Warm Cloud Size Distribution Experiment Based on 70 m3 Expansion Cloud Chamber
-
摘要: 为开展云降水微物理过程机理和机制室内试验研究,设计建造北京气溶胶与云相互作用云室(Beijing aerosol and cloud interaction chamber,BACIC),搭建完整的气溶胶、云滴谱及常规气象要素测量系统,并于2019—2021年开展暖云试验。结果表明:BACIC能够模拟大气绝热膨胀成云过程,结果符合云微物理基本原理,云雾环境维持时间为5~10 min,达到开展相关科学问题研究的基本要求。利用环境气溶胶开展膨胀试验,测量显示气溶胶数浓度为10000 cm-3和2500 cm-3环境下,成云云滴数浓度分别为2500 cm-3和200~400 cm-3,云滴平均直径分别为8 μm和15~25 μm;上升速度为14.3 m·s-1和2.09 m·s-1时,气溶胶成云活化率分别为42%和17%;气溶胶成云活化率的敏感区域位于气溶胶数浓度小于5000 cm-3的区域;可定量化分析上升速度、气溶胶数浓度与云滴谱特征的相关关系。不同吸湿特性材料的暖云膨胀试验显示:污染背景下开展亚微米级别吸湿性催化剂播撒会导致云滴谱变窄,表明人工消减暖云或雾应采用大粒径催化剂。Abstract: To better understand the influence of aerosols on micro-properties of clouds and to facilitate weather modification experiments including the analysis of various materials' seeding effect on clouds and precipitation, Beijing Weather Modification Center has taken a decisive step forward by constructing an advanced facility known as Beijing aerosol and cloud interaction chamber (BACIC) in suburban Pinggu district. Boasting an impressive volume of 70 m3, BACIC is not only the largest of its kind in operation in China, but also a testament to the scale of the country's commitment to this sphere of atmospheric science. The enormity of the chamber's capacity facilitates the performance of a broad spectrum of investigations, thus enhancing the comprehensiveness and reliability of the results obtained.Inside BACIC, advanced instrumentation allows for the meticulous measurement and control of temperature, relative humidity, and background aerosol concentration. During 2019-2021, the chamber's capabilities extend further, as demonstrated by successful tests of its ability to create liquid and mixed-phase clouds. These attributes, combined with its capacity to control the cloud droplet size distribution as proved by comparative experiments involving changes in expansion rate and aerosol number concentration, solidify BACIC's standing as a prime location for warm cloud experimentation. The chamber has also been utilized to investigate effects of anthropogenic pollution over North China Plain (NCP) on cloud microphysics. Using ambient air and manipulating the expansion rate, a significant correlation is discovered between such pollution and the size distribution of cloud droplets. Interestingly, while an increase in aerosol leads to higher number of cloud droplets, it also causes a decrease in droplet size, typically within the range of 5-8 μm. Furthermore, an increase in aerosol number concentration leads to a decrease in the activation rate of aerosols into cloud droplets. This activation rate is around 10% for aerosol concentrations less than 5000 cm-3, and remains stable even when the aerosol concentration increases to 10000 cm-3.BACIC is also proved useful in conducting warm cloud expansion experiments involving different hygroscopic materials. It shows that the distribution of submicron (less than 1 μm) hygroscopic catalysts in a polluted environment leads to narrowing of the cloud droplet spectrum. It suggests that for the purpose of artificially reducing warm clouds or fog, it is recommended to use larger particle sizes. The results obtained from these diverse series of experiments have significantly contributed to theoretical knowledge and provide practical guidance for the ongoing development of artificial weather modification techniques.
-
表 1 成功运行云室列表
Table 1 List of successfully operated cloud chambers
表 2 BACIC性能指标
Table 2 Performance indices of BACIC
指标 参数 形状 圆柱形 材料 316L型不锈钢 体积 70 m3 表面积 118.4 m2 直径 2.6 m 高度 14 m 温度范围 -45℃至室温 压力范围 1 hPa~常压 成云方式 膨胀成云 洁净度 小于10 cm-3 表 3 减压速度和对应上升速度
Table 3 Simulated rising speed corresponding to depressurization rates
减压速度/(hPa·min-1) 上升速度/(m·s-1) 84 14.30 54 9.13 36 6.28 12 2.09 -
[1] 郭学良, 付丹红, 郭欣, 等.我国云降水物理飞机观测研究进展.应用气象学报, 2021, 32(6):641-652. doi: 10.11898/1001-7313.20210601Guo X L, Fu D H, Guo X, et al. Advances in aircraft measurements of clouds and precipitation in China. J Appl Meteor Sci, 2021, 32(6): 641-652. doi: 10.11898/1001-7313.20210601 [2] 王烁, 张佃国, 王文青, 等. 初冬一次层状云较弱云区垂直结构的飞机观测. 应用气象学报, 2021, 32(6): 677-690. doi: 10.11898/1001-7313.20210604Wang S, Zhang D G, Wang W Q, et al. Aircraft measurement of the vertical structure of a weak stratiform cloud in early winter. J Appl Meteor Sci, 2021, 32(6): 677-690. doi: 10.11898/1001-7313.20210604 [3] 刘春文, 郭学良, 段玮, 等. 云南省积层混合云微物理特征飞机观测. 应用气象学报, 2022, 33(2): 142-154. doi: 10.11898/1001-7313.20220202Liu C W, Guo X L, Duan W, et al. Observation and analysis of microphysical characteristics of stratiform clouds with embedded convections in Yunnan. J Appl Meteor Sci, 2022, 33(2): 142-154. doi: 10.11898/1001-7313.20220202 [4] 张荣, 李宏宇, 周旭, 等. DMT机载云粒子图像形状识别及其应用. 应用气象学报, 2021, 32(6): 735-747. doi: 10.11898/1001-7313.20210608Zhang R, Li H Y, Zhou X, et al. Shape recognition of DMT airborne cloud particle images and its application. J Appl Meteor Sci, 2021, 32(6): 735-747. doi: 10.11898/1001-7313.20210608 [5] Twomey S. The influence of pollution on the shortwave albedo of clouds. J Atmos Sci, 1977, 34: 1149-1152. doi: 10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2 [6] 顾震潮, 陈炎涓, 徐乃璋, 等. 南岳云雾降水物理观测(1960年3—8月)结果的初步分析//我国云雾降水徽物理特征问题. 北京: 科学出版社, 1962: 2-21.Koo C C, Chen Y J, Xu N Z, et al. Preliminary Analysis of the Physical Observations of Cloud, Fog and Precipitation in Hengshan Mountain from March to August in 1960)//Physical Characteristics of Cloud, Fog and Precipitation in China. Beijing: Science Press, 1962: 2-21. [7] 詹丽珊. 南岳大云滴观测资料(1960年10月—1961年5月)初步总结//我国云雾降水微物理特征问题. 北京: 科学出版社, 1962: 47-50.Zhan L S. The Summarize of the Observation of Big Size Cloud Droplets at Hengshan Mountain from October to May in 1961//The Characteristic of Cloud and Precipitation of China. Beijing: Science Press, 1962: 47-50. [8] 詹丽珊, 陈万奎, 黄美元. 南岳和泰山云中徽结构起伏资料的初步分析//我国云雾降水微物理特征问题. 北京: 科学出版社, 1962: 30-40.Zhan L S, Chen W K, Huang M Y. The Preliminary Analysis of the Observation of Fluctuation of Cloud Size Distribution at Hengshan and Taishan Mountain//The Characteristic of Cloud and Precipitation of China. Beijing: Science Press, 1962: 30-40. [9] 顾震潮. 论近年来云雾滴谱形成理论的研究. 气象学报, 1962, 32(2): 267-284. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB196204000.htmKoo C C. Recent investigations in the theory of the formation of the cloud-drop spectra. Acta Meteor Sinica, 1962, 32(4): 267-284. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB196204000.htm [10] 周秀骥. 暖云降水徽物理机制的统计理论. 气象学报, 1963, 33(1): 98-107. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB196301007.htmZhou X J. The statistical theory of the precipitation of warm cloud. Acta Meteor Sinica, 1963, 33(1): 98-107. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB196301007.htm [11] 王泽林, 周旭, 吴俊辉, 等. 一次飞机严重积冰的天气条件和云微物理特征. 应用气象学报, 2022, 33(5): 555-567. doi: 10.11898/1001-7313.20220504Wang Z L, Zhou X, Wu J H, et al. Weather conditions and cloud microphysical characteristics of an aircraft severe icing process. J Appl Meteor Sci, 2022, 33(5): 555-567. doi: 10.11898/1001-7313.20220504 [12] 程鹏, 罗汉, 常祎, 等. 祁连山一次地形云降水微物理特征飞机观测. 应用气象学报, 2021, 32(6): 691-705. doi: 10.11898/1001-7313.20210605Cheng P, Luo H, Chang Y, et al. Aircraft measurement of microphysical characteristics of a topographic cloud precipitation in Qilian Mountains. J Appl Meteor Sci, 2021, 32(6): 691-705. doi: 10.11898/1001-7313.20210605 [13] 常祎, 郭学良, 唐洁, 等. 青藏高原夏季对流云微物理特征和降水形成机制. 应用气象学报, 2021, 32(6): 720-734. doi: 10.11898/1001-7313.20210607Chang Y, Guo X L, Tang J, et al. Microphysical characteristics and precipitation formation mechanisms of convective clouds over the Tibetan Plateau. J Appl Meteor Sci, 2021, 32(6): 720-734. doi: 10.11898/1001-7313.20210607 [14] 曾正茂, 郑佳锋, 杨晖, 等. Ka波段云雷达非云回波质量控制及效果评估. 应用气象学报, 2021, 32(3): 347-357. doi: 10.11898/1001-7313.20210307Zeng Z M, Zheng J F, Yang H, et al. Quality control and evaluation on non-cloud echo of Ka-band cloud radar. J Appl Meteor Sci, 2021, 32(3): 653-664. doi: 10.11898/1001-7313.20210307 [15] 郭学良. 大气物理与人工影响天气. 北京: 气象出版社, 2010.Guo X L. Atmospheric Physics and Weather Modification. Beijing: China Meteorological Press, 2010. [16] 毛节泰, 郑国光. 对人工影响天气若干问题的探讨. 应用气象学报, 2006, 17(5): 643-646. doi: 10.3969/j.issn.1001-7313.2006.05.015Mao J T, Zheng G G. Discussions on some weather modification issues. J Appl Meteor Sci, 2006, 17(5): 643-646. doi: 10.3969/j.issn.1001-7313.2006.05.015 [17] 张纪淮. 中型云室技术特点摘要. 气象科学研究院院刊, 1986, 1(2): 221-224.Zhang J H. Summary of medium cloud chamber technical features. J Appl Meteor Sci, 1986, 1(2): 221-224. [18] 酆大雄, 王云卿, 陈汝珍, 等. 一个用于人工冰核研究的2 m3等温云室. 气象学报, 1990, 48(1): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199001008.htmFeng D X, Wang Y Q, Chen R Z, et al. A 2 m3 isothermal cloud chamber for the study of artificial ice nuclei. Acta Meteor Sinica, 1990, 48(1): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199001008.htm [19] 高茜, 刘全, 毕凯, 等. 基于航测的云底气溶胶活化率与过饱和度估算. 应用气象学报, 2021, 32(6): 653-664. doi: 10.11898/1001-7313.20210602Gao Q, Liu Q, Bi K, et al. Estimation of aerosol activation ratio and water vapor supersaturation at cloud base using aircraft measurement. J Appl Meteor Sci, 2021, 32(6): 653-664. doi: 10.11898/1001-7313.20210602 [20] 杨绍忠, 楼小风, 黄庚, 等. 一个观测冰核的15 L混合云室. 应用气象学报, 2007, 18(5): 716-721. http://qikan.camscma.cn/article/id/200705108Yang S Z, Lou X F, Huang G, et al. A 15 L mixing cloud chamber for testing ice nuclei. J Appl Meteor Sci, 2007, 18(5): 716-721. http://qikan.camscma.cn/article/id/200705108 [21] 苏正军, 郑国光, 关立友, 等. 一个用于催化剂成冰性能检测的新型等温云室. 高原气象, 2009, 28(4): 827-835. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200904014.htmSu Z J, Zheng G G, Guan L Y, et al. A New 1 m3 isothermal cloud chamber for the study of artificial ice nuclei. Plateau Meteor, 2009, 28(4): 827-835. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200904014.htm [22] 酆大雄, 陈汝珍, 蒋耿旺, 等. 三种含AgI的气溶胶在水面欠饱和条件下成冰性能的实验研究. 应用气象学报, 1990, 1(1): 57-62. http://qikan.camscma.cn/article/id/19900110Feng D X, Chen R Z, Jiang G W, et al. A laboratory study on the nucleating properties of three agi-type aerosols under water sub-saturation. J Appl Meteor Sci, 1990, 1(1): 57-62. http://qikan.camscma.cn/article/id/19900110 [23] 陈汝珍, 酆大雄, 蒋耿旺, 等. 爆炸对云滴谱碰并增长的实验研究. 应用气象学报, 1992, 3(4): 410-417. http://qikan.camscma.cn/article/id/19920468Chen R Z, Feng D X, Jiang G W, et al. A laboratory study of explosion effects on cloud droplets coalescence. J Appl Meteor Sci, 1992, 3(4): 410-417. http://qikan.camscma.cn/article/id/19920468 [24] 姚展予. 中国气象科学研究院人工影响天气研究进展回顾. 应用气象学报, 2006, 17(6): 786-795. http://qikan.camscma.cn/article/id/200606127Yao Z Y. Review of weather modification research in Chinese Academy of Meteorological Sciences. J Appl Meteor Sci, 2006, 17(6): 786-795. http://qikan.camscma.cn/article/id/200606127 [25] Köhler H. The nucleus in and the growth of hygroscopic droplets. Transactions of the Faraday Society, 1936, 32: 1152-1161. [26] Wex H, Stratmann F, Topping D, et al. The Kelvin versus the Raoult term in the Köhler equation. J Atmos Sci, 2008, 65: 4004-4015. [27] Davidovits P, Kolb C E, Williams L R, et al. Mass accommodation and chemical reactions at gas-liquid interfaces. Chem Rev, 2006, 106(4): 1323-1354. [28] Chang K, Bench J, Brege M, et al. A laboratory facility to study gas-aerosol-cloud interactions in a turbulent environment: The π chamber. Bull Amer Meteor Soc, 2016, 97(12): 2343-2358. [29] Rogers D C. Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies. Atmos Res, 1988, 22: 149-181. [30] Bailey M, Hallett J. Nucleation effects on the habit of vapor grown ice crystals from -18° to -42℃. Quart J Roy Meteor Soc, 2002, 128: 1461-1483. [31] Saunders C P R, Hosseini A S. A laboratory study of the effect of velocity on Hallett-Mossop ice crystal multiplication. Atmos Res, 2001, 59: 3-14. [32] Raymond S, Durant A, Adam J, et al. Heterogeneous surface crystallization observed in undercooled water. J Phys Chem B, 2005, 109: 9865-9868. [33] Möhler O. Experimental investigation of homogeneous freezing of sulphuric acid particles in the aerosol chamber AIDA. Atmos Chem Phys, 2003, 3: 211-223. [34] Duplissy J. Results from the CERN pilot CLOUD experiment. Atmos Chem Phys, 2010, 10: 1635-1647. [35] Tajiri T, Yamashita K, Murakami M, et al. A novel adiabatic-expansion-type cloud simulation chamber. J Meteor Soc Japan, 2013, 91: 687-704. [36] Connolly P J, Emersic C, Field P R. A laboratory investigation into the aggregation efficiency of small ice crystals. Atmos Chem Phys, 2012, 12: 2055-2076. [37] DeMott P J, Rogers D C. Freezing nucleation rates of dilute solution droplets measured between -30℃ and -40℃ in laboratory simulations of natural clouds. J Atmos Sci, 1990, 47: 1056-1064. [38] Song N, Lamb D. Experimental investigations of ice in supercooled clouds. Part 1: System description and growth of ice by vapor deposition. J Atmos Sci, 1994, 51: 91-103. [39] Bigg E K. A new technic for counting ice-forming nuclei in aerosols. Tellus B, 1957, 394: 175-178. [40] 苏航, 银燕, 陆春松, 等. 新型扩散云室搭建及其对黄山地区大气冰核的观测研究. 大气科学, 2014, 8(2): 386-398. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201402016.htmSu H, Yin Y, Lu C S, et al. Development of new diffusion cloud chamber type and its observation study of ice nuclei in the Huangshan Area. Chinese J Atmos Sci, 2014, 8(2): 386-398. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201402016.htm [41] 杨绍中, 马培民, 游来光. 用滤膜法观测大气冰核的静力扩散云室. 气象学报, 1995, 53(2): 91-100. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB501.011.htmYang S Z, Ma P M, You L G. A static diffusion chamber for detecting atmospheric ice nuclei by using filter technique. Acta Meteor Sinica, 1995, 53(1): 91-100. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB501.011.htm [42] Mason B J. The Physics of Clouds(Second Edition). Oxford: Oxford University Press, 1957. [43] Nolan P J, Pollak L W. The calibration of a photoelectric nucleus counter. Proc R Ir Acad, 1946, A51: 9-34. [44] Warner J. An instrument for the measurement of freezing nucleus concentration. Bull Obs Puy de Dôme, 1957, 5: 33-43. [45] 苏正军, 郭学良, 诸葛杰, 等. 云雾物理膨胀云室研制及参数测试. 应用气象学报, 2019, 30(6): 722-730. doi: 10.11898/1001-7313.20190608Su Z J, Guo X L, Zhuge J, et al. Developing and testing of an expansion cloud chamber for cloud physics research. J Appl Meteor Sci, 2019, 30(6): 722-730. doi: 10.11898/1001-7313.20190608 [46] 盛裴轩, 毛节泰, 李建国, 等. 大气物理学. 北京: 北京大学出版社, 2013.Sheng P X, Mao J T, Li J G, et al. Atmospheric Physics. Beijing: Peking University Press, 2013. [47] Murphy D M, Koop T. Review of the vapor pressures of ice and supercooled water for atmospheric applications. Quart J Roy Meteror Soc, 2005, 131: 1539-1565. [48] Twomey S. Pollution and the planetary albedo. Atmos Environ, 1974, 8: 1251-1256. [49] Toll V, Christensen M, Quaas J, et al. Weak average liquid-cloud-water response to anthropogenic aerosols. Nature, 2019, 572: 51-55. [50] Lebsock M D, Stephens G L, Kummerow C. Multi-sensor satellite observations of aerosol effects on warm clouds. J Geophys Res, 2008, 113. DOI: 10.1029/2008JD009876. [51] Chen Y C, Christensen M W, Stephens G L, et al. Satellite-based estimate of global aerosol-cloud radiative forcing by marine warm clouds. Nature Geoscience, 2014, 7: 643-646. [52] 邓兆泽, 赵春生, 马楠, 等. 一种快速测量高粒径分辨率气溶胶活化率曲线的方法. 北京大学学报(自然科学版), 2012, 48(3): 386-392. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201203009.htmDeng Z Z, Zhao C S, Ma N, et al. A method for measuring aerosol activation ratios with high size resolution. Acta Scientiarum Naturalium Universitaties Peknensis, 2012, 48(3): 386-392. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201203009.htm [53] Deng Z Z, Zhao C S, Ma N, et al. An examination of parameterizations for the CCN number concentration based on in situ measurements of aerosol activation properties in the North China Plain. Atmos Chem Phys, 2013, 13: 6227-6237. [54] Dusek U, Frank G P, Hildebrandt L, et al. Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Nature, 2006, 312: 1375-1378.