Comparison Experiment for Rainfall Observation of Micro-smart Weather Stations
-
摘要: 为了增强对微型(一体式)智能气象站(简称微智站)测雨性能的认识,2021年6—11月河北雄安新区气象局开展了不同测雨原理微智站的对比试验。分析表明:过程雨量不低于10 mm时,翻斗式微智站相对于标准站能够满足观测误差的控制要求,雷达式微智站测值偏大,光电式和压电式微智站测值偏小;过程雨量小于10 mm时,翻斗式微智站和压电式微智站相对于标准站能够满足观测误差的控制要求,雷达式微智站测值偏大,光电式微智站测值偏小。在雨强方面,双翻斗式微智站适合降雨极大值观测,光电式微智站和压电式微智站降雨极大值测值偏小;微智站雨强累积占比大于95%的雨强为[0.3 mm·min-1,0.6 mm·min-1],雨量累积占比大于50%的雨强为[0.1 mm·min-1,0.4 mm·min-1]。雷达式微智站对降雨响应比较快。微智站雨量传感器的分辨力越精细,对细微降雨观测越有效,有效降雨率也越大。
-
关键词:
- 微型(一体式)智能气象站;
- 降雨特性;
- 外场对比观测
Abstract: In order to enhance the understanding of rainfall observation performance of micro-smart (integrated) weather stations and to promote the application in rainfall observation operations, a comparative experiment for the rainfall observation of radar, photoelectric, piezoelectric and tipping bucket micro-smart weather stations is carried out by Hebei Xiong'an New Area Meteorological Service from June to November in 2021. The rainfall observation capability of micro-smart weather stations with different rainfall observation principles are analyzed in terms of total rainfall, rainfall intensity, percentage of rainfall intensity and temporal characteristics. It shows that when the accumulated precipitation exceeds 10 mm, the precipitation measured by the tipping bucket micro-smart weather station can meet observation error control requirements compared with the precipitation observed by the standard station, while results of the radar micro-smart weather station are large and results of the photoelectric and piezoelectric micro-smart weather stations are small. When the cumulative precipitation is less than 10 mm, results of the tipping bucket and piezoelectric micro-smart weather stations can meet observation error control requirements, while results of radar micro-smart weather stations are large and results of photoelectric micro-smart weather stations are small. In terms of rainfall intensity, the double tipping bucket station is suitable for monitoring rainfall extreme, while photovoltaic and piezoelectric stations underestimate the extreme. Radar-based micro-smart weather stations can be calibrated and revised for rainfall extreme monitoring by adjusting internal parameters. Analysis of different rainfall intensities and their corresponding rainfall ratios show that the rain intensity corresponding to a rain intensity accumulation ratio greater than 95% at each micro-smart weather station is[0.3 mm·min-1, 0.6 mm·min-1] and the rain intensity corresponding to a rainfall accumulation ratio greater than 50% is[0.1 mm·min-1, 0.4 mm·min-1]. It shows that within 0.4 mm·min-1, the proportion of rainfall measured by any type of rain sensor accounts for more than half of the total rainfall, so more attention should be paid to accuracy for small rain intensity in the operational rain sensor rate determination. As the resolving capacity increases, the tipping bucket type micro-smart weather station becomes less sensitive to the starting time and will identify the ending time earlier. The radar type micro-smart weather station responds to rainfall relatively more quickly. Finer resolving capacity of the rain sensor will enhance the monitoring effectiveness of fine rainfall and the effective rainfall rate. -
图 2 微智站过程雨量相对误差箱线图
(方框上边界和下边界分别表示总样本的75%和25%比例的数值,上下虚线端点分别表示最大值和最小值,方框中黑色横线表示中位数,绿色菱形表示平均值,蓝色虚线为±4%的误差线)
Fig. 2 Box plots of relative error for process precipitation of micro-smart weather stations
(upper and lower boundaries of the box denote 75 and 25 percentiles, top and bottom ends of the whiskers denote the maximum and minimum, the black horizontal line inside the box denotes the median, green diamonds denote the mean, blue dashed lines denote ±4% of bias)
表 1 微智站基本信息
Table 1 Basic information of micro-smart stations
微智站编号 分辨力/(mm·min-1) 雨强/(mm·min-1) 传感器类型 承水口(翻斗) 直径/mm 设备型号 C00 0.1 电阻感雨 HY-SKY3 C01 0.01 0~24 雷达式 ZY3140 C02 0.01 0~24 雷达式 CY-YTJ-S06 C03 0.1 0~4 单翻斗 159 jy-wx-qx C04 0.01 0~24 雷达式 WS60 C05 0.01 0~4 光电式 P-IIS-MWS C06 0.1 0.1~4 压电式 DZZ4-XVSA C07 0.2 0~4 双翻斗式 200 SAMS-Ⅱ C08 0.01 0~24 雷达式 Theaty-Ⅱ C09 0.2 0~4 双翻斗式 200 SAMS C10 0.01 0~24 雷达式 ZQX-36 C11 0.01 0~24 雷达式 SW600 表 2 2021年6月15日—10月15日降雨过程(单位:mm)
Table 2 Rainfall events from 15 Jun to 15 Oct in 2021 (unit:mm)
起止时间 C01 C02 C03 C04 C05 C06 C07 C08 C09 C10 C11 标准站 07-01T18:01—21:00 14.2 24.4 2.6 7.2 16.8 21.5 18.2 17.5 07-02T23:01—03T20:00 46.3 53.9 4.4 17.9 38.4 49.6 47.2 39.2 07-10T23:01—12T07:00 101.7 87.9 173.2 18.3 41.9 112.4 142.2 124.9 32.3 111.7 07-18T09:01—19:00 20.6 20.3 18.2 27.7 1.4 8.2 18.6 15.5 21.8 24.5 7.0 18.6 07-21T10:01—22T06:00 19.1 16.7 12.1 15.3 0.3 5.8 15.0 12.4 17.2 20.3 5.9 13.9 07-27T15:01—30T09:00 46.8 35.8 5.8 13.7 42.6 43.8 52.7 13.2 37.0 08-04T03:01—07:00 11.9 9.9 17.0 0.8 5.2 12.2 9.0 15.6 15.3 4.2 11.9 08-05T12:01—14:00 21.4 14.3 24.2 8.2 7.1 17.8 13.6 21.4 22.5 6.4 18.5 08-09T00:01—03:00 3.2 0.0 2.2 0.0 1.6 1.4 2.0 1.6 3.5 1.5 1.2 08-14T06:01—08:00 7.9 30.0 8.2 0.0 3.1 5.6 5.0 6.8 9.9 3.1 5.7 08-16T03:01—17T02:00 2.5 0.0 0.0 0.3 0.0 0.3 1.6 1.6 2.2 2.6 0.9 1.3 08-19T06:01—20:00 19.9 30.0 17.6 0.0 5.9 19.7 23.3 5.6 23.1 08-23T19:00—24T02:00 29.8 54.5 45.3 5.2 12.7 32.0 23.7 31.6 38.6 11.6 32.9 08-26T20:01—21:00 0.7 0.0 0.4 0.0 0.3 0.2 0.5 0.2 0.8 0.5 0.2 08-31T02:01—09:00 4.7 0.9 0.0 0.0 2.0 2.2 2.0 5.9 1.3 1.7 09-04T01:01—06T11:00 10.5 10.8 3.5 0.5 0.0 12.0 8.9 11.6 11.7 2.5 10.6 09-16T08:01—17T00:00 4.5 6.8 0.2 0.5 0.3 0.5 1.6 1.4 1.4 2.1 0.3 1.2 09-18T19:01—20T11:00 51.0 117.8 40.6 47.1 25.9 21.7 67.4 66.6 58.9 9.5 65.3 09-23T22:01—24T22:00 16.1 12.7 10.9 1.2 5.9 11.8 10.7 11.8 17.0 6.1 11.1 09-25T22:01—27T06:00 5.8 14.8 1.0 1.5 0.5 14.4 3.6 13.8 6.7 1.1 12.9 10-03T10:01—07T05:00 131.9 109.5 2.4 69.8 103.8 103.0 104.4 44.0 104.2 10-08T21:01—09T21:00 13.1 14.0 4.6 0.1 3.7 13.8 9.8 13.4 4.0 12.9 表 3 标准站和微智站不同时长的最大雨量(单位:mm)
Table 3 Maximum rainfall of standard and micro-smart weather stations at different duration (unit:mm)
测站 时长 1 min 5 min 10 min 30 min 60 min 标准站 2.4 9.8 19.5 44.1 50.2 C01 1.3 7.9 16.5 39.6 49.6 C02 3.5 12.6 29.9 65.1 70.1 C03 2.2 7.6 14.6 34.8 38.0 C04 3.7 14.1 27.8 68.0 76.8 C05 0.6 2.0 3.5 8.9 10.7 C06 0.3 2.7 4.2 11.5 15.1 C07 2.4 8.8 17.4 41.2 47.4 C08 0.4 1.8 0.0 8.1 9.2 C09 3.3 11.7 23.4 55.0 63.2 C10 1.7 7.8 17.7 42.1 50.9 C11 0.6 2.1 4.2 11.1 14.5 表 4 标准站和微智站降雨时间特征参数差异
Table 4 Differences in rainfall time parameters between standard station and micro-smart weather stations
测站 开始时间/min 结束时间/min a/% 标准站 0 0 21.7 C01 -141.4 2.6 22.3 C02 -139.8 173.8 37.3 C03 -111.0 151.1 18.8 C04 98.1 -214.7 34.0 C05 279.0 -221.2 31.6 C06 50.8 -190.1 23.3 C07 60.7 -62.1 17.9 C08 -87.1 2.5 18.6 C09 19.8 -28.9 19.7 C10 -103.0 -4.5 25.6 C11 -1.4 -16.5 9.2 -
[1] Singh C V.Relationships between rainy days, mean daily intensity and seasonal rainfall in normal, flood and drought years over India.Adv Atmos Sci, 1998, 15(3):424-432. doi: 10.1007/s00376-998-0012-x [2] 陈悦丽, 赵琳娜, 王英, 等. 降雨型地质灾害预报方法研究进展. 应用气象学报, 2019, 30(2): 142-153. doi: 10.11898/1001-7313.20190202Chen Y L, Zhao L N, Wang Y, et al. Review on forecast methods of rainfall-induced geo-hazards. J Appl Meteor Sci, 2019, 30(2): 142-153. doi: 10.11898/1001-7313.20190202 [3] Uijlenhoet R. Precipitation physics and rainfall observation. Climate and the Hydrological Cycle, 2008, 25(4): 59-97. [4] 任芝花, 冯明农, 张洪政, 等. 自动与人工观测降水量的差异及相关性. 应用气象学报, 2007, 18(3): 358-364. doi: 10.3969/j.issn.1001-7313.2007.03.012Ren Z H, Feng M N, Zhang H Z, et al. The difference and relativity between rainfall by automatic recording and manual observation. J Appl Meteor Sci, 2007, 18(3): 358-364. doi: 10.3969/j.issn.1001-7313.2007.03.012 [5] 李林, 范雪波, 崔炜, 等. 称重与人工观测降水量的差异. 应用气象学报, 2015, 26(6): 688-694. doi: 10.11898/1001-7313.20150605Li L, Fan X B, Cui W, et al. Comparative analysis of precipitation between weighing gauge and manual gauge. J Appl Meteor Sci, 2015, 26(6): 688-694. doi: 10.11898/1001-7313.20150605 [6] Pendergrass A G. What precipitation is extreme?. Science, 2018, 360(6393): 1072-1073. doi: 10.1126/science.aat1871 [7] Salzmann M. Global warming without global mean precipitation increase?. Science Advances, 2016, 2(6): 150-157. [8] Trenberth K E. Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change. Climatic Change, 1998, 39(4): 667-694. doi: 10.1023/A:1005319109110 [9] 陈隆勋, 邵永宁, 张清芬, 等. 近四十年我国气候变化的初步分析. 应用气象学报, 1991, 2(2): 164-174. http://qikan.camscma.cn/article/id/19910215Chen L X, Shao Y N, Zhang Q F, et al. Preliminary analysis of climatic change during the last 39 years in China. J Appl Meteor Sci, 1991, 2(2): 164-174. http://qikan.camscma.cn/article/id/19910215 [10] 何立富, 陈双, 郭云谦. 台风利奇马(1909)极端强降雨观测特征及成因. 应用气象学报, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501 [11] 陈隆勋, 朱文琴, 王文, 等. 中国近45年来气候变化的研究. 气象学报, 1998, 56(3): 257-271. doi: 10.3321/j.issn:0577-6619.1998.03.001Chen L X, Zhu W Q, Wang W, et al. Studies on climate change in China in recent 45 years. Acta Meteor Sinica, 1998, 56(3): 257-271. doi: 10.3321/j.issn:0577-6619.1998.03.001 [12] 金荣花, 代刊, 赵瑞霞, 等. 我国无缝隙精细化网格天气预报技术进展与挑战. 气象, 2019, 45(4): 445-457. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201904001.htmJin R H, Dai K, Zhao R X, et al. Progress and challenge of seamless fine gridded weather forecasting technology in China. Meteor Mon, 2019, 45(4): 445-457. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201904001.htm [13] 毕宝贵, 代刊, 王毅, 等. 定量降水预报技术进展. 应用气象学报, 2016, 27(5): 534-549. doi: 10.11898/1001-7313.20160503Bi B G, Dai K, Wang Y, et al. Advances in techniques of quantitative precipitation forecast. J Appl Meteor Sci, 2016, 27(5): 534-549. doi: 10.11898/1001-7313.20160503 [14] 韦青, 李伟, 彭颂, 等. 国家级天气预报检验分析系统建设与应用. 应用气象学报, 2019, 30(2): 245-256. doi: 10.11898/1001-7313.20190211Wei Q, Li W, Peng S, et al. Development and application of national verification system in CMA. J Appl Meteor Sci, 2019, 30(2): 245-256. doi: 10.11898/1001-7313.20190211 [15] 郭学良, 付丹红, 郭欣, 等. 我国云降水物理飞机观测研究进展. 应用气象学报, 2021, 32(6): 641-652. doi: 10.11898/1001-7313.20210601Guo X L, Fu D H, Guo X, et al. Advances in aircraft measurements of clouds and precipitation in China. J Appl Meteor Sci, 2021, 32(6): 641-652. doi: 10.11898/1001-7313.20210601 [16] 范雯杰, 程昌玉, 余德亮, 等. 国内外微型气象智能观测设备概况//第34届中国气象学会年会智能气象观测论文集, 2017: 12-13.Fan W J, Cheng C Y, Yu D L, et al. Overview of Domestic and International Miniature Meteorological Intelligent Observation Devices//Proceedings of the 34th Annual Meeting of the Chinese Meteorological Society Intelligent Meteorological Observations, 2017: 12-13. [17] 王喆, 周勇, 唐伟, 等. 气象探测设备的微型化智能化发展对传统气象业务的影响分析. 中国信息化, 2018, 4(3): 67-71. doi: 10.3969/j.issn.1672-5158.2018.03.030Wang Z, Zhou Y, Tang W, et al. Analysis of the impact of miniaturization and intelligent development of meteorological detection equipment on traditional meteorological operations. China Informatization, 2018, 4(3): 67-71. doi: 10.3969/j.issn.1672-5158.2018.03.030 [18] 陈艳莹. 智慧气象服务的研究与展望. 数字通信世界, 2019, 9(6): 56-58. doi: 10.3969/J.ISSN.1672-7274.2019.06.035Chen Y Y. Research and prospect of smart meteorological services. Digital Communication World, 2019, 9(6): 56-58. doi: 10.3969/J.ISSN.1672-7274.2019.06.035 [19] 胡新华, 李嫦, 刘东育, 等. 智能气象站与自动气象站的观测数据对比分析. 气象水文海洋仪器, 2016, 33(1): 57-60. doi: 10.3969/j.issn.1006-009X.2016.01.011Hu X H, Li C, Liu D Y, et al. Comparative analysis of observation data from smart weather stations and automatic weather stations. Meteorological, Hydrological and Marine Instruments, 2016, 33(1): 57-60. doi: 10.3969/j.issn.1006-009X.2016.01.011 [20] 吴有恒, 张杰, 田孟勤, 等. 微型气象站(OITS-03)气温对比观测分析. 收藏, 2019, 22(7): 80-81. https://www.cnki.com.cn/Article/CJFDTOTAL-LVKJ201922014.htmWu Y H, Zhang J, Tian M Q, et al. A comparative analysis of temperature observations from a miniature weather station(OITS-03). Collection, 2019, 22(7): 80-81. https://www.cnki.com.cn/Article/CJFDTOTAL-LVKJ201922014.htm [21] 鲁峻麟, 黄惺惺, 顾桃峰, 等. 智慧城市微型自动气象站试验数据对比分析与评估. 气象水文海洋仪器, 2022, 39(1): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-QXSW202201008.htmLu J L, Huang X X, Gu T F, et al. Comparative analysis and evaluation of experimental data from miniature automatic weather stations in smart cities. Meteorological, Hydrological and Marine Instruments, 2022, 39(1): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-QXSW202201008.htm [22] Atlas D, Ulbrich C W. Path- and area-integrated rainfall measurement by microwave attenuation in the 1-3 cm band. J Appl Meteor, 1977, 16(12): 1322-1331. [23] Brandes E A, Zhang G, Vivekanandan J. Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J Appl Meteor, 2002, 41(6): 674-685. [24] 管理, 戴建华, 陶岚, 等. QVP方法在双偏振雷达冬季降水观测中的应用. 应用气象学报, 2021, 32(1): 91-101. doi: 10.11898/1001-7313.20210108Guan L, Dai J H, Tao L, et al. Application of QVP method to winter precipitation observation based on polarimetric radar. J Appl Meteor Sci, 2021, 32(1): 91-101. doi: 10.11898/1001-7313.20210108 [25] Ilyas M A, Swingler J. Piezoelectric energy harvesting from raindrop impacts. Energy, 2015, 90(8): 796-806. [26] Safaei M, Sodano H A, Anton S R. A review of energy harvesting using piezoelectric materials: State-of-the-art a decade later(2008-2018). Smart Mater Struct, 2019, 28(11): 113001. [27] Tokay A, Kruger A, Krajewski W F. Comparison of drop size distribution measurements by impact and optical disdrometers. J Appl Meteor, 2001, 40(11): 2083-2097. [28] Bhattacharyya S, Dan M, Sen A K. Modelling of drop size distribution of rain from rain rate and attenuation measurements at millimeter and optical wavelengths. International Journal of Infrared & Millimeter Waves, 2000, 21(12): 2065-2075. [29] 孟庆勇, 丽东. SL3-1型雨量传感器的构件改进和维护方法. 气象科技, 2014, 42(4): 597-600. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201404012.htmMeng Q Y, Li D. Component improvement and maintenance method of SL3-1 rainfall sensor. Meteor Sci Technol, 2014, 42(4): 597-600. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201404012.htm [30] 张强, 涂满红, 马舒庆, 等. 自动雨量站降雨资料质量评估方法研究. 应用气象学报, 2007, 18(3): 365-372. http://qikan.camscma.cn/article/id/20070359Zhang Q, Tu M H, Ma S Q, et al. Quality assessment of the observational data of automatic precipitation stations in China. J Appl Meteor Sci, 2007, 18(3): 365-372. http://qikan.camscma.cn/article/id/20070359 [31] Bonta J V, Shahalam A. Cumulative storm rainfall distributions: Comparison of Huff curves. Journal of Hydrology(New Zealand), 2003, 16(2): 65-74. [32] Yarnell D L. Rainfall intensity-frequency data. US Department of Agriculture, 1944, 204(9): 58-59. [33] 殷水清, 王杨, 谢云, 等. 中国降雨过程时程分型特征. 水科学进展, 2014, 25(5): 617-624. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201405001.htmYin S Q, Wang Y, Xie Y, et al. Characteristics of intra-storm temporal pattern over China. Adv Water Sci, 2014, 25(5): 617-624. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201405001.htm [34] 郭其蕴, 沙万英. 华南前汛期降水变率的分析. 应用气象学报, 1998, 30(4): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX8S1.001.htmGuo Q Y, Sha W Y. Analysis of precipitation variability during the pre-flood period in South China. J Appl Meteor Sci, 1998, 30(4): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX8S1.001.htm [35] 李勇, 金荣花, 周宁芳, 等. 江淮梅雨季节强降雨过程特征分析. 气象学报, 2017, 75(5): 717-728. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201705003.htmLi Y, Jin R H, Zhou N F, et al. An analysis on characteristics of heavy rainfall processes during the Meiyu season in Jianghuai Region. Acta Meteor Sinica, 2017, 75(5): 717-728. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201705003.htm [36] 赵琳娜, 慕秀香, 马翠平, 等. 冬季稳定性降水相态预报研究进展. 应用气象学报, 2021, 32(1): 12-24. doi: 10.11898/1001-7313.20210102Zhao L N, Mu X X, Ma C P, et al. A review on stable precipitation type forecast in winter. J Appl Meteor Sci, 2021, 32(1): 12-24. doi: 10.11898/1001-7313.20210102 [37] 汪卫平, 杨修群, 张祖强, 等. 中国雨日数的气候特征及趋势变化. 气象科学, 2017, 37(3): 317-328. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201703004.htmWang W P, Yang X Q, Zhang Z Q, et al. The climatic characteristics and trends of rainy days over China. J Meteor Sci, 2017, 37(3): 317-328. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201703004.htm [38] Bonta J V. Development and utility of Huff curves for disaggregating precipitation amounts. Applied Engineering in Agriculture, 2004, 20(5): 641. [39] 伍红雨, 邹燕, 刘尉. 广东区域性暴雨过程的定量化评估及气候特征. 应用气象学报, 2019, 30(2): 233-244. doi: 10.11898/1001-7313.20190210Wu H Y, Zou Y, Liu W. Quantitative assessment of regional heavy rainfall process in Guangdong and its climatological characteristics. J Appl Meteor Sci, 2019, 30(2): 233-244. doi: 10.11898/1001-7313.20190210 [40] 廖爱民, 刘九夫, 张建云, 等. 基于多类型雨量计的降雨特性分析. 水科学进展, 2020, 31(6): 852-861. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ202006005.htmLiao A M, Liu J F, Zhang J Y, et al. Analysis of rainfall characteristics based on multiple types of rain gauges. Adv Water Sci, 2020, 31(6): 852-861. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ202006005.htm [41] 盛中平, 白玉山, 林正华. 误差率的量化关系. 计量学报, 1996, 17(3): 203-205. https://www.cnki.com.cn/Article/CJFDTOTAL-JLXB199603008.htmSheng Z P, Bai Y S, Lin Z H. Quantitative relationships for error rates. J Metrology, 1996, 17(3): 203-205. https://www.cnki.com.cn/Article/CJFDTOTAL-JLXB199603008.htm [42] 贾朋群. 近百年中国降水的测站资料和格点化资料对比. 应用气象学报, 1999, 10(2): 181-189. http://qikan.camscma.cn/article/id/19990257Jia P Q. Comparison between observational data and grid data of precipitation for the last one hundred years in China. J Appl Meteor Sci, 1999, 10(2): 181-189. http://qikan.camscma.cn/article/id/19990257 [43] 高洋, 蔡淼, 曹治强, 等. "21·7"河南暴雨环境场及云的宏微观特征. 应用气象学报, 2022, 33(6): 682-695. doi: 10.11898/1001-7313.20220604Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. doi: 10.11898/1001-7313.20220604 [44] 齐道日娜, 何立富, 王秀明, 等. "7·20"河南极端暴雨精细观测及热动力成因. 应用气象学报, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101 [45] 中央气象局. 地面气象观测规范. 北京: 气象出版社, 2003.China Meteorological Administration. Standard for Ground-Based Meteorological Observations. Beijing: China Meteorological Press, 2003.