Key Model Technologies of CMA-GFS V4.0 and Application to Operational Forecast
-
摘要: 针对CMA-GFS V3.3强降水预报偏弱、西北太平洋副热带高压等天气系统预报衰减偏快以及模式计算效率偏低等问题,对模式物理过程与动力框架关键技术开展研发改进。在预报性能方面,通过在云微物理方案中增加霰粒子相关的微物理过程、调整蒸发速率,并在积云对流方案中改进触发条件、卷入率、准平衡闭合假定等关键因子的参数化方法,缓解模式强降水预报不足和小雨过多的问题;采用质量守恒修正算法解决模式长时间积分质量损失问题,改善天气形势预报。在计算效率方面,研制二维参考廓线方案延长模式积分时间步长,开发预条件经典斯蒂菲尔迭代(PCSI)算法提高Helmholtz方程的求解效率,对辐射方案、预估-修正算法等进行计算效率优化。通过上述关键技术的研发和应用,CMA-GFS在降水和天气形势方面的预报技巧得到显著提升,计算效率提高1/3左右,满足模式在0.125°分辨率下业务运行的时效要求,为CMA-GFS V3.3升级到V4.0奠定了基础。Abstract: To address problems including underestimation of heavy precipitation, rapid decay of synoptic systems and low computational efficiency in operational forecast of CMA-GFS V3.3, some key technologies related to physics and dynamics of the model are developed and applied.A suite of graupel-related microphysical processes is adopted in the cloud microphysics scheme to improve the forecast performance of heavy precipitation. These processes include graupel colliding with cloud water, ice crystals and snow, automatic conversions of ice crystals to graupel and snow to graupel, melting process of graupel to raindrop and sublimation process of graupel. In addition, the evaporation rate of cloud and rainwater is restricted, which can increase the liquid water content in warm areas and improve precipitation efficiency.In the convection parameterization scheme, the role of the sub-cloud environmental relative humidity to convection triggers is considered, and the unreasonable occurrence of convections in dry environment is suppressed. Also, the sensitivity of the entrainment rate of the convective updraft to the relative humidity outside the cloud is enhanced to weaken the convections in dry environment. At the same time, the quasi-equilibrium closure scheme is optimized to improve the accuracy in calculating cloud-base mass flux which is related to the convection intensity.To solve the problem of the mass loss in long time integration, a mass conservation correction method is introduced to the model dynamic framework. The method is developed to ensure the mass conservation by adjusting mass in each grid box according to different weight coefficients which are determined by the change of total atmospheric mass of the current time step relative to the previous step.In terms of computational efficiency, the two-dimensional reference profile algorithm is developed. Without losing calculation accuracy, the model integration time step is extended from 240 s to 300 s using the new profile instead of the original three-dimensional reference profile. Meanwhile, the PCSI method is adopted instead of the GCR method, which reduces the time consuming of solving Helmholtz equation. In addition, the radiation scheme and predictor-corrector algorithms are also optimized to improve the computational efficiency.Through the application of the above key technologies, the forecasting skills for weather pattern and precipitation of CMA-GFS are significantly improved. And its computational efficiency is increased by about 1/3, which meets operational time requirement for the model with 0.125° horizontal resolution. Based on the improved model and the research achievements in other aspects of the forecast system, CMA-GFS is upgraded to V4.0 with a significantly improved comprehensive performance.
-
图 4 2022年6月26日00:00—27日00:00观测及GMA-GFS对流参数化方案改进前后预报的累积降水量(+ 表示雨强超过20 mm·h-1的站点)
Fig. 4 Accumulated precipitation of observed and forecasted before and after convective parameterization scheme improvement of CMA-GFS from 0000 UTC 26 Jul to 0000 UTC 27 Jul in 2022 (+ denotes station with precipitation rate exceeding 20 mm·h-1)
图 6 改进试验预报的2022年8月全球500 hPa高度场距平相关系数和均方根误差及其与控制试验的差异
(矩形外区域表示差异达到0.05显著性水平)
Fig. 6 Anomaly correlation coefficient and root mean square error of global 500 hPa geopotnetial height forecasted by improved experiment with differences to control experiment in Aug 2022
(the area outside the rectangle passing the test of 0.05 level)
表 1 CMA-GFS V3.3积分30 d大气总质量相对于初始场的变化
Table 1 Change of total mass relative to the initial field during 30-day integration for CMA-GFS V3.3
预报日数/d 控制试验 质量守恒修正试验 0 1 1 3 0.999622 0.999999 6 0.999387 0.999999 9 0.999316 0.999999 12 0.999026 0.999999 15 0.998792 0.999999 18 0.998868 0.999999 21 0.998428 0.999999 24 0.997662 0.999999 27 0.997217 0.999999 30 0.996886 0.999999 表 2 CMA-GFS V4.0模式关键技术改进
Table 2 Improvement of the key technologies of CMA-GFS V4.0
关键技术与方案 具体改进内容 云微物理方案 增加霰粒子的微物理转化过程,液滴蒸发由1个时步内完成调整为2个时步内完成 对流参数化方案 引入次云层环境相对湿度对陆地格点对流触发函数的影响,增强云内侧向卷入率对环境相对湿度的敏感性,优化准平衡假设闭合计算 质量守恒性处理 引入质量守恒修正算法 参考廓线算法 参考廓线由三维调整为二维 Helmholtz方程求解器 求解器由GCR升级为PCSI 其他优化 辐射方案采用跳点计算,动力预估过程采用QMSL标量平流方法,应用平流和插值等采用向量化方法,优化冗余操作、资料交换、读写效率 -
[1] 陈德辉, 沈学顺.新一代数值预报系统GRAPES研究进展.应用气象学报, 2006, 17(6):773-777. doi: 10.3969/j.issn.1001-7313.2006.06.014Chen D H, Shen X S. Recent progress on GRAPES research and application. J Appl Meteor Sci, 2006, 17(6): 773-777. doi: 10.3969/j.issn.1001-7313.2006.06.014 [2] 薛纪善, 陈德辉. 数值预报系统GRAPES的科学设计与应用. 北京: 科学出版社, 2008.Xue J S, Chen D H. Scientific Design and Application of Numerical Prediction System GRAPES. Beijing: Science Press, 2008. [3] 沈学顺, 王建捷, 李泽椿, 等. 中国数值天气预报的自主创新发展. 气象学报, 2020, 78(3): 451-476. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202003008.htmShen X S, Wang J J, Li Z C, et al. China's independent and innovative development of numerical weather prediction. Acta Meteor Sinica, 2020, 78(3): 451-476. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202003008.htm [4] 沈学顺, 苏勇, 胡江林, 等. GRAPES_GFS全球中期预报系统的研发和业务化. 应用气象学报, 2017, 28(1): 1-10. doi: 10.11898/1001-7313.20170101Shen X S, Su Y, Hu J L, et al. Development and operation transformation of GRAPES global middle range forecast system. J Appl Meteor Sci, 2017, 28(1): 1-10. doi: 10.11898/1001-7313.20170101 [5] 黄丽萍, 陈德辉, 邓莲堂, 等. GRAPES_Meso V4.0主要技术改进和预报效果检验. 应用气象学报, 2017, 28(1): 25-37. doi: 10.11898/1001-7313.20170103Huang L P, Chen D H, Deng L T, et al. Main technical improvements of GRAPES_MESO V4.0 and verification. J Appl Meteor Sci, 2017, 28(1): 25-37. doi: 10.11898/1001-7313.20170103 [6] 黄丽萍, 邓莲堂, 王瑞春, 等. CMA-MESO关键技术集成及应用. 应用气象学报, 2022, 33(6): 641-653. doi: 10.11898/1001-7313.20220601Huang L P, Deng L T, Wang R C, et al. Key technologies of CMA-Meso and application to operational forecast. J Appl Meteor Sci, 2022, 33(6): 641-654. doi: 10.11898/1001-7313.20220601 [7] 陈静, 李晓莉. GRAPES全球/区域集合预报系统10年发展回顾及展望. 气象科技进展, 2020, 10(2): 9-18. doi: 10.3969/j.issn.2095-1973.2020.02.003Chen J, Li X L. The review of 10 years development of the GRAPES global/regional ensemble prediction. Adv Meteor Sci Tech, 2020, 10(2): 9-18. doi: 10.3969/j.issn.2095-1973.2020.02.003 [8] 霍振华, 李晓莉, 陈静, 等. 基于背景场奇异向量的CMA全球集合预报试验. 应用气象学报, 2022, 33(6): 655-667. doi: 10.11898/1001-7313.20220602Huo Z H, Li X L, Chen J, et al. CMA global ensemble prediction using singular vectors from background field. J Appl Meteor Sci, 2022, 33(6): 655-667. doi: 10.11898/1001-7313.20220602 [9] 张进, 麻素红, 陈德辉, 等. GRAPES_TYM改进及其在2013年西北太平洋和南海台风预报的表现. 热带气象学报, 2017, 33(1): 64-73. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201701007.htmZhang J, Ma S H, Chen D H, et al. The improvements of GRAPES_TYM and its performance in the Northwest Pacific Ocean and the South China Sea in 2013. J Trop Meteor, 2017, 33(1): 64-73. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201701007.htm [10] 麻素红, 张进, 沈学顺, 等. 2016年GRAPES_TYM改进及对台风预报影响. 应用气象学报, 2018, 29(3): 257-269. doi: 10.11898/1001-7313.20180301Ma S H, Zhang J, Shen X S, et al. The upgrade of GRAPE_TYM in 2016 and its impacts on tropical cyclone prediction. J Appl Meteor Sci, 2018, 29(3): 257-269. doi: 10.11898/1001-7313.20180301 [11] 常煜, 温建伟, 杨雪峰, 等. 基于CMA-TYM和SCMOC的嫩江流域暴雨检验. 应用气象学报, 2023, 34(2): 154-165. doi: 10.11898/1001-7313.20230203Chang Y, Wen J W, Yang X F, et al. Verification of rainstorm based on numerical model about CMA-TYM and SCMOC in Nenjiang Basin. J Appl Meteor Sci, 2023, 34(2): 154-165. doi: 10.11898/1001-7313.20230203 [12] 孙健, 曹卓, 李恒, 等. 人工智能技术在数值天气预报中的应用. 应用气象学报, 2021, 32(1): 1-11. doi: 10.11898/1001-7313.20210101Sun J, Cao Z, Li H, et al. Application of artificial intelligence technology to numerical weather prediction. J Appl Meteor Sci, 2021, 32(1): 1-11. doi: 10.11898/1001-7313.20210101 [13] Zhang L, Liu Y Z, Liu Y, et al. The operational global four-dimensional variational data assimilation system at the China Meteorological Administration. Quart J Roy Meteor Soc, 2019, 145: 1882-1896. doi: 10.1002/qj.3533 [14] 刘永柱, 张林, 陈炯, 等. CMA-GFS 4DVar边界层过程线性化的改进. 应用气象学报, 2023, 34(1): 15-26. doi: 10.11898/1001-7313.20230102Liu Y Z, Zhang L, Chen J, et al. An improvement of the linearized planetary boundary layer parameterization scheme for CMA-GFS 4DVar. J Appl Meteor Sci, 2023, 34(1): 15-26. doi: 10.11898/1001-7313.20230102 [15] Shen X S, Su Y, Zhang H L, et al. A new version of the CMA-GFS dynamic core based on the predictor-corrector time integration scheme. J Meteor Res, 2023, 37(3): 273-285. doi: 10.1007/s13351-023-3002-0 [16] Ma Z S, Liu Q J, Zhao C F, et al. Application and evaluation of an explicit prognostic cloud-cover scheme in GRAPES global forecast system. J Adv Model Earth Sys, 2018, 10(3): 652-667. doi: 10.1002/2017MS001234 [17] Liu K, Chen Q Y, Sun J. Modification of cumulus convection and planetary boundary layer schemes in the GRAPES global model. J Meteor Res, 2015, 29(5): 806-822. doi: 10.1007/s13351-015-5043-5 [18] Chen J, Ma Z S, Li Z, et al. Vertical diffusion and cloud scheme coupling to the Charney-Phillips vertical grid in GRAPES global forecast system. Quart J Roy Meteor Soc, 2020, 146(730): 2191-2204. doi: 10.1002/qj.3787 [19] 李喆, 陈炯, 马占山, 等. CMA-GFS云预报的偏差分布特征. 应用气象学报, 2022, 33(5): 527-540. doi: 10.11898/1001-7313.20220502Li Z, Chen J, Ma Z S, et al. Deviation distribution features of CMA-GFS cloud prediction. J Appl Meteor Sci, 2022, 33(5): 527-540. doi: 10.11898/1001-7313.20220502 [20] Staniforth A, Cote J. Semi-Lagrangian integration schemes for atmospheric models-A review. Mon Wea Rev, 1991, 119: 2206-2223. doi: 10.1175/1520-0493(1991)119<2206:SLISFA>2.0.CO;2 [21] Zerroukat M, Wood N, Staniforth A, et al. An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the shallow water equations on the sphere. Quart J Roy Meteor Soc, 2009, 135(642): 1104-1116. doi: 10.1002/qj.458 [22] Lauritzen H, Nair D, Paul A, et al. A conservative semi-Lagrangian multi tracer transport scheme(CSLAM) on the cubed-sphere grid. J Comput Phys, 2009, 229(5): 1401-1424. [23] 苏勇, 沈学顺, 陈子通, 等. GRAPES_GFS中三维参考大气的研究: 理论设计和理想试验. 气象学报, 2018, 76(2): 241-254. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201802006.htmSu Y, Shen X S, Chen Z T, et al. A study on the three dimensional reference atmosphere in GRAPES_GFS: Theoretical design and ideal test. Acta Meteor Sinica, 2018, 76(2): 241-254. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201802006.htm [24] 苏勇, 沈学顺, 张红亮, 等. GRAPES_GFS中三维参考大气的研究: 参考态构造和实际预报试验. 气象学报, 2020, 78(6): 962-971. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202006006.htmSu Y, Shen X S, Zhang H L, et al. A study on the three dimensional reference atmosphere in GRAPES_GFS: Constructive reference state and real forecast experiment. Acta Meteor Sinica, 2020, 78(6): 962-971. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202006006.htm [25] 张理论, 宋君强, 赵文涛, 等. 基于并行可扩展科学计算工具集求解GRAPES全球非静力模式Helmholtz问题. 气象学报, 2011, 69(3): 432-439. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201103004.htmZhang L L, Song J Q, Zhao W T, et al. Solving Helmholtz equations of the GRAPES global nonhydrostatic model based on the PETSc. Acta Meteor Sinica, 2011, 69(3): 432-439. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201103004.htm [26] 苏勇, 沈学顺, 彭新东, 等. PRM标量平流方案在GRAPES全球预报系统中的应用. 大气科学, 2013, 37(6): 1309-1325. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201306013.htmSu Y, Shen X H, Peng X D, et al. Application of PRM scalar advection scheme in GRAPES global forecast system. Chinese J Atmos Sci, 2013, 37(6): 1309-1325. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201306013.htm [27] 张红亮, 沈学顺, 苏勇. 预估-校正的半隐式半拉格朗日时间积分方案及其在CMA-GFS模式中的应用. 气象学报, 2020, 80(2): 280-288. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202202008.htmZhang H L, Shen X S, Su Y. A semi-implicit semi-Lagrangian time integration schemes with a predictor and a corrector and their applications in CMA-GFS. Acta Meteor Sinica, 2022, 80(2): 280-288. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202202008.htm [28] Morcrette J-J, Barker H W, Cole J N S, et al. Impact of a new radiation package, McRad, in the ECMWF Integrated Forecast System. Mon Wea Rev, 2008, 136(12): 4773-4798. [29] Pincus R, Barker H W, Morcrette J J. A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud field. J Geophys Res Atmos, 2003, 108(D13): 4376. [30] Dai Y J, Zeng X B, Dickinson R E, et al. The common land model. Bull Amer Meteor Soc, 2003, 84: 1013-1023. [31] Hong S Y, Pan H L. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Wea Rev, 1996, 124(10): 2322-2339. [32] Arakawa A, Schubert W H. Interaction of a cumulus cloud ensemble with the large-scale environment, Part Ⅰ. J Atmos Sci, 1974, 31(3): 674-701. [33] Grell G A. Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Wea Rev, 1993, 121(3): 764-787. [34] Pan H L, Wu W S. Implementing a Mass Flux Convective Parameterization Package for the NMC Medium-range Forecast Model. NMC Office Note 409, 1995: 1-40. [35] Han J L, Pan H L. Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea Forecasting, 2011, 26(4): 520-533. [36] Kim Y J, Arakawa A. Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J Atmos Sci, 1995, 52(11): 1875-1902. [37] 陈雪娇, 刘奇俊, 马占山. GRAPES全球模式云方案的诊断研究. 气象学报, 2021, 79(1): 65-78. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202101005.htmChen X J, Liu Q J, Ma Z S. A diagnostic study of cloud scheme for the GRAPES global forecast model. Acta Meteor Sinica, 2021, 79(1): 65-78. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202101005.htm [38] Han J Y, Hong S Y, Kwon Y C. The performance of a revised Simplified Arakawa-Schubert(SAS) convection scheme in the medium-range forecasts of the Korean Integrated Model(KIM). Wea Forecasting, 2020, 35(3): 1113-1128. [39] Han J L, Wang W G, Kwon Y C, et al. Updates in the NCEP GFS cumulus convection schemes with scale and aerosol awareness. Wea Forecasting, 2017, 32(5): 2005-2017. [40] Kemball-Cook S R, Weare B C. The onset of convection in the Madden-Julian oscillation. J Climate, 2001, 14(5): 780-793. [41] Emori S, Nozawa T, Numaguti A, et al. Importance of cumulus parameterization for precipitation simulation over East Asia in June. J Meteor Soc Japan, 2001, 79(4): 939-947. [42] Redelsperger J L, Parsons D B, Guichard F. Recovery processes and factors limiting cloud-top height following the arrival of a dry intrusion observed during TOGA-COARE. J Atmos Sci, 2002, 59(16): 2438-2457. [43] Bechtold P, Köhler M, Jung T, et al. Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart J Roy Meteor Soc, 2008, 134(634): 1337-1351. [44] Bechtold P, Semane N, Lopez P, et al. Representing equilibrium and nonequilibrium convection in large-scale models. J Atmos Sci, 2014, 71(2): 734-753. [45] 苏勇, 沈学顺, 张倩. 质量守恒的修正算法在GRAPES_GFS中的应用. 应用气象学报, 2016, 27(6): 666-675. doi: 10.11898/1001-7313.20160603Su Y, Shen X S, Zhang Q. Application of the correction algorithm to mass conservation in GRAPES_GFS. J Appl Meteor Sci, 2016, 27(6): 666-675. doi: 10.11898/1001-7313.20160603 [46] Diamantakis M. The Semi-Lagrangian Technique in Atmospheric Modeling: Current Status and Future Challenges. ECMWF Seminar in Numerical Methods for Atmosphere and Ocean Modeling, 2013. [47] Bénard P. Stability of semi-implicit and iterative centered-implicit time discretizations for various equation systems used in NWP. Mon Wea Rev, 2003, 131(10): 2479-2491. [48] Wood N, Staniforth A, White A, et al. An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Quart J Roy Meteor Soc, 2014, 140(682): 1505-1520. [49] Stiefel E L. Kernel Polynomials in Linear Algebra and Their Numerical Applications. Four Lectures on Sloving Linear Equations and Determining Eigenvalues, 1958. [50] Gutknecht M H, Rollin S. The Chebyshev iteration revisited. Parallel Computing, 2002, 28(2): 263-283. [51] Bermejo R, Staniforth A. The conversion of the semi-Lagrangian advection schemes to quasi-monotone schemes. Mon Wea Rev, 1992, 120(11): 2622-2632.