:00 4.5 6.8 0.2 0.5 0.3 0.5 1.6 1.4 1.4 2.1 0.3 1.2
    09-18T19:01—20T11:00 51.0 117.8 40.6 47.1 25.9 21.7 67.4 66.6 58.9 9.5 65.3
    09-23T22:01—24T22:00 16.1 12.7 10.9 1.2 5.9 11.8 10.7 11.8 17.0 6.1 11.1
    09-25T22:01—27T06:00 5.8 14.8 1.0 1.5 0.5 14.4 3.6 13.8 6.7 1.1 12.9
    10-03T10:01—07T05:00 131.9 109.5 2.4 69.8 103.8 103.0 104.4 44.0 104.2
    10-08T21:01—09T21:00 13.1 14.0 4.6 0.1 3.7 13.8 9.8 13.4 4.0 12.9
    下载: 导出CSV

    表  3  标准站和微智站不同时长的最大雨量(单位:mm)

    Table  3  Maximum rainfall of standard and micro-smart weather stations at different duration (unit:mm)

    测站 时长
    1 min 5 min 10 min 30 min 60 min
    标准站 2.4 9.8 19.5 44.1 50.2
    C01 1.3 7.9 16.5 39.6 49.6
    C02 3.5 12.6 29.9 65.1 70.1
    C03 2.2 7.6 14.6 34.8 38.0
    C04 3.7 14.1 27.8 68.0 76.8
    C05 0.6 2.0 3.5 8.9 10.7
    C06 0.3 2.7 4.2 11.5 15.1
    C07 2.4 8.8 17.4 41.2 47.4
    C08 0.4 1.8 0.0 8.1 9.2
    C09 3.3 11.7 23.4 55.0 63.2
    C10 1.7 7.8 17.7 42.1 50.9
    C11 0.6 2.1 4.2 11.1 14.5
    下载: 导出CSV

    表  4  标准站和微智站降雨时间特征参数差异

    Table  4  Differences in rainfall time parameters between standard station and micro-smart weather stations

    测站 开始时间/min 结束时间/min a/%
    标准站 0 0 21.7
    C01 -141.4 2.6 22.3
    C02 -139.8 173.8 37.3
    C03 -111.0 151.1 18.8
    C04 98.1 -214.7 34.0
    C05 279.0 -221.2 31.6
    C06 50.8 -190.1 23.3
    C07 60.7 -62.1 17.9
    C08 -87.1 2.5 18.6
    C09 19.8 -28.9 19.7
    C10 -103.0 -4.5 25.6
    C11 -1.4 -16.5 9.2
    下载: 导出CSV
  • [1] Singh C V.Relationships between rainy days, mean daily intensity and seasonal rainfall in normal, flood and drought years over India.Adv Atmos Sci, 1998, 15(3):424-432. doi:  10.1007/s00376-998-0012-x
    [2] 陈悦丽, 赵琳娜, 王英, 等. 降雨型地质灾害预报方法研究进展. 应用气象学报, 2019, 30(2): 142-153. doi:  10.11898/1001-7313.20190202

    Chen Y L, Zhao L N, Wang Y, et al. Review on forecast methods of rainfall-induced geo-hazards. J Appl Meteor Sci, 2019, 30(2): 142-153. doi:  10.11898/1001-7313.20190202
    [3] Uijlenhoet R. Precipitation physics and rainfall observation. Climate and the Hydrological Cycle, 2008, 25(4): 59-97.
    [4] 任芝花, 冯明农, 张洪政, 等. 自动与人工观测降水量的差异及相关性. 应用气象学报, 2007, 18(3): 358-364. doi:  10.3969/j.issn.1001-7313.2007.03.012

    Ren Z H, Feng M N, Zhang H Z, et al. The difference and relativity between rainfall by automatic recording and manual observation. J Appl Meteor Sci, 2007, 18(3): 358-364. doi:  10.3969/j.issn.1001-7313.2007.03.012
    [5] 李林, 范雪波, 崔炜, 等. 称重与人工观测降水量的差异. 应用气象学报, 2015, 26(6): 688-694. doi:  10.11898/1001-7313.20150605

    Li L, Fan X B, Cui W, et al. Comparative analysis of precipitation between weighing gauge and manual gauge. J Appl Meteor Sci, 2015, 26(6): 688-694. doi:  10.11898/1001-7313.20150605
    [6] Pendergrass A G. What precipitation is extreme?. Science, 2018, 360(6393): 1072-1073. doi:  10.1126/science.aat1871
    [7] Salzmann M. Global warming without global mean precipitation increase?. Science Advances, 2016, 2(6): 150-157.
    [8] Trenberth K E. Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change. Climatic Change, 1998, 39(4): 667-694. doi:  10.1023/A:1005319109110
    [9] 陈隆勋, 邵永宁, 张清芬, 等. 近四十年我国气候变化的初步分析. 应用气象学报, 1991, 2(2): 164-174. http://qikan.camscma.cn/article/id/19910215

    Chen L X, Shao Y N, Zhang Q F, et al. Preliminary analysis of climatic change during the last 39 years in China. J Appl Meteor Sci, 1991, 2(2): 164-174. http://qikan.camscma.cn/article/id/19910215
    [10] 何立富, 陈双, 郭云谦. 台风利奇马(1909)极端强降雨观测特征及成因. 应用气象学报, 2020, 31(5): 513-526. doi:  10.11898/1001-7313.20200501

    He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi:  10.11898/1001-7313.20200501
    [11] 陈隆勋, 朱文琴, 王文, 等. 中国近45年来气候变化的研究. 气象学报, 1998, 56(3): 257-271. doi:  10.3321/j.issn:0577-6619.1998.03.001

    Chen L X, Zhu W Q, Wang W, et al. Studies on climate change in China in recent 45 years. Acta Meteor Sinica, 1998, 56(3): 257-271. doi:  10.3321/j.issn:0577-6619.1998.03.001
    [12] 金荣花, 代刊, 赵瑞霞, 等. 我国无缝隙精细化网格天气预报技术进展与挑战. 气象, 2019, 45(4): 445-457. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201904001.htm

    Jin R H, Dai K, Zhao R X, et al. Progress and challenge of seamless fine gridded weather forecasting technology in China. Meteor Mon, 2019, 45(4): 445-457. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201904001.htm
    [13] 毕宝贵, 代刊, 王毅, 等. 定量降水预报技术进展. 应用气象学报, 2016, 27(5): 534-549. doi:  10.11898/1001-7313.20160503

    Bi B G, Dai K, Wang Y, et al. Advances in techniques of quantitative precipitation forecast. J Appl Meteor Sci, 2016, 27(5): 534-549. doi:  10.11898/1001-7313.20160503
    [14] 韦青, 李伟, 彭颂, 等. 国家级天气预报检验分析系统建设与应用. 应用气象学报, 2019, 30(2): 245-256. doi:  10.11898/1001-7313.20190211

    Wei Q, Li W, Peng S, et al. Development and application of national verification system in CMA. J Appl Meteor Sci, 2019, 30(2): 245-256. doi:  10.11898/1001-7313.20190211
    [15] 郭学良, 付丹红, 郭欣, 等. 我国云降水物理飞机观测研究进展. 应用气象学报, 2021, 32(6): 641-652. doi:  10.11898/1001-7313.20210601

    Guo X L, Fu D H, Guo X, et al. Advances in aircraft measurements of clouds and precipitation in China. J Appl Meteor Sci, 2021, 32(6): 641-652. doi:  10.11898/1001-7313.20210601
    [16] 范雯杰, 程昌玉, 余德亮, 等. 国内外微型气象智能观测设备概况//第34届中国气象学会年会智能气象观测论文集, 2017: 12-13.

    Fan W J, Cheng C Y, Yu D L, et al. Overview of Domestic and International Miniature Meteorological Intelligent Observation Devices//Proceedings of the 34th Annual Meeting of the Chinese Meteorological Society Intelligent Meteorological Observations, 2017: 12-13.
    [17] 王喆, 周勇, 唐伟, 等. 气象探测设备的微型化智能化发展对传统气象业务的影响分析. 中国信息化, 2018, 4(3): 67-71. doi:  10.3969/j.issn.1672-5158.2018.03.030

    Wang Z, Zhou Y, Tang W, et al. Analysis of the impact of miniaturization and intelligent development of meteorological detection equipment on traditional meteorological operations. China Informatization, 2018, 4(3): 67-71. doi:  10.3969/j.issn.1672-5158.2018.03.030
    [18] 陈艳莹. 智慧气象服务的研究与展望. 数字通信世界, 2019, 9(6): 56-58. doi:  10.3969/J.ISSN.1672-7274.2019.06.035

    Chen Y Y. Research and prospect of smart meteorological services. Digital Communication World, 2019, 9(6): 56-58. doi:  10.3969/J.ISSN.1672-7274.2019.06.035
    [19] 胡新华, 李嫦, 刘东育, 等. 智能气象站与自动气象站的观测数据对比分析. 气象水文海洋仪器, 2016, 33(1): 57-60. doi:  10.3969/j.issn.1006-009X.2016.01.011

    Hu X H, Li C, Liu D Y, et al. Comparative analysis of observation data from smart weather stations and automatic weather stations. Meteorological, Hydrological and Marine Instruments, 2016, 33(1): 57-60. doi:  10.3969/j.issn.1006-009X.2016.01.011
    [20] 吴有恒, 张杰, 田孟勤, 等. 微型气象站(OITS-03)气温对比观测分析. 收藏, 2019, 22(7): 80-81. https://www.cnki.com.cn/Article/CJFDTOTAL-LVKJ201922014.htm

    Wu Y H, Zhang J, Tian M Q, et al. A comparative analysis of temperature observations from a miniature weather station(OITS-03). Collection, 2019, 22(7): 80-81. https://www.cnki.com.cn/Article/CJFDTOTAL-LVKJ201922014.htm
    [21] 鲁峻麟, 黄惺惺, 顾桃峰, 等. 智慧城市微型自动气象站试验数据对比分析与评估. 气象水文海洋仪器, 2022, 39(1): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-QXSW202201008.htm

    Lu J L, Huang X X, Gu T F, et al. Comparative analysis and evaluation of experimental data from miniature automatic weather stations in smart cities. Meteorological, Hydrological and Marine Instruments, 2022, 39(1): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-QXSW202201008.htm
    [22] Atlas D, Ulbrich C W. Path- and area-integrated rainfall measurement by microwave attenuation in the 1-3 cm band. J Appl Meteor, 1977, 16(12): 1322-1331.
    [23] Brandes E A, Zhang G, Vivekanandan J. Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J Appl Meteor, 2002, 41(6): 674-685.
    [24] 管理, 戴建华, 陶岚, 等. QVP方法在双偏振雷达冬季降水观测中的应用. 应用气象学报, 2021, 32(1): 91-101. doi:  10.11898/1001-7313.20210108

    Guan L, Dai J H, Tao L, et al. Application of QVP method to winter precipitation observation based on polarimetric radar. J Appl Meteor Sci, 2021, 32(1): 91-101. doi:  10.11898/1001-7313.20210108
    [25] Ilyas M A, Swingler J. Piezoelectric energy harvesting from raindrop impacts. Energy, 2015, 90(8): 796-806.
    [26] Safaei M, Sodano H A, Anton S R. A review of energy harvesting using piezoelectric materials: State-of-the-art a decade later(2008-2018). Smart Mater Struct, 2019, 28(11): 113001.
    [27] Tokay A, Kruger A, Krajewski W F. Comparison of drop size distribution measurements by impact and optical disdrometers. J Appl Meteor, 2001, 40(11): 2083-2097.
    [28] Bhattacharyya S, Dan M, Sen A K. Modelling of drop size distribution of rain from rain rate and attenuation measurements at millimeter and optical wavelengths. International Journal of Infrared & Millimeter Waves, 2000, 21(12): 2065-2075.
    [29] 孟庆勇, 丽东. SL3-1型雨量传感器的构件改进和维护方法. 气象科技, 2014, 42(4): 597-600. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201404012.htm

    Meng Q Y, Li D. Component improvement and maintenance method of SL3-1 rainfall sensor. Meteor Sci Technol, 2014, 42(4): 597-600. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201404012.htm
    [30] 张强, 涂满红, 马舒庆, 等. 自动雨量站降雨资料质量评估方法研究. 应用气象学报, 2007, 18(3): 365-372. http://qikan.camscma.cn/article/id/20070359

    Zhang Q, Tu M H, Ma S Q, et al. Quality assessment of the observational data of automatic precipitation stations in China. J Appl Meteor Sci, 2007, 18(3): 365-372. http://qikan.camscma.cn/article/id/20070359
    [31] Bonta J V, Shahalam A. Cumulative storm rainfall distributions: Comparison of Huff curves. Journal of Hydrology(New Zealand), 2003, 16(2): 65-74.
    [32] Yarnell D L. Rainfall intensity-frequency data. US Department of Agriculture, 1944, 204(9): 58-59.
    [33] 殷水清, 王杨, 谢云, 等. 中国降雨过程时程分型特征. 水科学进展, 2014, 25(5): 617-624. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201405001.htm

    Yin S Q, Wang Y, Xie Y, et al. Characteristics of intra-storm temporal pattern over China. Adv Water Sci, 2014, 25(5): 617-624. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201405001.htm
    [34] 郭其蕴, 沙万英. 华南前汛期降水变率的分析. 应用气象学报, 1998, 30(4): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX8S1.001.htm

    Guo Q Y, Sha W Y. Analysis of precipitation variability during the pre-flood period in South China. J Appl Meteor Sci, 1998, 30(4): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX8S1.001.htm
    [35] 李勇, 金荣花, 周宁芳, 等. 江淮梅雨季节强降雨过程特征分析. 气象学报, 2017, 75(5): 717-728. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201705003.htm

    Li Y, Jin R H, Zhou N F, et al. An analysis on characteristics of heavy rainfall processes during the Meiyu season in Jianghuai Region. Acta Meteor Sinica, 2017, 75(5): 717-728. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201705003.htm
    [36] 赵琳娜, 慕秀香, 马翠平, 等. 冬季稳定性降水相态预报研究进展. 应用气象学报, 2021, 32(1): 12-24. doi:  10.11898/1001-7313.20210102

    Zhao L N, Mu X X, Ma C P, et al. A review on stable precipitation type forecast in winter. J Appl Meteor Sci, 2021, 32(1): 12-24. doi:  10.11898/1001-7313.20210102
    [37] 汪卫平, 杨修群, 张祖强, 等. 中国雨日数的气候特征及趋势变化. 气象科学, 2017, 37(3): 317-328. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201703004.htm

    Wang W P, Yang X Q, Zhang Z Q, et al. The climatic characteristics and trends of rainy days over China. J Meteor Sci, 2017, 37(3): 317-328. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201703004.htm
    [38] Bonta J V. Development and utility of Huff curves for disaggregating precipitation amounts. Applied Engineering in Agriculture, 2004, 20(5): 641.
    [39] 伍红雨, 邹燕, 刘尉. 广东区域性暴雨过程的定量化评估及气候特征. 应用气象学报, 2019, 30(2): 233-244. doi:  10.11898/1001-7313.20190210

    Wu H Y, Zou Y, Liu W. Quantitative assessment of regional heavy rainfall process in Guangdong and its climatological characteristics. J Appl Meteor Sci, 2019, 30(2): 233-244. doi:  10.11898/1001-7313.20190210
    [40] 廖爱民, 刘九夫, 张建云, 等. 基于多类型雨量计的降雨特性分析. 水科学进展, 2020, 31(6): 852-861. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ202006005.htm

    Liao A M, Liu J F, Zhang J Y, et al. Analysis of rainfall characteristics based on multiple types of rain gauges. Adv Water Sci, 2020, 31(6): 852-861. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ202006005.htm
    [41] 盛中平, 白玉山, 林正华. 误差率的量化关系. 计量学报, 1996, 17(3): 203-205. https://www.cnki.com.cn/Article/CJFDTOTAL-JLXB199603008.htm

    Sheng Z P, Bai Y S, Lin Z H. Quantitative relationships for error rates. J Metrology, 1996, 17(3): 203-205. https://www.cnki.com.cn/Article/CJFDTOTAL-JLXB199603008.htm
    [42] 贾朋群. 近百年中国降水的测站资料和格点化资料对比. 应用气象学报, 1999, 10(2): 181-189. http://qikan.camscma.cn/article/id/19990257

    Jia P Q. Comparison between observational data and grid data of precipitation for the last one hundred years in China. J Appl Meteor Sci, 1999, 10(2): 181-189. http://qikan.camscma.cn/article/id/19990257
    [43] 高洋, 蔡淼, 曹治强, 等. "21·7"河南暴雨环境场及云的宏微观特征. 应用气象学报, 2022, 33(6): 682-695. doi:  10.11898/1001-7313.20220604

    Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. doi:  10.11898/1001-7313.20220604
    [44] 齐道日娜, 何立富, 王秀明, 等. "7·20"河南极端暴雨精细观测及热动力成因. 应用气象学报, 2022, 33(1): 1-15. doi:  10.11898/1001-7313.20220101

    Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi:  10.11898/1001-7313.20220101
    [45] 中央气象局. 地面气象观测规范. 北京: 气象出版社, 2003.

    China Meteorological Administration. Standard for Ground-Based Meteorological Observations. Beijing: China Meteorological Press, 2003.
  • 加载中
图(5) / 表(4)
计量
  • 摘要浏览量:  402
  • HTML全文浏览量:  40
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-24
  • 修回日期:  2023-05-15
  • 刊出日期:  2023-07-31

目录

    /

    返回文章
    返回