留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于70 m3膨胀云室的暖云滴谱试验研究

李睿劼 黄梦宇 丁德平 田平 毕凯 杨帅 姚展予

李睿劼, 黄梦宇, 丁德平, 等. 基于70 m3膨胀云室的暖云滴谱试验研究. 应用气象学报, 2023, 34(5): 540-551. DOI:  10.11898/1001-7313.20230503..
引用本文: 李睿劼, 黄梦宇, 丁德平, 等. 基于70 m3膨胀云室的暖云滴谱试验研究. 应用气象学报, 2023, 34(5): 540-551. DOI:  10.11898/1001-7313.20230503.
Li Ruijie, Huang Mengyu, Ding Deping, et al. Warm cloud size distribution experiment based on 70 m3 expansion cloud chamber. J Appl Meteor Sci, 2023, 34(5): 540-551. DOI:  10.11898/1001-7313.20230503.
Citation: Li Ruijie, Huang Mengyu, Ding Deping, et al. Warm cloud size distribution experiment based on 70 m3 expansion cloud chamber. J Appl Meteor Sci, 2023, 34(5): 540-551. DOI:  10.11898/1001-7313.20230503.

基于70 m3膨胀云室的暖云滴谱试验研究

DOI: 10.11898/1001-7313.20230503
资助项目: 

国家自然科学基金面上项目 41975180

北京市科技计划课题 Z221100005222016

详细信息
    通信作者:

    黄梦宇, 邮箱:huangmy@bj.cma.gov.cn

Warm Cloud Size Distribution Experiment Based on 70 m3 Expansion Cloud Chamber

  • 摘要: 为开展云降水微物理过程机理和机制室内试验研究,设计建造北京气溶胶与云相互作用云室(Beijing aerosol and cloud interaction chamber,BACIC),搭建完整的气溶胶、云滴谱及常规气象要素测量系统,并于2019—2021年开展暖云试验。结果表明:BACIC能够模拟大气绝热膨胀成云过程,结果符合云微物理基本原理,云雾环境维持时间为5~10 min,达到开展相关科学问题研究的基本要求。利用环境气溶胶开展膨胀试验,测量显示气溶胶数浓度为10000 cm-3和2500 cm-3环境下,成云云滴数浓度分别为2500 cm-3和200~400 cm-3,云滴平均直径分别为8 μm和15~25 μm;上升速度为14.3 m·s-1和2.09 m·s-1时,气溶胶成云活化率分别为42%和17%;气溶胶成云活化率的敏感区域位于气溶胶数浓度小于5000 cm-3的区域;可定量化分析上升速度、气溶胶数浓度与云滴谱特征的相关关系。不同吸湿特性材料的暖云膨胀试验显示:污染背景下开展亚微米级别吸湿性催化剂播撒会导致云滴谱变窄,表明人工消减暖云或雾应采用大粒径催化剂。
  • 图  1  BACIC暖云膨胀成云过程中气压和温度(a)、云滴数浓度(b)及云滴谱(c)分布

    Fig. 1  Pressure and temperature(a), cloud droplet number concentration(b), and cloud droplet spectrum(c) of expansion warm cloud in BACIC

    图  2  不同上升速度的暖云滴谱特征

    (①~④分别对应14.3,9.13,6.28,2.09 m·s-1的上升速度)

    Fig. 2  Size distribution of warm cloud droplets for different rising speed

    (①-④ corresponding to rising speed of 14.3,9.13,6.28,2.09 m·s-1, respectively)

    图  3  不同气溶胶数浓度的暖云滴谱特征和液态水含量

    Fig. 3  Size distribution of warm cloud droplets and liquid water content for different aerosol number concentration

    图  4  云滴数浓度与气溶胶数浓度的关系

    Fig. 4  Relationship between cloud number concentration and aerosol number concentration

    图  5  气溶胶成云活化率与气溶胶数浓度的关系

    Fig. 5  Relationship between activation ratio and aerosol number concentration

    图  6  气溶胶成云活化率与上升速度的关系

    Fig. 6  Relationship between activation ratio and rising speed

    图  7  清洁和污染背景下不同吸湿性气溶胶的暖云云滴谱

    Fig. 7  Size distribution of warm cloud droplets under polluted and clean conditions

    图  8  BACIC绝热膨胀成云试验的温度变化

    Fig. 8  Air temperature variation of adiabatic expansion experiment in BACIC

    表  1  成功运行云室列表

    Table  1  List of successfully operated cloud chambers

    云室所属机构 类型 国别 运行情况 研究方向
    卡尔斯鲁厄理工学院[33] 膨胀云室 德国 1996年至今 沙尘冰核特性、同质核化、云辐射特性
    密歇根州立大学[28] 湍流混合云室 美国 2016年至今 湍流对云滴谱影响
    欧洲核子研究中心[34] 膨胀云室 瑞士 2006年至今 气溶胶新粒子生成及有机气溶胶作为冰核特性
    日本气象研究所[35] 动力云室 日本 2012年至今 云微物理测量
    曼彻斯特大学[36] 膨胀云室 英国 2009年至今 冰核核化和起电机制
    科罗拉多州立大学[37] 动力云室 美国 已停用 云微物理(冰核)
    宾州州立大学[38] 混合云室 美国 已停用 云化学
    下载: 导出CSV

    表  2  BACIC性能指标

    Table  2  Performance indices of BACIC

    指标 参数
    形状 圆柱形
    材料 316L型不锈钢
    体积 70 m3
    表面积 118.4 m2
    直径 2.6 m
    高度 14 m
    温度范围 -45℃至室温
    压力范围 1 hPa~常压
    成云方式 膨胀成云
    洁净度 小于10 cm-3
    下载: 导出CSV

    表  3  减压速度和对应上升速度

    Table  3  Simulated rising speed corresponding to depressurization rates

    减压速度/(hPa·min-1) 上升速度/(m·s-1)
    84 14.30
    54 9.13
    36 6.28
    12 2.09
    下载: 导出CSV
  • [1] 郭学良, 付丹红, 郭欣, 等.我国云降水物理飞机观测研究进展.应用气象学报, 2021, 32(6):641-652. doi:  10.11898/1001-7313.20210601

    Guo X L, Fu D H, Guo X, et al. Advances in aircraft measurements of clouds and precipitation in China. J Appl Meteor Sci, 2021, 32(6): 641-652. doi:  10.11898/1001-7313.20210601
    [2] 王烁, 张佃国, 王文青, 等. 初冬一次层状云较弱云区垂直结构的飞机观测. 应用气象学报, 2021, 32(6): 677-690. doi:  10.11898/1001-7313.20210604

    Wang S, Zhang D G, Wang W Q, et al. Aircraft measurement of the vertical structure of a weak stratiform cloud in early winter. J Appl Meteor Sci, 2021, 32(6): 677-690. doi:  10.11898/1001-7313.20210604
    [3] 刘春文, 郭学良, 段玮, 等. 云南省积层混合云微物理特征飞机观测. 应用气象学报, 2022, 33(2): 142-154. doi:  10.11898/1001-7313.20220202

    Liu C W, Guo X L, Duan W, et al. Observation and analysis of microphysical characteristics of stratiform clouds with embedded convections in Yunnan. J Appl Meteor Sci, 2022, 33(2): 142-154. doi:  10.11898/1001-7313.20220202
    [4] 张荣, 李宏宇, 周旭, 等. DMT机载云粒子图像形状识别及其应用. 应用气象学报, 2021, 32(6): 735-747. doi:  10.11898/1001-7313.20210608

    Zhang R, Li H Y, Zhou X, et al. Shape recognition of DMT airborne cloud particle images and its application. J Appl Meteor Sci, 2021, 32(6): 735-747. doi:  10.11898/1001-7313.20210608
    [5] Twomey S. The influence of pollution on the shortwave albedo of clouds. J Atmos Sci, 1977, 34: 1149-1152. doi:  10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
    [6] 顾震潮, 陈炎涓, 徐乃璋, 等. 南岳云雾降水物理观测(1960年3—8月)结果的初步分析//我国云雾降水徽物理特征问题. 北京: 科学出版社, 1962: 2-21.

    Koo C C, Chen Y J, Xu N Z, et al. Preliminary Analysis of the Physical Observations of Cloud, Fog and Precipitation in Hengshan Mountain from March to August in 1960)//Physical Characteristics of Cloud, Fog and Precipitation in China. Beijing: Science Press, 1962: 2-21.
    [7] 詹丽珊. 南岳大云滴观测资料(1960年10月—1961年5月)初步总结//我国云雾降水微物理特征问题. 北京: 科学出版社, 1962: 47-50.

    Zhan L S. The Summarize of the Observation of Big Size Cloud Droplets at Hengshan Mountain from October to May in 1961//The Characteristic of Cloud and Precipitation of China. Beijing: Science Press, 1962: 47-50.
    [8] 詹丽珊, 陈万奎, 黄美元. 南岳和泰山云中徽结构起伏资料的初步分析//我国云雾降水微物理特征问题. 北京: 科学出版社, 1962: 30-40.

    Zhan L S, Chen W K, Huang M Y. The Preliminary Analysis of the Observation of Fluctuation of Cloud Size Distribution at Hengshan and Taishan Mountain//The Characteristic of Cloud and Precipitation of China. Beijing: Science Press, 1962: 30-40.
    [9] 顾震潮. 论近年来云雾滴谱形成理论的研究. 气象学报, 1962, 32(2): 267-284. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB196204000.htm

    Koo C C. Recent investigations in the theory of the formation of the cloud-drop spectra. Acta Meteor Sinica, 1962, 32(4): 267-284. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB196204000.htm
    [10] 周秀骥. 暖云降水徽物理机制的统计理论. 气象学报, 1963, 33(1): 98-107. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB196301007.htm

    Zhou X J. The statistical theory of the precipitation of warm cloud. Acta Meteor Sinica, 1963, 33(1): 98-107. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB196301007.htm
    [11] 王泽林, 周旭, 吴俊辉, 等. 一次飞机严重积冰的天气条件和云微物理特征. 应用气象学报, 2022, 33(5): 555-567. doi:  10.11898/1001-7313.20220504

    Wang Z L, Zhou X, Wu J H, et al. Weather conditions and cloud microphysical characteristics of an aircraft severe icing process. J Appl Meteor Sci, 2022, 33(5): 555-567. doi:  10.11898/1001-7313.20220504
    [12] 程鹏, 罗汉, 常祎, 等. 祁连山一次地形云降水微物理特征飞机观测. 应用气象学报, 2021, 32(6): 691-705. doi:  10.11898/1001-7313.20210605

    Cheng P, Luo H, Chang Y, et al. Aircraft measurement of microphysical characteristics of a topographic cloud precipitation in Qilian Mountains. J Appl Meteor Sci, 2021, 32(6): 691-705. doi:  10.11898/1001-7313.20210605
    [13] 常祎, 郭学良, 唐洁, 等. 青藏高原夏季对流云微物理特征和降水形成机制. 应用气象学报, 2021, 32(6): 720-734. doi:  10.11898/1001-7313.20210607

    Chang Y, Guo X L, Tang J, et al. Microphysical characteristics and precipitation formation mechanisms of convective clouds over the Tibetan Plateau. J Appl Meteor Sci, 2021, 32(6): 720-734. doi:  10.11898/1001-7313.20210607
    [14] 曾正茂, 郑佳锋, 杨晖, 等. Ka波段云雷达非云回波质量控制及效果评估. 应用气象学报, 2021, 32(3): 347-357. doi:  10.11898/1001-7313.20210307

    Zeng Z M, Zheng J F, Yang H, et al. Quality control and evaluation on non-cloud echo of Ka-band cloud radar. J Appl Meteor Sci, 2021, 32(3): 653-664. doi:  10.11898/1001-7313.20210307
    [15] 郭学良. 大气物理与人工影响天气. 北京: 气象出版社, 2010.

    Guo X L. Atmospheric Physics and Weather Modification. Beijing: China Meteorological Press, 2010.
    [16] 毛节泰, 郑国光. 对人工影响天气若干问题的探讨. 应用气象学报, 2006, 17(5): 643-646. doi:  10.3969/j.issn.1001-7313.2006.05.015

    Mao J T, Zheng G G. Discussions on some weather modification issues. J Appl Meteor Sci, 2006, 17(5): 643-646. doi:  10.3969/j.issn.1001-7313.2006.05.015
    [17] 张纪淮. 中型云室技术特点摘要. 气象科学研究院院刊, 1986, 1(2): 221-224.

    Zhang J H. Summary of medium cloud chamber technical features. J Appl Meteor Sci, 1986, 1(2): 221-224.
    [18] 酆大雄, 王云卿, 陈汝珍, 等. 一个用于人工冰核研究的2 m3等温云室. 气象学报, 1990, 48(1): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199001008.htm

    Feng D X, Wang Y Q, Chen R Z, et al. A 2 m3 isothermal cloud chamber for the study of artificial ice nuclei. Acta Meteor Sinica, 1990, 48(1): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199001008.htm
    [19] 高茜, 刘全, 毕凯, 等. 基于航测的云底气溶胶活化率与过饱和度估算. 应用气象学报, 2021, 32(6): 653-664. doi:  10.11898/1001-7313.20210602

    Gao Q, Liu Q, Bi K, et al. Estimation of aerosol activation ratio and water vapor supersaturation at cloud base using aircraft measurement. J Appl Meteor Sci, 2021, 32(6): 653-664. doi:  10.11898/1001-7313.20210602
    [20] 杨绍忠, 楼小风, 黄庚, 等. 一个观测冰核的15 L混合云室. 应用气象学报, 2007, 18(5): 716-721. http://qikan.camscma.cn/article/id/200705108

    Yang S Z, Lou X F, Huang G, et al. A 15 L mixing cloud chamber for testing ice nuclei. J Appl Meteor Sci, 2007, 18(5): 716-721. http://qikan.camscma.cn/article/id/200705108
    [21] 苏正军, 郑国光, 关立友, 等. 一个用于催化剂成冰性能检测的新型等温云室. 高原气象, 2009, 28(4): 827-835. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200904014.htm

    Su Z J, Zheng G G, Guan L Y, et al. A New 1 m3 isothermal cloud chamber for the study of artificial ice nuclei. Plateau Meteor, 2009, 28(4): 827-835. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200904014.htm
    [22] 酆大雄, 陈汝珍, 蒋耿旺, 等. 三种含AgI的气溶胶在水面欠饱和条件下成冰性能的实验研究. 应用气象学报, 1990, 1(1): 57-62. http://qikan.camscma.cn/article/id/19900110

    Feng D X, Chen R Z, Jiang G W, et al. A laboratory study on the nucleating properties of three agi-type aerosols under water sub-saturation. J Appl Meteor Sci, 1990, 1(1): 57-62. http://qikan.camscma.cn/article/id/19900110
    [23] 陈汝珍, 酆大雄, 蒋耿旺, 等. 爆炸对云滴谱碰并增长的实验研究. 应用气象学报, 1992, 3(4): 410-417. http://qikan.camscma.cn/article/id/19920468

    Chen R Z, Feng D X, Jiang G W, et al. A laboratory study of explosion effects on cloud droplets coalescence. J Appl Meteor Sci, 1992, 3(4): 410-417. http://qikan.camscma.cn/article/id/19920468
    [24] 姚展予. 中国气象科学研究院人工影响天气研究进展回顾. 应用气象学报, 2006, 17(6): 786-795. http://qikan.camscma.cn/article/id/200606127

    Yao Z Y. Review of weather modification research in Chinese Academy of Meteorological Sciences. J Appl Meteor Sci, 2006, 17(6): 786-795. http://qikan.camscma.cn/article/id/200606127
    [25] Köhler H. The nucleus in and the growth of hygroscopic droplets. Transactions of the Faraday Society, 1936, 32: 1152-1161.
    [26] Wex H, Stratmann F, Topping D, et al. The Kelvin versus the Raoult term in the Köhler equation. J Atmos Sci, 2008, 65: 4004-4015.
    [27] Davidovits P, Kolb C E, Williams L R, et al. Mass accommodation and chemical reactions at gas-liquid interfaces. Chem Rev, 2006, 106(4): 1323-1354.
    [28] Chang K, Bench J, Brege M, et al. A laboratory facility to study gas-aerosol-cloud interactions in a turbulent environment: The π chamber. Bull Amer Meteor Soc, 2016, 97(12): 2343-2358.
    [29] Rogers D C. Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies. Atmos Res, 1988, 22: 149-181.
    [30] Bailey M, Hallett J. Nucleation effects on the habit of vapor grown ice crystals from -18° to -42℃. Quart J Roy Meteor Soc, 2002, 128: 1461-1483.
    [31] Saunders C P R, Hosseini A S. A laboratory study of the effect of velocity on Hallett-Mossop ice crystal multiplication. Atmos Res, 2001, 59: 3-14.
    [32] Raymond S, Durant A, Adam J, et al. Heterogeneous surface crystallization observed in undercooled water. J Phys Chem B, 2005, 109: 9865-9868.
    [33] Möhler O. Experimental investigation of homogeneous freezing of sulphuric acid particles in the aerosol chamber AIDA. Atmos Chem Phys, 2003, 3: 211-223.
    [34] Duplissy J. Results from the CERN pilot CLOUD experiment. Atmos Chem Phys, 2010, 10: 1635-1647.
    [35] Tajiri T, Yamashita K, Murakami M, et al. A novel adiabatic-expansion-type cloud simulation chamber. J Meteor Soc Japan, 2013, 91: 687-704.
    [36] Connolly P J, Emersic C, Field P R. A laboratory investigation into the aggregation efficiency of small ice crystals. Atmos Chem Phys, 2012, 12: 2055-2076.
    [37] DeMott P J, Rogers D C. Freezing nucleation rates of dilute solution droplets measured between -30℃ and -40℃ in laboratory simulations of natural clouds. J Atmos Sci, 1990, 47: 1056-1064.
    [38] Song N, Lamb D. Experimental investigations of ice in supercooled clouds. Part 1: System description and growth of ice by vapor deposition. J Atmos Sci, 1994, 51: 91-103.
    [39] Bigg E K. A new technic for counting ice-forming nuclei in aerosols. Tellus B, 1957, 394: 175-178.
    [40] 苏航, 银燕, 陆春松, 等. 新型扩散云室搭建及其对黄山地区大气冰核的观测研究. 大气科学, 2014, 8(2): 386-398. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201402016.htm

    Su H, Yin Y, Lu C S, et al. Development of new diffusion cloud chamber type and its observation study of ice nuclei in the Huangshan Area. Chinese J Atmos Sci, 2014, 8(2): 386-398. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201402016.htm
    [41] 杨绍中, 马培民, 游来光. 用滤膜法观测大气冰核的静力扩散云室. 气象学报, 1995, 53(2): 91-100. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB501.011.htm

    Yang S Z, Ma P M, You L G. A static diffusion chamber for detecting atmospheric ice nuclei by using filter technique. Acta Meteor Sinica, 1995, 53(1): 91-100. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB501.011.htm
    [42] Mason B J. The Physics of Clouds(Second Edition). Oxford: Oxford University Press, 1957.
    [43] Nolan P J, Pollak L W. The calibration of a photoelectric nucleus counter. Proc R Ir Acad, 1946, A51: 9-34.
    [44] Warner J. An instrument for the measurement of freezing nucleus concentration. Bull Obs Puy de Dôme, 1957, 5: 33-43.
    [45] 苏正军, 郭学良, 诸葛杰, 等. 云雾物理膨胀云室研制及参数测试. 应用气象学报, 2019, 30(6): 722-730. doi:  10.11898/1001-7313.20190608

    Su Z J, Guo X L, Zhuge J, et al. Developing and testing of an expansion cloud chamber for cloud physics research. J Appl Meteor Sci, 2019, 30(6): 722-730. doi:  10.11898/1001-7313.20190608
    [46] 盛裴轩, 毛节泰, 李建国, 等. 大气物理学. 北京: 北京大学出版社, 2013.

    Sheng P X, Mao J T, Li J G, et al. Atmospheric Physics. Beijing: Peking University Press, 2013.
    [47] Murphy D M, Koop T. Review of the vapor pressures of ice and supercooled water for atmospheric applications. Quart J Roy Meteror Soc, 2005, 131: 1539-1565.
    [48] Twomey S. Pollution and the planetary albedo. Atmos Environ, 1974, 8: 1251-1256.
    [49] Toll V, Christensen M, Quaas J, et al. Weak average liquid-cloud-water response to anthropogenic aerosols. Nature, 2019, 572: 51-55.
    [50] Lebsock M D, Stephens G L, Kummerow C. Multi-sensor satellite observations of aerosol effects on warm clouds. J Geophys Res, 2008, 113. DOI:  10.1029/2008JD009876.
    [51] Chen Y C, Christensen M W, Stephens G L, et al. Satellite-based estimate of global aerosol-cloud radiative forcing by marine warm clouds. Nature Geoscience, 2014, 7: 643-646.
    [52] 邓兆泽, 赵春生, 马楠, 等. 一种快速测量高粒径分辨率气溶胶活化率曲线的方法. 北京大学学报(自然科学版), 2012, 48(3): 386-392. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201203009.htm

    Deng Z Z, Zhao C S, Ma N, et al. A method for measuring aerosol activation ratios with high size resolution. Acta Scientiarum Naturalium Universitaties Peknensis, 2012, 48(3): 386-392. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201203009.htm
    [53] Deng Z Z, Zhao C S, Ma N, et al. An examination of parameterizations for the CCN number concentration based on in situ measurements of aerosol activation properties in the North China Plain. Atmos Chem Phys, 2013, 13: 6227-6237.
    [54] Dusek U, Frank G P, Hildebrandt L, et al. Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Nature, 2006, 312: 1375-1378.
  • 加载中
图(8) / 表(3)
计量
  • 摘要浏览量:  373
  • HTML全文浏览量:  165
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-04
  • 修回日期:  2023-08-13
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回