留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太原地区雨滴谱季节分布特征

葛黎黎 吕国真 赵桂香 韩琛惠 郭栋 李亚军

葛黎黎, 吕国真, 赵桂香, 等. 太原地区雨滴谱季节分布特征. 应用气象学报, 2023, 34(4): 489-502. DOI:  10.11898/1001-7313.20230409..
引用本文: 葛黎黎, 吕国真, 赵桂香, 等. 太原地区雨滴谱季节分布特征. 应用气象学报, 2023, 34(4): 489-502. DOI:  10.11898/1001-7313.20230409.
Ge Lili, Lü Guozhen, Zhao Guixiang, et al. Seasonal distribution characteristics of raindrop spectrum in Taiyuan. J Appl Meteor Sci, 2023, 34(4): 489-502. DOI:  10.11898/1001-7313.20230409.
Citation: Ge Lili, Lü Guozhen, Zhao Guixiang, et al. Seasonal distribution characteristics of raindrop spectrum in Taiyuan. J Appl Meteor Sci, 2023, 34(4): 489-502. DOI:  10.11898/1001-7313.20230409.

太原地区雨滴谱季节分布特征

DOI: 10.11898/1001-7313.20230409
资助项目: 

山西省基础研究计划自然科学研究面上项目 202203021211081

国家自然科学基金项目 41475050

详细信息
    通信作者:

    赵桂香, liyun0123@126.com

Seasonal Distribution Characteristics of Raindrop Spectrum in Taiyuan

  • 摘要: 利用2017年12月—2022年11月太原雨滴谱数据,研究太原地区不同雨强和不同降水类型雨滴谱季节分布特征。结果表明:太原地区四季谱分布均呈单峰结构且均以雨滴直径D<1 mm的小雨滴为主,但对雨强R贡献最大的是D为1~2 mm的雨滴。各季节R<1 mm·h-1的降雨均占比最大,但夏季超过50%雨量来自R≥5 mm·h-1雨滴的贡献;R<2 mm·h-1时,冬季大雨滴浓度更高,而小雨滴浓度相对较低;R≥5 mm·h-1时,夏季雨滴浓度更高。四季均以层状云降水为主,标准化截距参数lgNw和质量加权直径Dm差异较小;对流云降水多发生在夏季且更接近海洋性对流,春、秋季既非大陆性也非海洋性对流。采用最小二乘法得到形状因子与斜率参数的μ-λ、降水动能以及反射率因子与雨强的Z-R关系曲线,其中μ-λ季节变化小,但地域性差异显著;幂函数和二项式函数分别对于降水动能参数关系Et-REd-Dm拟合效果更优;Z-R关系系数与指数成反比,对于层状云降水,春、秋季经典关系均高估降雨,冬、夏季存在经典关系由高估转为低估的情况;对于对流云降水,夏、秋季经典关系略高估降雨。
  • 图  1  四季平均雨滴谱分布

    Fig. 1  Averaged raindrop size distributions in four seasons

    图  2  四季微物理参数箱线图

    (圆圈和虚线分别为平均值和中值,箱体底线和顶线分别表示第25和第75百分位数,垂直实线的底线和顶线分别表示第5和第95百分位数,下同)

    Fig. 2  Box plots for microphysical parameters in four seasons

    (the circle and the dashed line of each box denote the average value and median value, bottom and top edges of the box denote the 25th and 75th percentiles, bottom and top of solid vertical lines denote the 5th and 95th percentiles, similarily hereinafter)

    图  3  四季不同尺度雨滴对NTR的贡献率

    Fig. 3  Contribution of raindrops in different diameter classes to NT and R in four seasons

    图  4  四季不同雨强的平均雨滴谱分布

    Fig. 4  Averaged raindrop size distributions for different rain rate classes in four seasons

    图  5  四季层状云和对流云降水的平均雨滴谱分布

    Fig. 5  Averaged raindrop size distributions of stratiform rain and convective rain in four seasons

    图  6  lgNw-Dm分布

    (黑色表示冬季,红色表示春季,蓝色表示夏季,绿色表示秋季;误差棒表示四季层状云和对流云降水的lgNwDm的标准差,虚线为层状云和对流云降水分界线,两个黑色矩形框对应文献[3]研究的大陆性和海洋性对流范围)

    Fig. 6  Distribution of lgNw-Dm

    (the black for winter, the red for spring, the blue for summer, the green for autumn; error bars denote standard deviations of lgNw and Dm, the dashed line denotes the separation of stratiform rain and convective rain, two black rectangles denote maritime and continental types of convection from Reference [3])

    图  7  μ-λ散点及拟合关系

    (红色表示春季,蓝色表示夏季,绿色表示秋季)

    Fig. 7  Scatter plot of μ versus λ and fitting curves

    (the red for spring, the blue for summer, the green for autumn)

    图  8  四季Et-R, Ed-Dm分布及拟合曲线

    Fig. 8  Scatter plots of Et versus R, Ed versus Dm and fitting curves in four seasons

    图  9  四季层状云和对流云降水的Z-R分布及拟合曲线

    Fig. 9  Scatter plots of Z versus R and fitting curves for stratiform rain and convective rain in four seasons

    图  10  抬升凝结层高度、0℃等温线层高度、云顶高度平均值(a)、地面风速箱线图(b)、总水汽含量箱线图(c)和对流有效位能箱线图(d)

    Fig. 10  Diagram of average heights of the lifting condensation level, 0℃ isotherm and cloud-top height(a), box plots of surface wind speed(b), total column water vapor(c) and convective available potential energy(d)

    表  1  四季不同雨强下的平均微物理参数

    Table  1  Averaged microphysical parameters for different rain rate classes in four seasons

    季节 雨强分档/(mm·h-1) 样本量 R/(mm·h-1) NT/m-3 Z/(mm6·m-3) W/(g·m-3) Dm/mm lgNw/(m-3·mm-1) μ λ/mm-1
    冬季 0<R<1 1023 0.442 144.50 120.07 0.037 1.002 3.446 9.81 15.52
    1≤R<2 163 1.323 304.01 541.17 0.099 1.194 3.611 2.91 6.13
    春季 0<R<1 10310 0.422 169.36 93.52 0.038 0.940 3.561 13.77 21.47
    1≤R<2 3149 1.402 321.22 477.76 0.107 1.154 3.716 6.87 10.31
    2≤R<5 2376 2.994 440.07 1596.31 0.201 1.352 3.718 4.87 7.35
    5≤R<10 452 6.636 556.70 5384.95 0.387 1.626 3.685 3.74 5.27
    10≤R<20 49 12.930 521.23 18667.33 0.627 2.106 3.456 3.68 3.89
    R≥20 10 34.894 466.51 98166.33 1.357 2.846 3.237 5.32 3.47
    夏季 0<R<1 19052 0.410 141.79 105.13 0.034 1.018 3.390 15.62 22.68
    1≤R<2 6058 1.427 332.88 504.61 0.106 1.188 3.681 9.67 13.52
    2≤R<5 5452 3.103 476.39 1469.11 0.209 1.331 3.767 6.99 9.49
    5≤R<10 1591 6.812 612.67 4583.83 0.405 1.551 3.795 5.74 6.92
    10≤R<20 680 13.788 723.87 13666.96 0.731 1.806 3.786 5.20 5.43
    R≥20 422 34.786 1044.34 62804.02 1.579 2.262 3.692 3.42 3.47
    秋季 0<R<1 14000 0.411 190.42 89.57 0.038 0.926 3.597 14.98 23.90
    1≤R<2 5593 1.464 331.53 500.80 0.111 1.167 3.707 6.48 9.85
    2≤R<5 5228 3.081 423.67 1593.01 0.203 1.364 3.695 4.52 6.76
    5≤R<10 1489 6.753 529.69 5501.84 0.385 1.649 3.655 3.72 5.05
    10≤R<20 318 12.954 637.32 14019.31 0.664 1.893 3.646 3.74 4.32
    R≥20 58 31.770 916.56 68359.38 1.381 2.421 3.547 2.82 2.98
    下载: 导出CSV

    表  2  四季不同降水类型的平均微物理参数

    Table  2  Averaged microphysical parameters for different rain types in four seasons

    降水类型 季节 NT/m-3 R/(mm·h-1) W/(g·m-3) Z/(mm6·m-3) Dm/mm lgNw/(m-3·mm-1) μ λ/mm-1
    层状云降水 冬季 221.63 0.804 0.064 259.93 1.056 3.544 7.30 12.00
    春季 283.39 1.265 0.094 528.90 1.064 3.701 9.12 14.45
    夏季 287.47 1.366 0.098 533.67 1.123 3.616 10.41 15.28
    秋季 309.62 1.548 0.110 726.34 1.113 3.699 8.53 13.73
    对流云降水 春季 675.07 8.773 0.492 9679.98 1.747 3.671 2.29 4.04
    夏季 892.78 20.731 1.029 24640.75 1.800 3.876 4.58 5.14
    秋季 659.03 12.540 0.647 12771.84 1.787 3.701 3.42 4.35
    下载: 导出CSV
  • [1] Morrison H, Lier-Walqui M, Fridlind A M, et al. Confronting the challenge of modeling cloud and precipitation microphysics. J Adv Model Earth Sy, 2020, 12(8). DOI:  10.1029/2019MS001689.
    [2] 陈绍婕, 郑佳锋, 杨吉, 等. C-FMCW雷达反演飑线大气垂直速度和雨滴谱. 应用气象学报, 2022, 33(4): 429-441. doi:  10.11898/1001-7313.20220404

    Chen S J, Zheng J F, Yang J, et al. Retrieval of air vertical velocity and droplet size distribution in squall line precipitation using C-FMCW radar. J Appl Meteor Sci, 2022, 33(4): 429-441. doi:  10.11898/1001-7313.20220404
    [3] Bringi V N, Chandrasekar V, Hubbert J, et al. Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J Atmos Sci, 2003, 60(2): 354-365. doi:  10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2
    [4] Suh S H, Kim H J, Lee D I, et al. Geographical characteristics of raindrop size distribution in the southern parts of south Korea. J Appl Meteor Climatol, 2021, 60(2): 157-169. doi:  10.1175/JAMC-D-20-0102.1
    [5] 陈磊, 陈宝君, 杨军, 等. 2009-2010年梅雨锋暴雨雨滴谱特征. 大气科学学报, 2013, 36(4): 481-488. doi:  10.3969/j.issn.1674-7097.2013.04.011

    Chen L, Chen B J, Yang J, et al. Characteristics of raindrop size distribution of rainstorm on Meiyu front during 2009-2010. Trans Atmos Sci, 2013, 36(4): 481-488. doi:  10.3969/j.issn.1674-7097.2013.04.011
    [6] 袁野, 朱士超, 李爱华. 黄山雨滴下落过程滴谱变化特征. 应用气象学报, 2016, 27(6): 734-740. doi:  10.11898/1001-7313.20160610

    Yuan Y, Zhu S C, Li A H. Characteristics of raindrop falling process at the Mount Huang. J Appl Meteor Sci, 2016, 27(6): 734-740. doi:  10.11898/1001-7313.20160610
    [7] 赵城城, 张乐坚, 梁海河, 等. 北京山区和平原地区夏季雨滴谱特征分析. 气象, 2021, 47(7): 830-842. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202107006.htm

    Zhao C C, Zhang L J, Liang H H, et al. Microphypical characteristic of the raindrop size distribution between mountain and pain areas over Beijing in summer. Meteor Mon, 2021, 47(7): 830-842. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202107006.htm
    [8] Zeng Y, Yang L M, Zhou Y S, et al. Characteristics of orographic raindrop size distribution in the Tianshan Mountains, China. Atmos Res, 2022, 278. DOI:  10.1016/J.ATMOSRES.2022.106332.
    [9] Li R, Wang G L, Zhou R R, et al. Seasonal variation in microphysical characteristics of precipitation at the entrance of water vapor channel in Yarlung Zangbo Grand Canyon. Remote Sens, 2022, 14(13): 3149-3170. doi:  10.3390/rs14133149
    [10] 黄泽文, 彭思越, 张浩然, 等. 福建安溪雨滴谱特征. 应用气象学报, 2022, 33(2): 205-217. doi:  10.11898/1001-7313.20220207

    Huang Z W, Peng S Y, Zhang H R, et al. Characteristic of raindrop size distribution at Anxi Fujian. J Appl Meteor Sci, 2022, 33(2): 205-217. doi:  10.11898/1001-7313.20220207
    [11] Luo L, Guo J, Chen H N, et al. Microphysical characteristics of rainfall observed by a 2DVD disdrometer during different seasons in Beijing, China. Remote Sens, 2021, 13(12). DOI:  10.3390/RS13122303.
    [12] Wen L, Zhao K, Wang M Y, et al. Seasonal variations of observed raindrop size distribution in East China. Adv Atmos Sci, 2019, 36(4): 346-362. doi:  10.1007/s00376-018-8107-5
    [13] 孙钦宏, 马洪波, 齐彦斌, 等. 2021年夏季长白山麓雨滴谱分布特征. 应用气象学报, 2023, 34(3): 336-347. doi:  10.11898/1001-7313.20230307

    Sun Q H, Ma H B, Qi Y B, et al. Distribution characteristics of raindrop spectrum at Changbai Mountain foothills in summer of 2021. J Appl Meteor Sci, 2023, 34(3): 336-347. doi:  10.11898/1001-7313.20230307
    [14] Atlas D, Srivastava R C, Sekhon R S. Doppler radar characteristics of precipitation at vertical incidence. Rev Geophys, 1973, 11(1): 1-35. doi:  10.1029/RG011i001p00001
    [15] 陈子健, 胡向峰, 陈宝君, 等. 河北省中南部暴雨雨滴谱特征. 干旱气象, 2019, 37(4): 586-596. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201904008.htm

    Chen Z J, Hu X F, Chen B J, et al. Raindrop size distribution of rainstom in central-southern Hebei Province. J Arid Meteor, 2019, 37(4): 586-596. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201904008.htm
    [16] 李欣, 张璐. 北上台风强降水形成机制及微物理特征. 应用气象学报, 2022, 33(1): 29-42. doi:  10.11898/1001-7313.20220103

    Li X, Zhang L. Formation mechanism and microphysics characteristics of heavy rainfall caused by northward-moving typhoons. J Appl Meteor Sci, 2022, 33(1): 29-42. doi:  10.11898/1001-7313.20220103
    [17] 金祺, 袁野, 纪雷, 等. 安徽滁州夏季一次飑线过程的雨滴谱特征. 应用气象学报, 2015, 26(6): 725-734. doi:  10.11898/1001-7313.20150609

    Jin Q, Yuan Y, Ji L, et al. Characteristic of raindrop size distribution for a squall line at Chuzhou of Anhui during summer. J Appl Meteor Sci, 2015, 26(6): 725-734. doi:  10.11898/1001-7313.20150609
    [18] 王俊, 王文青, 王洪, 等. 山东北部一次夏末雹暴地面降水粒子谱特征. 应用气象学报, 2021, 32(3): 370-384. doi:  10.11898/1001-7313.20210309

    Wang J, Wang W Q, Wang H, et al. Hydrometeor particle characteristics during a late summer hailstorm in northern Shandong. J Appl Meteor Sci, 2021, 32(3): 370-384. doi:  10.11898/1001-7313.20210309
    [19] Chen B J, Yang J, Pu J P. Statistical characteristics of raindrop size distribution in the Meiyu season observed in eastern China. J Meteor Soc Japan Ser Ⅱ, 2013, 91(2): 215-227.
    [20] Ulbrich C W. Natural variations in the analytical form of the raindrop size distribution. J Climate Appl Meteor, 1983, 22(10): 1764-1775.
    [21] 郑娇恒, 陈宝君. 雨滴谱分布函数的选择: M-P和Gamma分布的对比研究. 气象科学, 2007, 27(1): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200701002.htm

    Zheng J H, Chen B J. Comparative study of exponential and Gamma functional fits to observed raindrop size distribution. J Meteor Sci, 2007, 27(1): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200701002.htm
    [22] 濮江平, 张伟, 姜爱军, 等. 利用激光降水粒子谱仪研究雨滴谱分布特性. 气象科学, 2010, 30(5): 701-707. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201005017.htm

    Pu J P, Zhang W, Jiang A J, et al. Characteristics of Gamma raindrop size distribution based on the precipitation particle spectrometer. J Meteor Sci, 2010, 30(5): 701-707. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201005017.htm
    [23] Kinnell P I A. Rainfall intensity-kinetic energy relationships for soil loss prediction 1. Soil Sci Soc Am J, 1981, 45(1): 153-155.
    [24] Seela B K, Janapati J, Lin P L, et al. A comparison study of summer season raindrop size distribution between Palau and Taiwan, two islands in Western Pacific. J Geophys Res Atmos, 2017, 122(21): 11787-11805.
    [25] Zeng Q W, Zhang Y, Lei H C, et al. Microphysical characteristics of precipitation during pre-monsoon, monsoon, and post-monsoon periods over the South China Sea. Adv Atmos Sci, 2019, 36(10): 1103-1120.
    [26] Zeng Y, Yang L M, Tong Z P, et al. Statistical characteristics of raindrop size distribution duringrainy seasons in Northwest China. Adv Meteorol, 2021. DOI:  10.1155/2021/6667786.
    [27] Chen B J, Hu Z Q, Liu L P, et al. Raindrop size distribution measurements at 4500 m on the Tibetan Plateau during TIPEX-Ⅲ. J Geophys Res Atmos, 2017, 122(20): 11092-11106.
    [28] 林文, 林长城, 李白良, 等. 登陆台风麦德姆不同部位降水强度及谱特征. 应用气象学报, 2016, 27(2): 239-248. doi:  10.11898/1001-7313.20160212

    Lin W, Lin C C, Li B L, et al. Rainfall intensity and raindrop spectrum for different parts in landing Typhoon Matmo. J Appl Meteor Sci, 2016, 27(2): 239-248. doi:  10.11898/1001-7313.20160212
    [29] 梅海霞, 梁信忠, 曾明剑, 等. 2015-2017年夏季南京雨滴谱特征. 应用气象学报, 2020, 31(1): 117-128. doi:  10.11898/1001-7313.20200111

    Mei H X, Liang X Z, Zeng M J, et al. Raindrop size distribution characteristics of Nanjing in summer of 2015-2017. J Appl Meteor Sci, 2020, 31(1): 117-128. doi:  10.11898/1001-7313.20200111
    [30] Zhang G F, Vivekanandan J, Brandes E A, et al. The shape-slope relation in observed Gamma raindrop size distributions: Statistical error or useful information?. J Atmos Ocean Technol, 2003, 20(8): 1106-1119.
    [31] Seela B K, Janapati J, Lin P L, et al. Raindrop size distribution characteristics of the western Pacific tropical cyclones measured in the Palau islands. Remote Sens, 2022, 14(3). DOI:  10.3390/rs14030470.
    [32] Janapati J, Seela B K, Lin P L, et al. Microphysical features of typhoon and non-typhoon rainfall observed in Taiwan, an island in the Northwestern Pacific. Hydro Earth Syst Sci, 2021, 25: 4025-4040.
    [33] 汪学渊, 阮征, 李效东, 等. 雨滴谱仪与风廓线雷达反射率对比试验. 气象, 2016, 42(1): 107-114. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201601013.htm

    Wang X Y, Ruan Z, Li X D, et al. Comparison of the reflectivities of wind profile radar and raindrop disdrometer. Meteor Mon, 2016, 42(1): 107-114. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201601013.htm
  • 加载中
图(10) / 表(2)
计量
  • 摘要浏览量:  374
  • HTML全文浏览量:  63
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-11
  • 修回日期:  2023-06-21
  • 刊出日期:  2023-07-31

目录

    /

    返回文章
    返回