留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南海雷暴大风时空分布及闪电和对流活动特征

闫琳城 张文娟 张义军 张增海 郑栋 姚雯 孙秀斌 张一旭

闫琳城, 张文娟, 张义军, 等. 南海雷暴大风时空分布及闪电和对流活动特征. 应用气象学报, 2023, 34(4): 503-512. DOI:  10.11898/1001-7313.20230410..
引用本文: 闫琳城, 张文娟, 张义军, 等. 南海雷暴大风时空分布及闪电和对流活动特征. 应用气象学报, 2023, 34(4): 503-512. DOI:  10.11898/1001-7313.20230410.
Yan Lincheng, Zhang Wenjuan, Zhang Yijun, et al. Temporal and spatial distribution of thunderstorms and strong winds with characteristics of lightning and convective activities in the South China Sea. J Appl Meteor Sci, 2023, 34(4): 503-512. DOI:  10.11898/1001-7313.20230410.
Citation: Yan Lincheng, Zhang Wenjuan, Zhang Yijun, et al. Temporal and spatial distribution of thunderstorms and strong winds with characteristics of lightning and convective activities in the South China Sea. J Appl Meteor Sci, 2023, 34(4): 503-512. DOI:  10.11898/1001-7313.20230410.

南海雷暴大风时空分布及闪电和对流活动特征

DOI: 10.11898/1001-7313.20230410
资助项目: 

国家重点研发计划 2019YFC1510103

中国气象科学研究院基本科研业务费重点项目 2020Z009

详细信息
    通信作者:

    张文娟, 邮箱:zwj@cma.gov.cn

Temporal and Spatial Distribution of Thunderstorms and Strong Winds with Characteristics of Lightning and Convective Activities in the South China Sea

  • 摘要: 利用2019—2020年风云四号气象卫星A星(FY-4A)多通道扫描成像辐射计(AGRI)提供的云顶数据和地基全球闪电定位网(WWLLN)提供的闪电数据,结合MICAPS气象观测站和海洋浮标记录的极大风数据,研究南海区域(5°~30°N,105°~125°E)71次雷暴大风过程的时空分布及其闪电和对流活动特征。结果表明:观测站记录的雷暴大风主要分布在南海北部;雷暴大风主要发生在5—9月,峰值出现在8月,3月发生次数最少;雷暴大风主要发生在07:00—12:00(北京时,下同),10:00频次最高,午后频次减少。雷暴大风闪电密度的极大值分布在广东南部近海区域,且闪电集中发生在距离观测站40~80 km半径范围内;孤立雷暴大风过程首次闪电跃变的发生时刻相对大风峰值时刻超前30 min至2 min。在对流特征方面,在雷暴大风风速峰值时刻,观测站处的云顶亮温为200~220 K,云顶高度为12.5~15 km。孤立雷暴大风云团云顶亮温最低值(即最强对流发生位置)与大风观测站点的距离平均为77.2 km,云顶亮温平均相差2.6 K。
  • 图  1  研究区域及大风观测站分布

    (黑色三角形表示28个海上观测站位置)

    Fig. 1  Study area and observation stations of strong winds (black triangles denote locations of 28 marine observation stations)

    (black triangles denote locations of 28 marine observation stations)

    图  2  2019—2020年南海区域雷暴大风频次年变化

    Fig. 2  Annual frequency variation of thunderstorms and strong winds in the South China Sea from 2019 to 2020

    图  3  2019—2020年南海区域雷暴大风频次日变化

    Fig. 3  Diurnal frequency variation of thunderstorms and strong winds in the South China Sea from 2019 to 2020

    图  4  2019—2020年南海区域雷暴大风年平均频次空间分布

    Fig. 4  Spatial distribution of annual frequency of thunderstorms and strong winds in the South China Sea from 2019 to 2020

    图  5  2019—2020年雷暴大风过程闪电密度空间分布

    Fig. 5  Spatial distribution of lightning density of thunderstorms and strong winds from 2019 to 2020

    图  6  闪电发生位置与观测站间距离

    Fig. 6  Distance between lightning location and the observation station

    图  7  2019年4月20日10:55闪电频次及跃变

    Fig. 7  Lightning frequency and jump at 1055 BT 20 Apr 2019

    图  8  2019年5月28日02:20闪电频次及跃变

    Fig. 8  Lightning frequency and jump at 0220 BT 28 May 2019

    图  9  孤立雷暴大风过程TBB低值区面积变化

    (a)TBB面积逐渐减小,(b)TBB面积逐渐增大

    Fig. 9  Area of low TBB in isolated thunderstorms and strong winds

    (a)decreased TBB area, (b)increased TBB area

  • [1] 华雯丽, 杨晓霞, 田雪珊, 等. 山东省雷暴大风天气学分型与物理诊断量统计特征. 暴雨灾害, 2021, 40(4): 362-373. doi:  10.3969/j.issn.1004-9045.2021.04.004

    Hua W L, Yang X X, Tian X S, et al. Synoptic classification and statistical characteristics of physical diagnoses for thunderstorm gale in Shandong Province. Torrential Rain Disaster, 2021, 40(4): 362-373. doi:  10.3969/j.issn.1004-9045.2021.04.004
    [2] 郑永光, 周康辉, 盛杰, 等. 强对流天气监测预报预警技术进展. 应用气象学报, 2015, 26(6): 641-657. doi:  10.11898/1001-7313.20150601

    Zheng Y G, Zhou K H, Sheng J, et al. Advances in techniques of monitoring, forecasting and warning of severe convective weather. J Appl Meteor Sci, 2015, 26(6): 641-657. doi:  10.11898/1001-7313.20150601
    [3] 刘娜, 熊安元, 张强, 等. 强对流天气人工智能应用训练基础数据集构建. 应用气象学报, 2021, 32(5): 530-541. doi:  10.11898/1001-7313.20210502

    Liu N, Xiong A Y, Zhang Q, et al. Development of basic dataset of severe convective weather for artificial intelligence training. J Appl Meteor Sci, 2021, 32(5): 530-541. doi:  10.11898/1001-7313.20210502
    [4] 王秀明, 周小刚, 俞小鼎. 雷暴大风环境特征及其对风暴结构影响的对比研究. 气象学报, 2013, 71(5): 839-852. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201305004.htm

    Wang X M, Zhou X G, Yu X D. Comparative study of environmental characteristics of a windstorm and their impacts on storm structures. Acta Meteor Sinica, 2013, 71(5): 839-852. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201305004.htm
    [5] 徐玥, 邵美荣, 唐凯, 等. 2021年黑龙江两次超级单体龙卷过程多尺度特征. 应用气象学报, 2022, 33(3): 305-318. doi:  10.11898/1001-7313.20220305

    Xu Y, Shao M R, Tang K, et al. Multiscale characteristics of two supercell tornados of Heilongjiang in 2021. J Appl Meteor Sci, 2022, 33(3): 305-318. doi:  10.11898/1001-7313.20220305
    [6] 王黉, 李英, 文永仁. 川藏高原一次混合型强对流天气的观测特征. 应用气象学报, 2021, 32(5): 567-579. doi:  10.11898/1001-7313.20210505

    Wang H, Li Y, Wen Y R. Observational characteristics of a hybrid severe convective event in the Sichuan-Tibet Region. J Appl Meteor Sci, 2021, 32(5): 567-579. doi:  10.11898/1001-7313.20210505
    [7] 樊李苗, 俞小鼎. 中国短时强对流天气的若干环境参数特征分析. 高原气象, 2013, 32(1): 156-165. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201301017.htm

    Fan L M, Yu X D. Characteristic analyses on environmental parameters in short-term severe convective weather in China. Plateau Meteor, 2013, 32(1): 156-165. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201301017.htm
    [8] 俞小鼎. 基于构成要素的预报方法——配料法. 气象, 2011, 37(8): 913-918. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201108002.htm

    Yu X D. Ingredients based forecasting methodology. Meteor Mon, 2011, 37(8): 913-918. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201108002.htm
    [9] 费海燕, 王秀明, 周小刚, 等. 中国强雷暴大风的气候特征和环境参数分析. 气象, 2016, 42(12): 1513-1521. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201612010.htm

    Fei H Y, Wang X M, Zhou X G, et al. Climatic characteristics and environmental parameters of severe thunderstorm gales in China. Meteor Mon, 2016, 42(12): 1513-1521. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201612010.htm
    [10] 马瑞阳, 郑栋, 姚雯, 等. 雷暴云特征数据集及我国雷暴活动特征. 应用气象学报, 2021, 32(3): 358-369. doi:  10.11898/1001-7313.20210308

    Ma R Y, Zhen D, Yao W, et al. Thunderstorm feature dataset and characteristics of thunderstorm activities in China. J Appl Meteor Sci, 2021, 32(3): 358-369. doi:  10.11898/1001-7313.20210308
    [11] Lucas C, Orville R E. TOGA COARE: Oceanic lightning. Mon Wea Rev, 1996, 124(9): 2077-2082.
    [12] Christian H J, Blakeslee R J, Boccippio D J, et al. Global frequency and distribution of lightning as observed from space by the optical transient detector. J Geophys Res, 2003, 108(D1): ACL 4-1-ACL 4-15.
    [13] Hutchins M L, Holzworth R H, Virts K S, et al. Radiated VLF energy differences of land and oceanic lightning. Geophys Res Lett, 2013, 40(10): 2390-2394.
    [14] Said R K, Cohen M B, Inan U S. Highly intense lightning over the oceans: Estimated peak currents from global GLD360 observations. J Geophys Res, 2013, 118(13): 6905-6915.
    [15] Zheng D, Zhang Y J, Meng Q, et al. Climatological comparison of small- and large-current cloud-to-ground lightning flashes over Southern China. J Climate, 2016, 29(8): 2831-2848.
    [16] 张义军, 周秀骥. 雷电研究的回顾和进展. 应用气象学报, 2006, 17(6): 829-834. http://qikan.camscma.cn/article/id/200606130

    Zhang Y J, Zhou X J. Review and progress of lightning research. J Appl Meteor Sci, 2006, 17(6): 829-834. http://qikan.camscma.cn/article/id/200606130
    [17] 王艳, 张义军, 马明. 卫星观测的我国近海海域闪电分布特征. 应用气象学报, 2010, 21(2): 157-163. http://qikan.camscma.cn/article/id/20100204

    Wang Y, Zhang Y J, Ma M. Lightning activities in China offing sea area observed by satellite-based lightning imaging sensor. J Appl Meteor Sci, 2010, 21(2): 157-163. http://qikan.camscma.cn/article/id/20100204
    [18] Rudlosky S D, Fuelberg H E. Documenting storm severity in the mid-Atlantic region using lightning and radar information. Mon Wea Rev, 2013, 141(9): 3186-3202.
    [19] Peterson M, Deierling W, Liu C, et al. The properties of optical lightning flashes and the clouds they illuminate. J Geophys Res, 2017, 122(1): 423-442.
    [20] Metzger E, Nuss W A. The relationship between total cloud lightning behavior and radar-derived thunderstorm structure. Wea Forecasting, 2013, 28(1): 237-253.
    [21] Bedka K, Brunner J, Dworak R, et al. Objective satellite-based detection of overshooting tops using infrared window channel brightness temperature gradients. J Climate Appl Meteor, 2010, 49(2): 181-202.
    [22] Williams E R. Thunderstorm Electrification: Precipitation Versus Convection. M Inst Technol, 1981.
    [23] Permyakov M, Kleshcheva T, Potalova E, et al. Characteristics of typhoon eyewalls according to world wide lightning location network data. J Geophys Res, 2019, 147: 4027-4043.
    [24] 张晓芸, 魏鸣, 潘佳文. FY-4闪电资料在厦门强降水监测预警中的应用. 遥感技术与应用, 2019, 34(5): 1082-1090. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201905019.htm

    Zhang X Y, Wei M, Pan J W. Application of FY-4 lightning data in monitoring and warning a heavy precipitation in Xiamen. Remote Sens Technol Appl, 2019, 34(5): 1082-1090. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201905019.htm
    [25] 郭玉娣, 刘彬贤, 梁冬坡. 变分方法在渤海海域ASCAT风场订正中的应用. 应用气象学报, 2019, 30(3): 376-384. doi:  10.11898/1001-7313.20190310

    Guo Y D, Liu B X, Liang D P. Application of variational method to correction of ASCAT wind field in the Bohai Sea. J Appl Meteor Sci, 2019, 30(3): 376-384. doi:  10.11898/1001-7313.20190310
    [26] Justus C G, Mikhail A. Height variation of wind speed and wind distributions statistics. Geophys Res Lett, 1976, 3(5): 261-264.
    [27] 王志春, 宋丽莉, 何秋生, 等. 风速随高度变化的曲线模型分析. 热带气象学报, 2007, 23(6): 690-692. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200706025.htm

    Wang Z C, Song L L, He Q S, et al. Model analysis of curve fitting of wind speed and its height. J Trop Meteor, 2007, 23(6): 690-692. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200706025.htm
    [28] 秦鹏, 黄浩辉, 植石群. 东莞风能资源的评估及开发利用. 广东气象, 2011, 33(6): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-GDCX201106016.htm

    Qin P, Huang H H, Zhi S Q. Evaluation and development and utilization of wind energy resources in Guangdong. Guangdong Meteor, 2011, 33(6): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-GDCX201106016.htm
    [29] 植石群, 钱光明, 罗金铃. 广东省沿海风随高度变化研究. 热带地理, 2001, 21(2): 131-134. https://www.cnki.com.cn/Article/CJFDTOTAL-RDDD200102007.htm

    Zhi S Q, Qian G M, Luo J L. A study of wind velocity varying with altitude on the coastal areas of Guangdong Province. Tropical Geophys, 2001, 21(2): 131-134. https://www.cnki.com.cn/Article/CJFDTOTAL-RDDD200102007.htm
    [30] 蔡晓杰, 戴建华, 朱智慧, 等. 上海沿岸海域风场质量控制与预报检验. 气象科技, 2019, 47(2): 214-221. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201902004.htm

    Cai X J, Dai J H, Zhu Z H, et al. Quality control and forecast verification of wind field in coastal waters of Shanghai. Meteor Sci Technol, 2019, 47(2): 214-221. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201902004.htm
    [31] 马淑萍, 王秀明, 俞小鼎. 极端雷暴大风的环境参量特征. 应用气象学报, 2019, 30(3): 292-301. doi:  10.11898/1001-7313.20190304

    Ma S P, Wang X M, Yu X D. Environmental parameter characteristics of severe wind with extreme thunderstorm. J Appl Meteor Sci, 2019, 30(3): 292-301. doi:  10.11898/1001-7313.20190304
    [32] Thompson K B, Bateman M G, Mecikalski J R. Signatures of oceanic wind events in geostationary cloud top temperature and lightning data. Wea Forecasting, 2021, 36(2): 407-423.
    [33] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 海上大风预警等级. GB/T 27958-2011.2011.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Grade of Marine Wind Warning. GB/T 27958-2011.2011.
    [34] 王慧, 隋伟辉. 基于CCMP风场的中国近海18个海区海面大风季节变化特征分析. 气象科技, 2013, 41(4): 720-725. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201304021.htm

    Wang H, Sui W H. Seasonal variation analysis of sea surface winds in China sea areas with CCMP wind field data. Meteor Sci Technol, 2013, 41(4): 720-725. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201304021.htm
    [35] Schultz C J, Carey L D, Schultz E V, et al. Kinematic and microphysical significance of lightning jumps versus nonjump increases in total flash rate. Wea Forecasting, 2017, 32(1): 275-288.
    [36] 田野, 姚雯, 尹佳莉, 等. 不同闪电跃增算法在北京地区应用效果对比. 应用气象学报, 2021, 32(2): 217-232. doi:  10.11898/1001-7313.20210207

    Tian Y, Yao W, Yin J L, et al. Comparison of the performance of different lightning jump algorithms in Beijing. J Appl Meteor Sci, 2021, 32(2): 217-232. doi:  10.11898/1001-7313.20210207
    [37] 方翀, 郑永光, 林隐静, 等. 导致区域性雷暴大风天气的云型分类及统计特征分析. 气象, 2014, 40(8): 905-915. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201408001.htm

    Fang C, Zheng Y G, Lin Y J, et al. Classification and characteristics of cloud patterns triggering regional thunderstorm high winds. Meteor Mon, 2014, 40(8): 905-915. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201408001.htm
  • 加载中
图(9)
计量
  • 摘要浏览量:  634
  • HTML全文浏览量:  98
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-14
  • 修回日期:  2023-03-30
  • 刊出日期:  2023-07-31

目录

    /

    返回文章
    返回