Influences of Global Warming on Yield Structure and Quality of Winter Wheat Xumai 33
-
摘要: 利用2017—2022年江苏徐州农业气象试验站试验数据研究作物品种、土壤物理化学性质和管理措施均相同条件下,气候变暖对半冬性冬小麦品种产量结构和籽粒品质的影响。研究发现:不同播期冬小麦生长季平均气温升温幅度为0.1~1.7℃。平均气温升高对冬小麦产量结构造成影响,平均气温每升高1℃,冬小麦穗粒数减少14.7%;平均气温升高对籽粒蛋白质、脂肪和氨基酸含量造成负面影响,进而影响籽粒品质。平均气温与籽粒蛋白质含量相关系数为-0.72(达到0.01显著性水平),与脂肪含量相关系数为-0.52(达到0.05显著性水平)。此外,气温升高对16种氨基酸中的14种产生负面影响,其中对天冬氨酸和精氨酸含量负面影响达到0.05显著性水平。导致上述结果的主要原因是气候变暖夜间最低气温升高,冬小麦呼吸作用加强,不利于冬小麦同化作用和有机物积累;气候变暖导致冬小麦开花期到成熟期高温热害增多,影响冬小麦生理生化过程,特别是限制了冬小麦营养物质的吸收和合成。Abstract: To study the impact of global warming on the yield and quality of winter wheat, field scientific experiments are carried out at Xuzhou Agro-meteorological Station of Jiangsu from 2017 to 2022. There are four sowing dates each year with different temperature during the growing season of winter wheat, while the winter wheat variety, soil physical and chemical properties, and agriculture measures are all the same. Therefore, the yield structure and quality of winter wheat are mainly influenced by climate change. It shows that the average temperature increases 0.1℃ to 1.7℃ during the growing season of winter wheat at different sowing dates during 5-year field experiments. The increasing temperature has an impact on the yield structure, and there is a significant negative influence on the number of grains per ear of winter wheat, with a correlation coefficient of -0.49 (P<0.05). The number of grains per ear of winter wheat decreases by 14.7% for 1℃ increase, resulting in a reduction in yield. The increasing temperature also has a negative impact on grain quality, the correlation coefficient between temperature and grain protein content reaches -0.72 (P<0.01), and the correlation coefficient with fat content is -0.52 (P<0.05). In addition, the increasing temperature has a negative impact on 14 of 16 amino acids, especially on the content of aspartic acid and arginine. Overall, climate change could decrease the number of grains per ear of winter wheat, and decrease significantly in protein and fat content in grains. The main cause is that the minimum temperature at night increases due to global warming, strengthening the respiration of winter wheat, which is not conducive to its assimilation and organic matter accumulation. At the same time, climate warming leads to an increase in high-temperature damage during the flowering to maturity period of winter wheat, affecting its physiological and biochemical processes, especially limiting the absorption and synthesis of nutrients of winter wheat.
-
Key words:
- global warming;
- winter wheat;
- yield;
- quality
-
表 1 2017—2022年江苏徐州农业气象试验站冬小麦播种试验生长发育期和气象条件
Table 1 Growing season and meteorological condition of winter wheat for sowing date experiments at Xuzhou Agro-meteorological Station of Jiangshu during 2017-2022
试验 播期 播种期 成熟期 平均气温/℃ 积温/(℃·d) 降水量/mm 日照时数/h 试验1 第1播期 2017-10-10 2018-05-26 9.9 2321.4 213.4 1408.7 第2播期 2017-10-20 2018-05-28 9.8 2222.1 176.5 1400.5 第3播期 2017-10-30 2018-05-28 9.6 2078.6 176.5 1324.5 第4播期 2017-11-09 2018-05-31 9.7 2033.8 176.5 1329.4 试验2 第1播期 2018-09-30 2019-05-31 10.4 2582.8 231.4 1348.9 第2播期 2018-10-10 2019-06-02 10.2 2443.9 231.4 1275.7 第3播期 2018-10-20 2019-06-02 10.0 2297.7 231.4 1204.0 第4播期 2018-10-30 2019-06-04 9.5 2207.0 231.4 1155.2 试验3 第1播期 2019-09-30 2020-05-23 11.2 2647.3 293.6 1180.9 第2播期 2019-10-10 2020-05-25 10.9 2508.6 251.6 1140.7 第3播期 2019-10-20 2020-05-27 10.8 2400.4 245.0 1126.6 第4播期 2019-10-30 2020-05-29 10.8 2297.2 245.0 1095.0 试验4 第1播期 2020-09-30 2021-05-26 10.4 2453.1 261.0 1106.1 第2播期 2020-10-10 2021-05-28 10.2 2419.7 251.4 1108.0 第3播期 2020-10-20 2021-05-31 10.2 2346.2 242.7 1119.3 第4播期 2020-10-30 2021-06-02 10.2 2258.1 242.7 1077.3 试验5 第1播期 2021-09-30 2022-05-23 10.6 2524.1 121.1 1198.3 第2播期 2021-10-10 2022-05-24 10.2 2345.5 114.0 1164.8 第3播期 2021-10-20 2022-05-26 10.1 2223.0 94.2 1143.8 第4播期 2021-10-30 2022-05-27 10.0 2115.2 94.2 1109.2 -
[1] 金善宝.中国小麦学.北京:中国农业出版社, 1996.Jin S B. Chinese Wheat Science. Beijing: China Agriculture Press, 1996. [2] 国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2022.National Bureau of Statistics of China. China Statistical Yearbook. Beijing: China Statistics Press, 2022. [3] FAO(Food and Agricultural Organization of the United Nations). FAOSTAT, 2019. [4] 中国气象局气候变化中心. 中国气候变化蓝皮书2020. 北京: 科学出版社, 2020.Climate Change Center of China Meteorological Administration. Blue Book on Climate Change in China 2020. Beijing: Science Press, 2020. [5] IPCC(Intergovermental Panel on Climate Change). Summary for Policymakers, 2018. [6] IPCC. Climate Change: The Physical Science Basis, 2021. [7] 王纯枝, 霍治国, 郭安红, 等. 中国北方冬小麦蚜虫气候风险评估. 应用气象学报, 2021, 32(2): 160-174. doi: 10.11898/1001-7313.20210203Wang C Z, Huo Z G, Guo A H, et al. Climatic risk assessment of winter wheat aphids in northern China. J Appl Meteor Sci, 2021, 32(2): 160-174. doi: 10.11898/1001-7313.20210203 [8] 任三学, 赵花荣, 齐月, 等. 气候变化背景下麦田沟金针虫爆发性发生为害. 应用气象学报, 2020, 31(5): 620-630. doi: 10.11898/1001-7313.20200509Ren S X, Zhao H R, Qi Y, et al. The outbreak and damage of the Pleonomus canaliculatus in wheat field under the background of climate change. J Appl Meteor Sci, 2020, 31(5): 620-630. doi: 10.11898/1001-7313.20200509 [9] 米前川, 高西宁, 李玥, 等. 深度学习方法在干旱预测中的应用. 应用气象学报, 2022, 33(1): 104-114. doi: 10.11898/1001-7313.20220109Mi Q C, Gao X N, Li Y, et al. Application of deep learning method to drought prediction. J Appl Meteor Sci, 2022, 33(1): 104-114. doi: 10.11898/1001-7313.20220109 [10] 赵艳霞, 王馥棠, 裘国旺. 冬小麦干旱识别和预测模型研究. 应用气象学报, 2001, 12(2): 235-241. http://qikan.camscma.cn/article/id/20010231Zhao Y X, Wang F T, Qiu G W. Study of winter wheat drought and prediction model. J Appl Meteor Sci, 2001, 12(2): 235-241. http://qikan.camscma.cn/article/id/20010231 [11] 赵辉, 戴延波, 姜东, 等. 高温下干旱和渍水对冬小麦花后旗叶光合特性和物质转运的影响. 应用生态学报, 2007, 18(2): 333-338. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200702016.htmZhao H, Dai Y B, Jiang D, et al. Effect of drought and waterlogging on flag leaf post-anthesis photosynthetic characteristics and assimilates traslocation in winter wheat under high temperature. Chinese J Appl Ecol, 2007, 18(2): 333-338. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200702016.htm [12] 范雪梅, 姜东, 戴延波, 等. 花后干旱或渍水下氮素供应对小麦光合和籽粒淀粉积累的影响. 应用生态学报, 2005, 16(10): 1883-1888. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200510016.htmFan X M, Jiang D, Dai Y B, et al. Effects of nitrogen supply on flag leaf photosynthesis and grain starch accumulation of wheat from its anthesis to maturity under drought or waterlogging. Chinese J Appl Ecol, 2005, 16(10): 1883-1888. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200510016.htm [13] 尚莹, 霍治国, 张蕾, 等. 土壤相对湿度对冬小麦干热风灾害发生的影响. 应用气象学报, 2019, 30(5): 598-607. doi: 10.11898/1001-7313.20190508Shang Y, Huo Z G, Zhang L, et al. Effects of soil relative humidity on the occurrence of dry hot wind disaster in winter wheat. J Appl Meteor Sci, 2019, 30(5): 598-607. doi: 10.11898/1001-7313.20190508 [14] 霍治国, 尚莹, 邬定荣, 等. 中国小麦干热风灾害研究进展. 应用气象学报, 2019, 30(2): 129-141. doi: 10.11898/1001-7313.20190201Huo Z G, Shang Y, Wu D R, et al. Advance on dry hot wind disaster of wheat in China. J Appl Meteor Sci, 2019, 30(2): 129-141. doi: 10.11898/1001-7313.20190201 [15] 杨霏云, 郑秋红, 罗蒋梅, 等. 实用农业气象指标. 北京: 气象出版社, 2015.Yang F Y, Zheng Q H, Luo J M, et al. Practical Agrometeorological Indicators. Beijing: China Meteorological Press, 2015. [16] 刘维, 宋迎波. 基于气象要素的逐日玉米产量气象影响指数. 应用气象学报, 2022, 33(3): 364-374. doi: 10.11898/1001-7313.20220310Liu W, Song Y B. A daily meteorological impact index of maize yield based on weather elements. J Appl Meteor Sci, 2022, 33(3): 364-374. doi: 10.11898/1001-7313.20220310 [17] 吴乃元, 梁丰香, 张衍华, 等. 有限水分胁迫对小麦生长状况的影响及合理灌溉的土壤相对湿度指标. 应用气象学报, 2000, 11(增刊Ⅰ): 170-177. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2000S1023.htmWu N Y, Liang F X, Zhang Y H, et al. Effects of limited water stress on wheat growth and the relative soil moisture index of rational irrigation. J Appl Meteor Sci, 2000, 11(Suppl Ⅰ): 170-177. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2000S1023.htm [18] 陈雨烨, 王培娟, 张源达, 等. 基于3种遥感指数的东北春玉米干旱识别对比. 应用气象学报, 2022, 33(4): 466-476. doi: 10.11898/1001-7313.20220407Chen Y Y, Wang P J, Zhang Y D, et al. Comparison of drought recognition of spring maize in Northeast China based on 3 remote sensing indices. J Appl Meteor Sci, 2022, 33(4): 466-476. doi: 10.11898/1001-7313.20220407 [19] 郭建平. 气候变化对中国农业生产的影响研究进展. 应用气象学报, 2015, 26(1): 1-11. doi: 10.11898/1001-7313.20150101Guo J P. Advances in impacts of climate change on agriculture production in China. J Appl Meteor Sci, 2015, 26(1): 1-11. doi: 10.11898/1001-7313.20150101 [20] 宋艳玲, 周广胜, 郭建平, 等. 北方冬小麦冬季冻害及播期延迟应对. 应用气象学报, 2022, 33(4): 454-465. doi: 10.11898/1001-7313.20220406Song Y L, Zhou G S, Guo J P, et al. Freezing injury of winter wheat in northern China and delaying sowing date to adapt. J Appl Meteor Sci, 2022, 33(4): 454-465. doi: 10.11898/1001-7313.20220406 [21] 孟繁圆, 冯利平, 张丰瑶, 等. 北部冬麦区冬小麦越冬冻害时空变化特征. 作物学报, 2019, 45(10): 1576-1585. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201910013.htmMeng F Y, Feng L P, Zhang F Y, et al. Temporal and spatial variations of winter wheat freezing injury in northern winter wheat region. Acta Agronomica Sinica, 2019, 45(10): 1576-1585. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201910013.htm [22] 郑冬晓, 杨晓光, 赵锦, 等. 气候变化背景下黄淮冬麦区冬季长寒型冻害时空变化特征. 生态学报, 2015, 35(13): 4338-4346. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201513010.htmZheng D X, Yang X G, Zhao J, et al. Spatial and temporal patterns of freezing injury during winter in Huang-Huai winter wheat area under climate change. Acta Ecological Sinica, 2015, 35(13): 4338-4346. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201513010.htm [23] 宋艳玲, 王建林. 气候变化背景下农业气象灾害对我国农业生产影响评估技术. 北京: 气象出版社, 2017.Song Y L, Wang J L. The Assessment of Influence of Agro-Meteorological Disasters on Agriculture under Climate Change in China. Beijing: China Meteorological Press, 2017. [24] Tao F L, Zhang S, Zhang Z. Spatiotemporal changes of wheat phenology in China under the effects of temperature, day length and cultivar thermal characteristics. European Journal of Agronomy, 2012, 43: 201-212. [25] Xiao D P, Tao F L, Liu Y J, et al. Observed changes in winter wheat phenology in the North China Plain for 1981-2009. International Journal of Biometeorology, 2013, 57(2): 275-285. [26] You L Z, Rosegrant M W, Wood S, et al. Impact of growing season temperature on wheat productivity in China. Agricultural and Forest Meteorology, 2009, 149: 1009-1014. [27] Asseng S, Ewert F, Mertre P, et al. Rising temperatures reduce global wheat production. Nature Climate Changes, 2015, 5(2): 143-147. [28] Liu B, Tian L Y. Post-heading heat stress and yield impact in winter wheat of China. Global Change Biology, 2014, 20(2): 372-381. [29] 杨晓光, 孙爽, 赵锦, 等. 气候变化对华北冬小麦影响研究. 北京: 气象出版社, 2021.Yang X G, Sun S, Zhao J, et al. Climate change impacts on wheat production in North China. Beijing: China Meteorological Press, 2021. [30] 居辉, 熊伟, 许吟隆, 等. 气候变化对我国小麦产量的影响. 作物学报, 2005, 31(10): 1340-1343. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW200510016.htmJu H, Xiong W, Xu Y L, et al. Impacts of climate change on wheat yield in China. Acta Agronomica Sinica, 2005, 31(10): 1340-1343. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW200510016.htm [31] 国家气象局. 农业气象观测规范(上卷). 北京: 气象出版社, 1993.China Meteorological Administration. Agricultural Meteorological Observations(Volume Ⅰ). Beijing: China Meteorological Press, 1993. [32] 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. 中华人民共和国国标, 食品安全国家标准食品中蛋白质的测定.GB5009.5—2016.2016. National Health Commission of the People's Republic of China, National Medical Products Administration. National Standard of the People's Republic of China, National Food Safety Standards-determination of Protein in Foods. GB5009.5-2016.2016. [33] 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. 中华人民共和国国标, 食品安全国家标准食品中脂肪的测定.GB5009.6—2016.2016. National Health Commission of the People's Republic of China, National Medical Products Administration. National Standard of the People's Republic of China, National Food Safety Standards-determination of Fat in Foods. GB5009.6-2016.2016. [34] 权畅, 景元书, 谭凯炎. 高温热害对华北地区冬小麦灌浆和产量的影响. 河南农业科学, 2014, 1: 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-HNNY201401008.htmQuan C, Jing Y S, Tan K Y. The influence of high temperature on filling and yield of winter wheat. Agriculture Science in Henan, 2014, 1: 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-HNNY201401008.htm [35] Song Y L, Wang C Y, Linderholm H W, et al. The negative impact of increasing temperatures on rice yields in southern China. Science of the Total Environment, 2022, 820. DOI: 10.1016/j.scitotenv.2022.153262. [36] 刘慧, 王朝辉, 李富翠, 等. 不同麦区小麦籽粒蛋白质与氨基酸含量及评价. 作物学报, 2016, 42(5): 768-777. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201605019.htmLiu H, Wang Z H, Li F C, et al. Contents of protein and amino acids of wheat grain in different wheat production regions and their evaluation. Acta Agronomica Sinica, 2016, 42(5): 768-777. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201605019.htm