The Extreme Hot Event Along the Yangtze Basins in August 2022
-
摘要: 2022年夏季长江流域经历了罕见的高温酷暑天气。2022年8月高温区几乎覆盖整个长江流域,形成全流域型高温,并持续近1个月。持续高温与西北太平洋副热带高压(简称副高)的异常活动关系密切。8月副高西伸且稳定,其西端脊点到达90°E,比常年偏西近40个经度,控制了几乎整个长江流域,引起罕见的持续高温。导致副高稳定西伸的重要原因如下:热带环流的异常从南面支持副高的维持;8月西太平洋至南海地区赤道辐合带持续偏强,对流明显偏强;南海地区出现明显增强的Hadley环流,支持115°E以西副高的维持。此外,西风带环流的异常分布有利于副高西伸;欧亚地区500 hPa位势高度场上维持两脊一槽的形势,鄂霍次克海高压脊几乎与副高打通,形成稳定的高压坝;乌拉尔地区的高压脊不断向东南方向输送Rossby波能量,也对副高西段的维持和加强起重要作用。Abstract: Great part of China experiences hot spells in summer of 2022. In August, an extensive and intensive heat wave occurred along the Yangtze Basins, which persists nearly a month, causing serious damage and the worst summer drought, which is the second only to 2011. The persistent hot spell tends to be closely related with the anomalous activity of the Western Pacific subtropical high (WPSH). To better understand the causes, observations and reanalysis data are used to study the mechanism of anomalous activities of WPSH, the influence of tropical circulation, and the westerly long-wave trough ridge on WPSH.During summer of 2022, anomalous activity is observed in both the continental subtropical high and WPSH. In mid-late July, WPSH shifted to the west, and the continental subtropical high over the Iranian Plateau expanded to the east, resulting in the formation of a high-pressure belt and heat wave in the middle and the lower reaches of the Yangtze. In August, the continental subtropical weakens, and WPSH extended westward to 90°E, 40 longitudinal degrees to the west of its climatic position, which plays an important role in the persistent heat wave.The steady westward march of WPSH is discussed based on the investigation of both the anomalies of tropical circulation and systems in the westerlies. In August, the intertropical convergence zone over the region from the Western Pacific to South China Sea is intensified, associated with vigorous convection, and three typhoons or tropical cyclones. The remarkable local Hadley circulation appeared over the South China Sea, which supported the maintenance of WPSH to the west of 115°E.The flow pattern in the westerly zone also shows some particular features. From mean geopotential height field at 500 hPa for the hot spell, a pattern of "two ridges with a trough in between" maintains over the Eurasian region. The Okhotsk ridge in the east almost merges with WPSH into a stable high pressure dam. The Rossby wave activity indicates the ridge over the Ural area in the west consistently conveying energy southeastward, which also plays an important role in the strengthening and maintenance of the subtropical high.
-
Key words:
- hot spell;
- the subtropical high;
- tropical convection;
- the westerly system
-
图 1 2022年夏季中国日平均气温标准化距平和降水距平百分率
(黑色方框从左至右分别表示川渝地区、长江中游和下游地区的范围)
Fig. 1 Spatial distribution of normalized daily mean temperature anomalies and precipitation anomaly percentage in China in summer of 2022
(black boxes from left to right denote the Sichuan-Chongqing Area, the middle and the lower reaches of the Yangtze, respectively)
图 2 2022年6月1日—8月31日长江流域、川渝地区、长江中游和长江下游地区日最高气温不低于35℃和40℃的站数占区域内总站数百分比(阴影表示高温时段)
Fig. 2 Percentage of stations with daily maximum temperature equal to or greater than 35℃ and 40℃ in total stations in the Yangtze Basins, Sichuan-Chongqing Area, the lower and the middle reaches of the Yangtze from 1 Jun to 31 Aug in 2022 (the shaded denotes hot spell)
图 3 2022年7月9—31日和8月1—25日平均500 hPa高度场(实线,单位:gpm) 及其距平(阴影) (粗实线为2022年5880 gpm线,粗虚线为同期气候平均5880 gpm线)
Fig. 3 Mean geopotential height (the solid line,unit:gpm) and anomalies (the shaded) at 500 hPa from 9 Jul to 31 Jul and from 1 Aug to 25 Aug in 2022 (thick solid and dashed lines denote 5880 gpm isoline in 2022 and its climatology during the same period, respectively)
图 4 2022年7月1日—8月31日25°~35°N平均5880 gpm线的时间-经度剖面(实线)
(虚线为同期气候平均,阴影表示位势高度大于5880 gpm,点线表示副高西伸)
Fig. 4 Time-longitude section of 5880 gpm isolines averaged along 25°-35°N from 1 Jul to 31 Aug in 2022 (solid lines)
(dashed lines denote climatology, the shaded denotes geopotential height greater than 5880 gpm, dotted lines denote westward extension of the subtropical high over the Western Pacific)
图 5 2022年8月1—25日平均的OLR异常(实线为200 W·m-2等值线,虚线为气候平均200 W·m-2;黑色方框表示南海对流关键区) (a),2022年7月30日—8月31日南海对流关键区的OLR (实线) 及同期气候平均(虚线) 逐日变化(竖实线表示高温时段,竖点线为副高西伸) (b)
Fig. 5 OLR anomalies from 1 Aug to 25 Aug in 2022 (solid and dashed lines denote 200 W·m-2 in 2022 and the climatology;the black box denotes the key region of the convection over the South China Sea) (a),time series of the mean OLR in the key region of the South China Sea from 25 Jul to 31 Aug in 2022 (the solid line) and its climatology (the dashed line)(vertical solid lines denote the hot spell, dotted lines denote westward extension of the subtropical high over the Western Pacific) (b)
图 6 2022年7月30日—8月31日108°~130°E平均850 hPa经向风异常的时间-纬度剖面(单位:m·s-1)
(粗线为零线, 黑色竖线表示8月1—25日高温时段)
Fig. 6 Time-latitude section of meridional wind anomalies at 850 hPa along 108°-130°E from 30 Jul to 31 Aug in 2022 (unit:m·s-1)
(the thick line denotes the zero line, the vertical line denotes the hot spell during 1-25 Aug 2022)
图 7 2022年7月30日—8月31日7.5°~21°N平均的850 hPa和200 hPa散度异常的时间-经度剖面
(黑线为零线,横线表示8月1—25日高温时段)
Fig. 7 Time-longitude section of divergence anomalies at 850 hPa and 200 hPa along 7.5°-21°N from 30 Jul to 31 Aug in 2022
(the black line denotes the zero line,the horizontal line denotes the hot spell during 1-25 Aug 2022)
图 8 2022年8月1—25日平均垂直环流距平(单位:经向风为m·s-1,垂直速度为102 Pa·s-1;灰色阴影表示垂直速度异常,黑色阴影为地形) (a)108°~130°E,(b)110°E
Fig. 8 Vertical profile of mean anomalous meridional circulation along 108°-130°E(a) and 110°E(b) during 1-25 Aug 2022 (unit:m·s-1 for meridional wind, 102 Pa·s-1 for vertical velocity; the gray shaded denotes the anomalous vertical velocity, the black shaded denotes the topography)
-
[1] 林昕, 管兆勇.中国华东地区夏季髙温的时空特征和年际变化.南京气象学院学报,2008,31(1):1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200801001.htmLin X, Guan Z Y. Temporal spatial characters and interannual variations of summer high temperature in East China. Journal of Nanjing Institute of Meteorology, 2008, 31(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200801001.htm [2] 张勇, 曹丽娟, 许吟隆, 等. 未来我国极端温度事件变化情景分析. 应用气象学报, 2008, 19(6): 655-660. http://qikan.camscma.cn/article/id/20080603Zhang Y, Cao L J, Xu Y L, et al. Scenario analyses on future changes of extreme temperature events over China. J Appl Meteor Sci, 2008, 19(6): 655-660. http://qikan.camscma.cn/article/id/20080603 [3] 孙建奇, 王会军, 袁薇. 我国极端髙温事件的年代际变化及其与大气环流的联系. 气候与环境研究, 2011, 16(2): 199-208. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201102010.htmSun J Q, Wang H J, Yuan W. Decadal variability of the extreme hot event in China and its association with atmospheric circulations. Climatic Environ Res, 2011, 16(2): 199-208. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201102010.htm [4] 林爱兰, 谷德军, 彭冬冬, 等. 近60年我国东部区域性持续髙温过程变化特征. 应用气象学报, 2021, 32(3): 302-314. doi: 10.11898/1001-7313.20210304Lin A L, Gu D J, Peng D D, et al. Climatic characteristics of regional persistent heat event in the eastern China during recent 60 years. J Appl Meteor Sci, 2021, 32(3): 302-314. doi: 10.11898/1001-7313.20210304 [5] 郑艳姣, 杨再强, 王琳, 等. 中国南方设施番茄髙温热害风险区划. 应用气象学报, 2021, 32(4): 432-442. doi: 10.11898/1001-7313.20210405Zheng Y J, Yang Z Q, Wang L, et al. Refined risk zoning of high temperature and heat damage to greenhouse tomato in southern China. J Appl Meteor Sci, 2021, 32(4): 432-442. doi: 10.11898/1001-7313.20210405 [6] 李化龙, 王景红, 张维敏, 等. 髙温胁迫对猕猴桃叶片叶绿素荧光特性的影响. 应用气象学报, 2021, 32(4): 468-478. doi: 10.11898/1001-7313.20210408Li H L, Wang J H, Zhang W M, et al. Effects of high temperature stress on leaf chlorophyll fluorescence characteristics of kmilruit. J Appl Meteor Sci, 2021, 32(4): 468-478. doi: 10.11898/1001-7313.20210408 [7] 霍治国, 张海燕, 李春晖, 等. 中国玉米髙温热害研究进展. 应用气象学报, 2023, 34(1): 1-14. doi: 10.11898/1001-7313.20230101Huo Z G, Zhang H Y, Li C H, et al. Review on high temperature heat damage of maize in China. J Appl Meteor Sci, 2023, 34(1): 1-14. doi: 10.11898/1001-7313.20230101 [8] 彭京备, 张庆云, 布和朝鲁. 2006年川渝地区高温干旱特征及其成因分析. 气候与环境研究, 2007, 12(3): 464-474. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200703025.htmPeng J, Zhang Q Y, Bueh C. On the characteristics and possible causes of a severe drought and heat wave in the Sichuan-Chongqing Region in 2006. Climatic Environ Res, 2007, 12(3): 464-474. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200703025.htm [9] 侯威, 陈峪, 李莹, 等. 2013年中国气候概况. 气象, 2014, 40(4): 482-493. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202004009.htmHou W, Chen Y, Li Y, et al. Climatic characteristics over China in 2013. Meteor Mon, 2014, 40(4): 482-493. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202004009.htm [10] 周冠博, 高拴柱. 2019年8月大气环流和天气分析. 气象, 2019, 45(11): 1621-1628. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202111011.htmZhou G B, Gao S Z. Analysis of the August 2019 atmospheric circulation and weather. Meteor Mon, 2019, 45(11): 1621-1628. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202111011.htm [11] Lu R Y, Xu K, Chen R D, et al. Heat waves in summer 2022 and increasing concern regarding heat waves in general. Atmos Oceanic Sci Lett, 2022, 16(1). DOI: 10.1016/j.aosl.2022.100290. [12] 孙博, 王会军, 黄艳艳, 等. 2022年夏季中国高温干旱气候特征及成因探讨. 大气科学学报, 2023, 46(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202301001.htmSun B, Wang H J, Huang Y Y, et al. Characteristics and causes of the hot-dry climate anomalies in China during summer of 2022. Trans Atmos Sci, 2023, 46(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202301001.htm [13] 齐道日娜, 何立富. 2022年我国夏季极端高温阶段性特征及成因. 应用气象学报, 2023, 34(4): 385-399. doi: 10.11898/1001-7313.20230401Chyi D, He L F. Stage characteristics and mechanisms of extreme high temperature in China in summer of 2022. J Appl Meteor Sci, 2023, 34(4): 385-399. doi: 10.11898/1001-7313.20230401 [14] 梅梅, 高歌, 李莹, 等. 1961~2022年长江流域高温干旱复合极端事件变化特征. 人民长江, 2023, 54(2): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202302003.htmMei M, Gao G, Li Y, et al. Change characteristics in compound high temperature and drought extreme events over Yangtze River Basin from 1961 to 2022. Yangtze River, 2023, 54(2): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202302003.htm [15] 邹旭恺, 高荣, 陈鲜艳, 等. 2022年长江流域夏伏旱监测评估. 中国防汛抗旱, 2022, 32(10): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-FHKH202210003.htmZou X K, Gao R, Chen X Y, et al. Monitoring and assessment of summer drought in the Yangtze River Basin in 2022. China Flood & Drought Management, 2022, 32(10): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-FHKH202210003.htm [16] 王文, 许金萍, 蔡晓军, 等. 2013年夏季长江中下游地区高温干旱的大气环流特征及成因分析. 高原气象, 2017, 36(6) : 1595-1607. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201706014.htmWang W, Xu J P, Cai X J, et al. Analysis of atmospheric circulation characteristics and mechanism of heat wave and drought in summer of 2013 over the middle and lower reaches of Yangtze River Basin. Plateau Meteor, 2017, 36(6): 1595-1607. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201706014.htm [17] 高琦, 徐明. 2019年长江中下游伏秋连旱的异常特征分析. 气象与环境学报, 2021, 37(4): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX202104013.htmGao Q, Xu M. Abnormal characteristics of continuous drought in summer and autumn in the middle and lower reaches of the Yangtze River in 2019. J Meteor Environ, 2021, 37(4): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX202104013.htm [18] 王皘, 董林. 2022年8月大气环流和天气分析. 气象, 2022, 48(11): 1487-1496. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202211011.htmWang Q, Dong L. Analysis of the August 2022 atmospheric circulation and weather. Meteor Mon, 2022, 48(11): 1487-1496. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202211011.htm [19] 黄士松, 汤明敏. 我国南方初夏汛期和东亚夏季风环流. 热带气象学报, 1995, 11(3): 203-213. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX199503001.htmHuang S S, Tang M M. The early summer flood periods of southern China and the summer monsoon circulation of East Asia. J Appl Meteor Sci, 1995, 11(3): 203-213. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX199503001.htm [20] 陶诗言, 徐淑英. 夏季江淮流域持久性旱涝现象的环流特征. 气象学报, 1962, 32(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB196201000.htmTao S Y, Xu S Y. Some aspects of the circulation during the periods of the persistent drought and flood in Yangtze and Hwai-Ho Valleys in summer. Acta Meteor Sinica, 1962, 32(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB196201000.htm [21] 张恒德, 金荣花, 张友姝. 夏季北极涡与副热带高压的联系及对华北降水的影响. 热带气象学报, 2008, 24(4): 417-422. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200804018.htmZhang H D, Jin R H, Zhang Y S. Relationships between summer northern polar vortex with subtropical high and their influence on precipitation in North China. J Appl Meteor Sci, 2008, 24(4): 417-422. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200804018.htm [22] 黄士松. 有关副热带高压活动及其预报问题的研究. 大气科学, 1978, 2(2): 159-168. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK197802008.htmHuang S S. Some aspects of the studies on the activities of the subtropical high and its predictions. Chinese J Atmos Sci, 1978, 2(2): 159-168. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK197802008.htm [23] 陶诗言, 张庆云, 张顺利. 夏季北太平洋副热带高压系统的活动. 气象学报, 2001, 59(6): 747-758. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200106010.htmTao S Y, Zhang Q Y, Zhang S L. An observational study on the behavior of the subtropical high over the West Pacific in summer. Acta Meteor Sinica, 2001, 59(6): 747-758. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200106010.htm [24] 张庆云, 陶诗言. 夏季西太平洋副热带高压异常时的东亚大气环流特征. 大气科学, 2003, 27(3): 369-380. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200303006.htmZhang Q Y, Tao S Y. The Anomalous subtropical anticyclone in Western Pacific and their association with circulation over East Asia during summer. Chinese J Atmos Sci, 2003, 27(3): 369-380. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200303006.htm [25] 任荣彩, 刘屹珉, 吴国雄. 中高纬环流对1998年7月西太平洋副热带高压短期变化的影响机制. 大气科学, 2004, 28(4): 571-578. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200404008.htmRen R C, Liu Y M, Wu G X. On the Short-term variation of subtropical anticyclone over the Western Pacific affected by the mid-high latitudes circulation in July 1998. Chinese J Atmos Sci, 2004, 28(4): 571-578. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200404008.htm [26] 陶诗言, 卫捷. 再论夏季西太平洋副热带高压的西伸北跳. 应用气象学报, 2006, 17(5): 513-525. http://qikan.camscma.cn/article/id/20060591Tao S Y, Wei J. The westward, northward advance of the subtropical high over the West Pacific in summer. J Appl Meteor Sci, 2006, 17(5): 513-525. http://qikan.camscma.cn/article/id/20060591 [27] 李峰, 林建, 何立富. 西风带系统的异常活动对2003年淮河暴雨的作用机制研究. 应用气象学报, 2006, 17(3): 303-309. http://qikan.camscma.cn/article/id/20060354Li F, Lin J, He L F. The abnormal activity of the westerlies system and its impacts on 2003 summer heavy rainfall over Huaihe Basins. J Appl Meteor Sci, 2006, 17(3): 303-309. http://qikan.camscma.cn/article/id/20060354 [28] 董晓峣, 武炳义. 江淮地区夏季高温事件与北极冷异常的动力联系. 应用气象学报, 2019, 30(4): 431-442. doi: 10.11898/1001-7313.20190404Dong X Y, Wu B Y. Dynamic linkages between heatwave events in Jianghuai Region and Arctic summer cold anomaly. J Appl Meteor Sci, 2019, 30(4): 431-442. doi: 10.11898/1001-7313.20190404 [29] 王建德, 唐东升. 夏季南海对流活动对北半球中低纬大气环流的影响及其可能途径. 热带气象学报, 1994, 10(1): 78-84. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX401.009.htmWang J D, Tang D S. The influence of convective activities over South China Sea on the NH mid-low latitude atmosphere and its possible mechanism. J Trop Meteor, 1994, 10(1): 78-84. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX401.009.htm [30] 张庆云, 陶诗言. 夏季西太平洋副热带高压北跳及异常的研究. 气象学报, 1999, 57(5): 539-548. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX200605000.htmZhang Q Y, Tao S Y. The study of the sudden northward jump of the subtropical high over the Western Pacific. Acta Meteor Sinica, 1999, 57(5): 539-548. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX200605000.htm [31] Ding Y H. The variability of the Asian summer monsoon. J Meteor Soc Japan, 2007, 85B: 21-54. [32] 杨修群, 黄士松. 马斯克林高压的强度变化对大气环流影响的数值试验. 气象科学, 1989, 9(2): 125-138. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX198902000.htmYang X Q, Huang S S. The influence of intensity change of Mascarene high on the general circulation of atmosphere-a numerical experiment. Scientia Meteor Sinica, 1989, 9(2): 125-138. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX198902000.htm [33] 薛峰, 何卷雄. 南半球环流变化对西太平洋副高东西振荡的影响. 科学通报, 2005, 50(15): 1660-1662. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200515019.htmXue F, He J X. Influence of the southern hemispheric circulation on East-West oscillation of the Western Pacific subtropical high. Chinese Sci Bull, 2005, 50(15): 1660-1662. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200515019.htm [34] 薛峰. 南半球环流变化对东亚夏季风的影响. 气候与环境研究, 2005, 10(3): 401-408. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200503012.htmXu F. Influence of the southern circulation on East Asian summer monsoon. Climatic Environ Res, 2005, 10(3): 401-408. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200503012.htm [35] 彭京备, 刘舸, 孙淑清. 2013年我国南方持续性高温天气及副热带高压异常维持的成因分析. 大气科学, 2016, 40(5): 897-906. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201605002.htmPeng J B, Liu G, Sun S Q. An analysis on the formation of the heat wave in southern China and its relation to the anomalous Western Pacific subtropical high in the summer of 2013. Chinese J Atmos Sci, 2016, 40(5): 897-906. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201605002.htm [36] Hersbach H, Bell B, Berrisford P, et al. ERA5 Hourly Data on Pressure Levels From 1959 to Present. Copernicus Climate Change Service(C3S) Climate Data Store(CDS). 2018. DOI: 10.24381/cds.bd0915c6. [37] Hersbach H, Bell B, Berrisford P, et al. ERA5 Hourly Data on Single Levels From 1959 to Present. Copernicus Climate Change Service(C3S) Climate Data Store(CDS). 2018. DOI: 10.24381/cds.adbb2d47. [38] Takaya K, Nakamura H. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J Atmos Sci, 2001, 58(6): 608-627. [39] 施宁, 布和朝鲁, 纪立人, 等. 2008年初我国南方雨雪低温天气的中期过程分析Ⅱ: 西太平洋副热带高压的特征. 气候与环境研究, 2008, 13(4): 434-445. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200804008.htmShi N, Bueh C, Ji L R et al. On the medium range process of the rainy, snowy and cold weather of south China in early 2008. Part Ⅱ: Characteristics of the Western Pacific subtropical high. Climatic Environ Res, 2008, 13(4): 434-445. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200804008.htm [40] 徐成鹏, 于超. 2022年7月大气环流和天气分析. 气象, 2022, 48(10): 1354-1360. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202210008.htmXu C P, Yu C. Analysis of the July 2022 atmospheric circulation and weather. Meteor Mon, 2022, 48(10): 1354-1360. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202210008.htm [41] 李莹, 叶殿秀, 高歌, 等. 2022年夏季中国气候特征及主要天气气候事件. 大气科学学报, 2023, 46(1): 110-118. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202301010.htmLi Y, Ye D X, Gao G, et al. Climate characteristics and major meteorological events in China during the summer of 2022. Trans Atmos Sci, 2023, 46(1): 110-118. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202301010.htm [42] 程炳岩, 孙卫国, 郭渠. 重庆地区夏季高温的气候特征与环流形势分析. 西南大学学报(自然科学版), 2010, 32(1): 73-80. https://www.cnki.com.cn/Article/CJFDTOTAL-XNND201001017.htmCheng B Y, Sun W G, Guo Q. Analyses of climatological features of the summer high temperature and circulation situation in Chongqing. Journal of Southwest University(Natural Science Edition), 2010, 32(1): 73-80. https://www.cnki.com.cn/Article/CJFDTOTAL-XNND201001017.htm [43] 张天宇, 程炳岩, 刘晓冉, 等. 重庆极端高温的变化特征及其对区域性增暖的响应. 气象, 2008, 34(6): 69-76. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200802011.htmZhang T Y, Cheng B Y, Liu X R, et al. Variability of extreme high temperature and response to regional warming over Chongqing. Meteor Mon, 2008, 34(6): 69-76. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200802011.htm [44] 邹旭恺, 高辉. 2006年夏季川渝高温干旱分析. 气候变化研究进展, 2007, 3(3): 149-153. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH200703006.htmZou X K, Gao H. Analysis of severe drought and heat wave over the Sichuan Basin in the summer of 2006. Adv Climate Change Res, 2007, 3(3): 149-153. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH200703006.htm