Statistical Characteristics and Regional Differences of Raindrop Size Distribution During 6 Typhoon Rainstorms in Shandong
-
摘要: 利用多普勒天气雷达产品、降水天气现象仪观测资料和热带气象最佳路径数据集,针对2018—2021年6次影响山东的台风暴雨过程的降水特征,分析台风影响代表站暴雨雨滴谱和积分参数的变化特征。结果表明:不同台风进入山东之初的微物理特征不同,台风安比(1810)、台风温比亚(1818)、台风巴威(2008)和台风烟花(2106)偏海洋性,台风摩羯(1814)和台风利奇马(1909)偏大陆性。经过不同距离、受不同环境影响后,台风暴雨的微物理特征出现变化。参数间的统计关系显示,大陆性和海洋性对流云降水存在差异,如μ-λ统计关系等。Z-R关系较复杂,大陆性和海洋性对流云降水过程,Z-R关系无明显差异。平衡雨滴谱占比为0.8%~29.3%,较高占比(大于7.0%)平衡雨滴谱既可出现在海洋性对流云降水过程,也可以出现在大陆性对流云降水过程;过渡雨滴谱占比为22.8%~77.8%,高比例(大于50.0%)过渡谱主要出现在大陆性对流云降水过程。Abstract: Based on disdrometers, Doppler radar products and conventional meteorological observation, precipitation characteristics of typhoon rainstorms affecting Shandong from 2018 to 2021 are explored, and evolution characteristics of raindrop size distribution and integral parameters of typhoon raindrops are analyzed. lgNw-Dm distribution shows that microphysical characteristics of different typhoons are different when entering Shandong. Ampil(1810), Rumbia(1818), Bavi(2008) and In-Fa(2106) are more maritime-like, while Yagi(1814) and Lekima(1909) are more continental-like. Microphysical characteristics of these typhoons are quite different after passing different distance and affected by the environment. Microphysical characteristics of Ampil and Bavi at two observation sites in north and south Shandong are similar, and rain drop size distribution (DSD) characteristics of their convective precipitation are maritime. Microphysical characteristics of Yagi are more continental when it enters Shandong. After moving northward, its DSD changes into a typical continental convective precipitation in northwest Shandong. DSD characteristics of Rumbia convective precipitation in Feicheng, Shandong Province are maritime, and change to continental near Guangrao under the influence of cold air, and then changes to maritime type over Laiyang after moving eastward. Microphysical characteristics of convective precipitation change several times. DSD characteristics of convective precipitation before Lekima denaturation are continental type (Lanling and Gaotang), while the spectral characteristics of convective precipitation DSD change to maritime (Linqu and Zhangqiu) during and after denaturation. In the process of In-Fa moving northward, the precipitation weakens obviously, and the microphysical characteristics of convective precipitation change significantly, from maritime in the south to continental in the north. The statistical relationships of various parameters between continental and maritime convective precipitation are different. The μ-λ statistical relation of the quadratic polynomial show that continental (maritime) precipitation generally has smaller (larger) constant terms except for Capricorn Texas, during which continental (maritime) precipitation generally has a slightly larger (slightly smaller) primary term and a smaller (larger) secondary term. However, Z-R relationship is complicated, and there are no significant differences between continental and maritime convective precipitation processes. Large index b is more likely to appear in continental precipitation processes, while small index b is more likely to appear in maritime precipitation processes. In addition, the proportion of equilibrium DSD is low, which can appear in both maritime and continental convective precipitation process, while the transition DSD with high proportion is more in continental convective precipitation processes.
-
表 1 代表站7类雨强(R,单位:mm·h-1) 的样本量
Table 1 Sample number of seven rain rate (R, unit: mm·h-1) categories for typical stations
台风 代表站 0.5<R≤2 2<R≤5 5<R≤10 10<R≤20 20<R≤50 50<R≤100 100<R≤200 安比 五莲 394 257 196 126 100 4 0 滨州 233 270 131 70 34 0 0 摩羯 台儿庄 444 299 160 142 90 45 5 诸城 179 128 81 53 32 9 13 德州 79 147 84 107 98 68 1 温比亚 广饶 343 185 128 107 186 89 0 莱阳 165 223 151 88 61 40 5 利奇马 兰陵 295 243 259 234 144 25 0 临朐 535 421 179 230 446 88 2 章丘 1007 1136 816 707 145 0 0 高唐 683 286 95 55 72 69 9 巴威 诸城 176 160 109 113 136 46 0 平度 134 166 170 128 86 8 0 烟花 台儿庄 622 437 330 205 128 15 1 平原 374 293 200 101 39 1 0 表 2 代表站不同最大斜率(HS,单位:m-3·mm-2) 的雨滴谱占比(单位:%)
Table 2 Percentage of raindrop size based on different maximum slopes (HS, unit: m-3·mm-2) for typical stations (unit: %)
台风 代表站 HS>0.0 -0.5<HS≤0.0 -1.0<HS≤-0.5 -1.5<HS≤-1.0 -2.0<HS≤-1.5 HS≤-2.0 安比 五莲 3.9 38.0 43.2 11.7 2.9 0.3 滨州 8.8 50.5 35.3 4.9 0.5 0.0 摩羯 台儿庄 2.4 22.8 67.3 7.5 0.0 0.0 诸城 29.3 44.8 23.6 2.3 0.0 0.0 德州 2.0 77.8 19.9 0.3 0.0 0.0 温比亚 广饶 6.7 75.3 17.8 0.2 0.0 0.0 莱阳 3.3 45.1 45.4 5.9 0.3 0.0 利奇马 兰陵 4.1 52.8 37.6 5.1 0.4 0.0 临朐 0.8 54.6 41.6 2.9 0.1 0.0 章丘 7.8 36.5 43.6 11.7 0.5 0.0 高唐 15.6 62.7 20.3 1.5 0.0 0.0 巴威 诸城 10.3 49.1 37.1 3.2 0.3 0.0 平度 7.1 35.6 47.2 10.2 0.0 0.0 烟花 台儿庄 4.9 26.2 56.6 11.0 1.2 0.0 平原 9.2 51.8 35.1 3.6 0.3 0.0 -
[1] Tokay A, Bashor P G, Habib E, et al. Raindrop size distribution measurements in tropical cyclones. Mon Wea Rev, 2008, 136: 1669-1685. doi: 10.1175/2007MWR2122.1 [2] Deo A, Walsh K J E. Contrasting tropical cyclone and non-tropical cyclone related rainfall drop size distribution at Darwin, Australia. Atmos Res, 2006, 181: 81-94. [3] Chang W Y, Wang T C, Lin P L. Characteristics of the raindrop size distribution and drop shape relation in typhoon systems inthe western Pacific from the 2D video disdrometer and NCU C-band polarimetric radar. J Atmos Oceanic Technol, 2009, 26: 1973-1993. doi: 10.1175/2009JTECHA1236.1 [4] Wen L, Zhao K, Chen G, et al. Drop size distribution characteristics of seven typhoons in China. J Geophys Res Atmos, 2018, 123: 6529-6548. doi: 10.1029/2017JD027950 [5] Bringi V N, Chandrasekar V, Hubbert J, et al. Raindrop size distribution in different climatic regimes from disdrometer and dual-polarizedradar analysis. J Atmos Sci, 2003, 60: 354-365. doi: 10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2 [6] 吕童. 登陆台风雨滴谱特征观测研究. 南京: 南京大学, 2018.Lyu T. Observational Study of the Characteristics of Raindrop Size Distribution of Landfalling Typhons. Nanjing: Nanjing University, 2018. [7] Chen B J, Wang Y, Ming J. Microphysical characteristics of the raindrop size distribution in Typhoon Morakot(2009). J Trop Meteor, 2012, 18: 162-171. [8] 林文, 林长城, 李白良, 等. 登陆台风麦德姆不同部位降水强度及谱特征. 应用气象学报, 2016, 27(2): 239-248. doi: 10.11898/1001-7313.20160212Lin W, Lin C C, Li B L, et al. Rainfall intensity and raindrop spectrum for different parts in landing Typhoon Matmo. J Appl Meteor Sci, 2016, 27(2): 239-248. doi: 10.11898/1001-7313.20160212 [9] Bao X, Wu L, Zhang S, et al. Distinct raindrop size distributions of convective inner- and outer- rainband rain in Typhoon Maria(2018). J Geophys Res Atmos, 2020, 125(14): e2020JD032482. [10] Bao X, Wu L, Zhang S, et al. A comparison of convective raindrop size distributions in the eyewall and spiral rainbands of Typhoon Lekima(2019). Geophys Res Lett, 2020, 47(23): e2020GL090729. [11] 毛志远, 付丹红, 黄彦彬, 等. 台风贝碧嘉(1816)外围云系结构与降水特征. 应用气象学报, 2022, 33(5): 604-616. doi: 10.11898/1001-7313.20220508Mao Z Y, Fu D H, Huang Y B, et al. Peripheral cloud system structure and precipitation characteristics of Typhoon Bebinca(1816). J Appl Meteor Sci, 2022, 33(5): 604-616. doi: 10.11898/1001-7313.20220508 [12] Feng L, Hu S, Liu X, et al. Precipitation microphysical characteristics of Typhoon Mangkhut in southern China using 2D video disdrometers. Atmosphere, 2020, 11(9). DOI: 10.3390/atmos11090975. [13] 冯婉悦, 施丽娟, 王智敏, 等. 雨滴谱仪资料在"温比亚"台风降水估测中的应用探究. 气象, 2021, 47(4): 389-397. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202104001.htmFeng W Y, Shi L J, Wang Z M, et al. Application of raindrop disdrometer data in rainfall estimation of Typhoon Rumbia. Meteor Mon, 2021, 47(4): 389-397. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202104001.htm [14] 王俊, 丛春华, 王洪, 等. 台风温比亚(2018)登陆后雨滴谱演变特征研究. 气象, 2022, 48(11): 1449-1459. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202211008.htmWang J, Cong C H, Wang H, et al. Evolution characteristics of raindrop size distribution of landfalling Typhoon Rumbia (2018). Meteor Mon, 2022, 48(11): 1449-1459. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202211008.htm [15] 何立富, 陈双, 郭云谦. 台风利奇马(1909)极端强降雨观测特征及成因. 应用气象学报, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501 [16] 覃皓, 郑凤琴, 伍丽泉. 台风威马逊(1409)强度与降水变化的相互作用. 应用气象学报, 2022, 33(4): 477-488. doi: 10.11898/1001-7313.20220408Qin H, Zheng F Q, Wu L Q. The interaction between intensity and rainfall of Typhoon Rammasun(1409). J Appl Meteor Sci, 2022, 33(4): 477-488. doi: 10.11898/1001-7313.20220408 [17] 陈宏, 杨晓君, 易笑园, 等. 北上台风"安比"后期两个阶段暴雨落区分布的差异性分析. 高原气象, 2021, 40(5): 1087-1100. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202105011.htmChen H, Yang X J, Yi X Y, et al. Analysis of difference in distribution of rainstorms in the later two stages of northward-moving Typhoon Ampil. Plateau Meteor, 2021, 40(5): 1087-1100. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202105011.htm [18] 李瑞芬, 郭卫华, 丛春华, 等. 两个相似路径台风途经鲁西南时降水差异的成因分析. 海洋预报, 2022, 39(2): 40-49. https://www.cnki.com.cn/Article/CJFDTOTAL-HYYB202202005.htmLi R F, Guo W H, Cong C H, et al. Cause analysis of the precipitation difference between Typhoon "Yagi" and "Rumbia" passing through southwest of Shandong Province with similar tracks. Marine Forecasts, 2022, 39(2): 40-49. https://www.cnki.com.cn/Article/CJFDTOTAL-HYYB202202005.htm [19] 郑倩, 毛程燕, 丁丽华, 等. 台风利奇马(1909)与台风摩羯(1814)云特征对比. 应用气象学报, 2022, 33(1): 43-55. doi: 10.11898/1001-7313.20220104Zheng Q, Mao C Y, Ding L H, et al. Comparison of cloud characteristics between Typhoon Lekima(1909) and Typhoon Yagi(1814). J Appl Meteor Sci, 2022, 33(1): 43-55. doi: 10.11898/1001-7313.20220104 [20] 杨舒楠, 端义宏. 台风温比亚(1818)降水及环境场极端性分析. 应用气象学报, 2020, 31(3): 290-302. doi: 10.11898/1001-7313.20200304Yang S N, Duan Y H. Extremity analysis on the precipitation and environmental field of Typhoon Rumbia in 2018. J Appl Meteor Sci, 2020, 31(3): 290-302. doi: 10.11898/1001-7313.20200304 [21] 刘涛, 端义宏, 冯佳宁, 等. 台风利奇马(1909)双眼墙特征及长时间维持机制. 应用气象学报, 2021, 32(3): 289-301. doi: 10.11898/1001-7313.20210303Liu T, Duan Y H, Feng J N, et al. Characteristics and mechanisms of long-lived concentric eyewalls in Typhoon Lekima in 2019. J Appl Meteor Sci, 2021, 32(3): 289-301. doi: 10.11898/1001-7313.20210303 [22] 李欣, 张璐. 北上台风强降水形成机制及微物理特征. 应用气象学报, 2022, 33(1): 29-42. doi: 10.11898/1001-7313.20220103Li X, Zhang L. Formation mechanism and microphysics characteristics of heavy rainfall caused by northward-moving typhoons. J Appl Meteor Sci, 2022, 33(1): 29-42. doi: 10.11898/1001-7313.20220103 [23] 郑丽娜, 王媛, 张子涵. 2019年台风利奇马引发山东特大暴雨成因分析. 气象科技, 2021, 49(3): 437-445. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202103017.htmZheng L N, Wang Y, Zhang Z H. Causual ananlysis of extra torrential rain of Typhoon Lekima in Shandong in 2019. Meteor Sci Technol, 2021, 49(3): 437-445. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202103017.htm [24] 曹晓岗, 王慧, 傅洁, 等. 近海北上热带气旋特征及对华东沿海地区影响分析. 热带气象学报, 2014, 30(5): 861-870. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201405006.htmCao X G, Wang H, Fu J, et al. Analyses of features of coastal northbound tropical cyclones and the impact on coastal East China. J Trop Meteor, 2014, 30(5): 861-870. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201405006.htm [25] 丛春华, 吴炜, 孙莎莎. 1949-2012年影响山东地区热带气旋的特征. 气象与环境学报, 2016, 32(5): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201605010.htmCong C H, Wu W, Sun S S. Characteristics of tropical cyclones influencing Shandong Province from 1949 to 2012. Meteor Environ Sci, 2016, 32(5): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201605010.htm [26] 唐飞, 陈凤娇, 诸葛小勇, 等. 利用卫星遥感资料分析台风"烟花"(202106) 的影响过程. 大气科学学报, 2021, 44(5): 703-716. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202105008.htmTang F, Chen F J, Zhuge X Y, et al. Analysis of influence process of Typhoon In-fa(202106) based on satellite remote sensing data. Trans Atmos Sci, 2021, 44(5): 703-716. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202105008.htm [27] 王海平, 董林, 许映龙, 等. 台风"烟花"的主要特点和路径预报难点分析. 海洋气象学报, 2022, 42(1): 83-91. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX202301004.htmWang H P, Dong L, Xu Y L, et al. Analysis on main characteristics of Typhoon In-fa and difficulties in its track forecast. J Marine Meteor, 2022, 42(1): 83-91. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX202301004.htm [28] Jaffrain J, Berne A. Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL disdrometers. J Hydrometeor, 2011, 12: 352-370. [29] Ulbrich C W. Natural variations in the analytical form of the raindrop size distribution. J Climate Appl Meteor, 1983, 22(10): 1764-1775. [30] Ulbrich C W, Atlas D. Rainfall microphysics and radar properties: Analysis methods for drop size spectra. J Climate Appl Meteor, 1998, 37(9): 912-923. [31] McFarquhar G M. A new representation of collision-induced breakup of raindropsand its implications for the shapes of raindrop size distributions. J Atmos Sci, 2004, 61(7): 777-794. [32] 王俊, 王文青, 王洪, 等. 山东北部一次夏末雹暴地面降水粒子谱特征. 应用气象学报, 2021, 32(3): 370-384. doi: 10.11898/1001-7313.20210309Wang J, Wang W Q, Wang H, et al. Hydrometeor particle characteristics during a late summer hailstorm in northern Shandong. J Appl Meteor Sci, 2021, 32(3): 370-384. doi: 10.11898/1001-7313.20210309 [33] Bringi V N, Williams C R, Thurai M, et al. Using dual-polarizedradar and dual-frequency profiler for DSD characterization: A case study from Darwin, Australia. J Atmos Ocean Technol, 2009, 26: 2107-2122. [34] Wilson J W, Brandes E A. Radar measurement of rainfall-A summary. Bull Amer Meteor Soc, 1979, 60(9): 1048-1060. [35] Rosenfeld D, Ulbrich C W. Cloud microphysical properties, processes, and rainfall estimation opportunities. Meteorological Monographs, 2003, 30(52): 237-258. [36] Uijlenhoet R, Smith J A, Steiner M. The microphysical structure of extreme precipitation as inferred from ground-based raindrop spectra. J Atmos Sci, 2003, 60: 1220-1238. [37] Steiner M, Smith J A, Uijlenhoet R. A microphysical interpretation of radar reflectivity-rain rate relationships. J Atmos Sci, 2004, 61: 1114-1131. [38] Fulton R A, Breidenbach J P, Seo D J, et al. The WSR-88D rainfall algorithm. Wea Forecasting, 1998, 13(2): 377-395. [39] Atlas D, Ulbrich C W, Marks F D, et al. Systematic variation of drop size and radar-rainfall relations. J Geophys Res Atmos, 1999, 104(D6): 6155-6169. [40] Zhang G F, Vivekanandan J, Brandes E A, et al. The shape-slope relation in observed gamma raindrop size distributions: Statistical error or useful information. J Atmos Ocean Technol, 2003, 20(8): 1106-1119. [41] Zhang S, Bao X, Wu L, et al. Dual-polarization radar retrieval during Typhoon Lekima(2019): Seeking the best-fitting shape-slope relationship depending on the differential-horizontal reflectivity relationship. Atmos Res, 2022, 267(1). DOI: 10.1016/j.atmosres.2021.105978. [42] Wen L, Zhao K, Zhang G, et al. Impacts of instrument limitations on estimated raindrop size distribution, radar parameters, and model microphysics during Mei-yu season in East China. J Atmos Oceanic Technol, 2017, 34(5): 1021-1037. [43] D'Adderio L P, Porcù F, Tokay A. Identification and analysis of collisional break-up in natural rain. J Atmos Sci, 2015, 72(9): 3404-3416. [44] D'Adderio L P, Porcù F, Tokay A. Evolution of drop size distribution in natural rain. Atmos Res, 2018, 200(1): 70-76.