Vertical Structure Characteristics of Precipitation in Mêdog Area of Southeastern Tibet During the Monsoon Period
-
摘要: 以2021年6—9月(季风期)藏东南水汽输送通道入口关键区墨脱布设的微雨雷达、降水现象仪和雨量计的观测数据为基础,对比不同仪器测量结果的一致性。将降水划分为对流云降水、层状云降水、浅层云降水3种类型,研究不同类型降水的雨滴谱分布、下落速度、降水率、液态水含量和雷达反射率因子的平均垂直分布特征。结果表明:微雨雷达、降水现象仪和雨量计测量结果一致性较好,微雨雷达和雨量计日降水量相关系数最高达到0.96,各相关系数的显著性水平较高;对流云降水的各微物理量特征值较大,雨滴在下落过程中碰并增长过程显著,雨滴数浓度迅速增加,在1~2 km高度处存在明显的上升气流;层状云降水回波强度较弱,反射率因子、降水率和液态水含量随高度降低有所增加,雨滴下落速度在垂直方向基本保持均匀,中等大小的雨滴浓度随高度不变,蒸发、破碎和碰并过程处于相对平衡状态;浅层云降水各微物理量较小,但随高度变化明显,垂直方向上为明显的负梯度变化,以雨滴的碰并过程为主。Abstract: Precipitation is particularly important for the earth's climate system. Understanding the structural characteristics, microphysical processes and drop size distribution (DSD) of precipitation is very important for quantitative precipitation estimation with radar and improving microphysical parameter schemes of numerical weather prediction models. With the launch of the Second Tibet Plateau Scientific Expedition and Research(STEPS), Chinese Academy of Meteorological Sciences has deployed Ka-band cloud radar (KaCR), X-band dual polarization phased array radar (X-PAR), disdrometer, micro rain radar (MRR) and other detection equipment in Mêdog, filling the gap of cloud and precipitation observation in this area and provides data basis for studying the physical characteristics of clouds and precipitation. Mêdog is located at Yarlung Zangbo Grand Canyon, the entrance of the water vapor channel in southeastern Tibet. Influenced by the warm and humid airflow brought by the Indian Ocean monsoon, the precipitation of Mêdog during the monsoon period exceeds 60% of the annual precipitation. MRR is a low-cost, miniaturized vertical directional Doppler rain radar that can more accurately analyze the vertical structural changes of precipitation. Based on observation of the rain gauge, MRR and disdrometer set up at Mêdog National Climate Observatory from 1 June to 30 September in 2021, the consistency of different instruments is studied. The observed rainfall is classified into convective, stratiform and shallow precipitation types, and the average vertical distribution characteristics of different precipitation types are studied from the aspects of raindrop size distribution, falling speed, rain rate, liquid water content and radar reflectivity. The results show that the measurement of rain gauge, MRR and distrometer are highly consistent. The correlation coefficient of daily rainfall is above 0.89, and the highest correlation coefficient between MRR and rain gauge is 0.96. However, MRR overestimates weak precipitation and underestimate strong precipitation. There are significant differences in the vertical structure of different precipitation types during the monsoon period of Mêdog. Values of each microphysical quantity of convective precipitation are larger. The collision and growth process of raindrop is significant during the falling process below 3 km height, and the raindrop number concentration increases rapidly. There is significant updraft at a height of 1-2 km. The echo intensity of stratiform cloud precipitation is weak below the height of the melting layer. The radar reflectivity, rain rate and liquid water content increase with altitude decrease, the falling speed of raindrops remains basically stable in the vertical direction. The concentration of medium-sized raindrops remains constant with height, and the evaporation, fragmentation, and coalescence processes are in a relatively balance. Values of each microphysical quantity of shallow precipitation are relatively small but vary significantly with height and show negative slops in the vertical direction. The shallow precipitation is dominated by the collision process of raindrops.
-
图 2 2021年6月1日—9月30日雨滴数浓度随直径和下落速度的分布
(黑色实线为Altas经验曲线,黑色虚线为经验关系±60%的范围)
Fig. 2 Distribution of raindrop number concentration with diameter and fall speed from 1 Jun to 30 Sep in 2021
(the solid black line denotes Altas experience curve, dashed black lines denote ±60% range of the experience relationship)
图 5 2021年6月1日—9月30日墨脱3种类型降水的雷达反射率因子、下落速度、降水率和液态水含量的归一化高度-频率分布
(黑色实线为不同高度微物理特征量最大值连线,填色为发生频率)
Fig. 5 Normalized height-frequency of radar reflectivity, falling speed, rain rate and liquid water content for 3 rain types at Mêdog from 1 Jun to 30 Sep in 2021
(the solid black line connects points of the maximum at different altitude frequencies, the shaded denotes frequency)
表 1 微雨雷达主要性能参数
Table 1 Main performance parameters of micro rain radar
性能参数 取值 发射频率 24.230 GHz 操作模式 FMCW 发射功率 50 mW(+17 dBm) 波束宽度 1.5° 时间分辨率 10 s(最低1 s) 高度分辨率 10~200 m(可调节) 距离库数 128(可调节) 表 2 降水类型分类
Table 2 Classification of rain types
降水类型 样本 降水量 降水率/(mm·h-1) 数量 占比/% 数值/mm 占比/% 对流云降水 1933 6.7 363.32 32.03 11.27 层状云降水 25485 88.4 747.53 65.90 1.74 浅层云降水 1417 4.9 23.55 2.07 0.99 -
[1] Milbrandt J A, Yau M K.A multimoment bulk microphysics parameterization.Part Ⅰ:Analysis of the role of the spectral shape parameter.J Atmos Sci, 2005, 62(9):3051-3064. doi: 10.1175/JAS3534.1 [2] Zhang G F, Sun J Z, Brandes E A. Improving parameterization of rain microphysics with disdrometer and radar observations. J Atmos Sci, 2019, 63(4): 1273-1290. [3] 尚博, 周毓荃, 刘建朝, 等. 基于Cloudsat的降水云和非降水云垂直特征. 应用气象学报, 2012, 23(1): 1-9. doi: 10.3969/j.issn.1001-7313.2012.01.001Shang B, Zhou Y Q, Liu J Z, et al. Comparing vertical structure of precipitation cloud and non-precipitation cloud using Cloudsat. J Appl Meteor Sci, 2012, 23(1): 1-9. doi: 10.3969/j.issn.1001-7313.2012.01.001 [4] Ulbrich C W, Atlas D. Microphysics of raindrop size spectra: Tropical continental and maritime storms. J Appl Meteor Climatol, 2007, 46(11): 1777-1791. doi: 10.1175/2007JAMC1649.1 [5] Chen B J, Yang J, Pu J P. Statistical characteristics of raindrop size distribution in the Meiyu season observed in Eastern China. J Meteor Soc Japan Ser Ⅱ, 2013, 91(2): 215-227. doi: 10.2151/jmsj.2013-208 [6] 柳臣中, 周筠珺, 谷娟, 等. 成都地区雨滴谱特征. 应用气象学报, 2015, 26(1): 112-121. doi: 10.11898/1001-7313.20150112Liu C Z, Zhou Y J, Gu J, et al. Characteristics of raindrop size distribution in Chengdu. J Appl Meteor Sci, 2015, 26(1): 112-121. doi: 10.11898/1001-7313.20150112 [7] 梅海霞, 梁信忠, 曾明剑, 等. 2015—2017年夏季南京雨滴谱特征. 应用气象学报, 2020, 31(1): 117-128. doi: 10.11898/1001-7313.20200111Mei H X, Liang X Z, Zeng M J, et al. Raindrop size distribution characteristics of Nanjing in summer of 2015-2017. J Appl Meteor Sci, 2020, 31(1): 117-128. doi: 10.11898/1001-7313.20200111 [8] 黄泽文, 彭思越, 张浩然, 等. 福建安溪雨滴谱特征. 应用气象学报, 2022, 33(2): 205-217. doi: 10.11898/1001-7313.20220207Huang Z W, Peng S Y, Zhang H R, et al. Characteristics of raindrop size distribution at Anxi of Fujian. J Appl Meteor Sci, 2022, 33(2): 205-217. doi: 10.11898/1001-7313.20220207 [9] 程鹏, 罗汉, 常祎, 等. 祁连山一次地形云降水微物理特征飞机观测. 应用气象学报, 2021, 32(6): 691-705. doi: 10.11898/1001-7313.20210605Cheng P, Luo H, Chang Y, et al. Aircraft measurement of microphysical characteristics of a topographic cloud precipitation in Qilian Mountains. J Appl Meteor Sci, 2021, 32(6): 691-705. doi: 10.11898/1001-7313.20210605 [10] 刘春文, 郭学良, 段玮, 等. 云南省积层混合云微物理特征飞机观测. 应用气象学报, 2022, 33(2): 142-154. doi: 10.11898/1001-7313.20220202Liu C W, Guo X L, Duan W, et al. Observation and analysis of microphysical characteristics of stratiform clouds with embedded convections in Yunnan. J Appl Meteor Sci, 2022, 33(2): 142-154. doi: 10.11898/1001-7313.20220202 [11] 封秋娟, 李培仁, 丁建芳, 等. 山西地区一次层状云降水过程的微观特征观测分析. 大气科学学报, 2013, 36(5): 537-545. doi: 10.3969/j.issn.1674-7097.2013.05.003Feng Q J, Li P R, Ding J F, et al. Observation and analysis of microphysical characteristics of stratiform cloud precipitation in Shanxi Province. Trans Atmos Sci, 2013, 36(5): 537-545. doi: 10.3969/j.issn.1674-7097.2013.05.003 [12] 陈绍婕, 郑佳锋, 杨吉, 等. C-FMCW雷达反演飑线大气垂直速度和雨滴谱. 应用气象学报, 2022, 33(4): 429-441. doi: 10.11898/1001-7313.20220404Chen S J, Zheng J F, Yang J, et al. Retrieval of air vertical velocity and droplet size distribution in squall line precipitation using C-FMCW radar. J Appl Meteor Sci, 2022, 33(4): 429-441. doi: 10.11898/1001-7313.20220404 [13] Das S, Maitra A. Vertical profile of rain: Ka band radar observations at tropical locations. J Hydrol, 2016, 534: 31-41. doi: 10.1016/j.jhydrol.2015.12.053 [14] 宋灿, 周毓荃, 吴志会. 雨滴谱垂直演变特征的微雨雷达观测研究. 应用气象学报, 2019, 30(4): 479-490. doi: 10.11898/1001-7313.20190408Song C, Zhou Y Q, Wu Z H. Vertical profile of raindrop size distribution observed by micro rain radar. J Appl Meteor Sci, 2019, 30(4): 479-490. doi: 10.11898/1001-7313.20190408 [15] Wen L, Zhao K, Wang M Y, Zhang G F. Seasonal variations of observed raindrop size distribution in East China. Adv Atmos Sci, 2019, 36(4): 346-362. [16] 常祎, 郭学良, 唐洁, 等. 青藏高原夏季对流云微物理特征和降水形成机制. 应用气象学报, 2021, 32(6): 720-734. doi: 10.11898/1001-7313.20210607Chang Y, Guo X L, Tang J, et al. Microphysical characteristics and precipitation formation mechanisms of convective clouds over the Tibetan Plateau. J Appl Meteor Sci, 2021, 32(6): 720-734. doi: 10.11898/1001-7313.20210607 [17] 赵艳风, 王东海, 尹金方. 基于CloudSat资料的青藏高原地区云微物理特征分析. 热带气象学报, 2014, 30(2): 239-248. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201402005.htmZhao Y F, Wang D H, Yin J F. A study on cloud microphysical characteristics over the tibetan plateau using CloudSat data. J Trop Meteor, 2014, 30(2): 239-248. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201402005.htm [18] 刘黎平, 郑佳锋, 阮征, 等. 2014年青藏高原云和降水多种雷达综合观测试验及云特征初步分析结果. 气象学报, 2015, 73(4): 635-647. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201504003.htmLiu L P, Zheng J F, Ruan Z, et al. The preliminary analyses of the cloud properties over Tibetan Plateau from the field experiments in clouds precipitation with the vavious radars. Acta Meteor Sinica, 2015, 73(4): 635-647. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201504003.htm [19] 常祎, 郭学良. 青藏高原那曲地区夏季对流云结构及雨滴谱分布日变化特征. 科学通报, 2016, 61(15): 1706-1720. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201615011.htmChang Y, Guo X L. Characteristics of convective cloud and precipitation during summer time at Naqu over Tibetan Plateau. Chinese Sci Bull, 2016, 61(15): 1706-1720. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201615011.htm [20] 张文霞, 张丽霞, 周天军. 雅鲁藏布江流域夏季降水的年际变化及其原因. 大气科学, 2016, 40(5): 965-980. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201605007.htmZhang W X, Zhang L X, Zhou T J. Interannual variability and the underlying mechanism of summer precipitation over the Yarlung Zangbo River Basin. Chinese J Atmos Sci, 2016, 40(5): 965-980. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201605007.htm [21] 王改利, 周任然, 扎西索郎, 等. 青藏高原墨脱地区云降水综合观测及初步统计特征分析. 气象学报, 2021, 79(5): 841-852. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202105010.htmWang G L, Zhou R R, Zhaxi S L, et al. Comprehensive observations and preliminary statistical analysis of clouds and precipitation characteristics in Motuo of Tibet Plateau. Acta Meteor Sinica, 2021, 79(5): 841-852. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202105010.htm [22] 周任然. 青藏高原东南部墨脱地区云降水的综合观测及云特征分析. 北京: 中国气象科学研究院, 2021.Zhou R R. Comprehensive Observation and Cloud Characteristics Analysis of Cloud Precipitation in Southeastern Qinghai Tibet Plateau. Beijing: Chinese Academy of Meteorological Sciences, 2021. [23] 张静怡, 王改利, 郑佳锋, 等. 青藏高原东南部墨脱地区弱降水微物理特征的Ka波段云雷达观测研究. 大气科学, 2022, 46(5): 1239-1252. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202205010.htmZhang J Y, Wang G L, Zheng J F, et al. Study of the microphysical characteristics of weak precipitation in Mêdog southeastern Tibetan Plateau using Ka-band cloud radar. Chinese J Atmos Sci, 2022, 46(5): 1239-1252. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202205010.htm [24] Li R, Wang G L, Zhou R R, et al. Seasonal variation in microphysical characteristics of precipitation at the entrance of water vapor channel in Yarlung Zangbo Grand Canyon. Remote Sens, 2022, 14(13). DOI: 10.3390/rs14133149. [25] Gunn R, Kinzer G D. The terminal velocity of fall for water droplets in stagnant air. J Atmos Sci, 1949, 6(4): 243-248. [26] Foote G B, Toit P. Terminal velocities of raindrops aloft. J Appl Meteor, 1969, 8: 249-253. [27] Peters G, Fischer B, Clemens M. Rain attenuation of radar echoes considering finite-range resolution and using drop size distributions. J Atmos Oceanic Technol, 2010, 27(5): 829-842. [28] Peters G, Fischer B, Andersson T. Rain observations with a vertically looking micro rain radar(MRR). Boreal Env Res, 2002, 7(4): 353-362. [29] Huo Z, Ruan Z, Wei M, et al. Statistical characteristics of raindrop size distribution in south China summer based on the vertical structure derived from VPR-CFMCW. Atmos Res, 2019, 222: 47-61. http://www.xueshufan.com/publication/2912765457 [30] Atlas D, Srivastava R C, et al. Doppler radar characteristics of precipitation at vertical incidence. Rev Geophys, 1973, 11(1): 1-35. [31] Bringi V N, Chandrasekar V, Hubbert J, et al. Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J Atmos Sci, 2003, 60(2): 354-365. [32] Tokay A, Bashor P G. An experimental study of small-scale variability of raindrop size distribution. J Appl Meteor Climatol, 2010, 49(11): 2348-2365. [33] Wen L, Zhao K, Zhang G F, et al. Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and micro rain radar data. J Geophys Res Atmos, 2016, 121(5): 2265-2282. [34] Fabry F, Zawadzki I. Long-term radar observations of the melting layer of precipitation and their interpretation. J Atmos Sci, 1995, 52(7): 838-851. [35] Habib E, Krajewski W F, Kruger A. Sampling errors of tipping-bucket rain gauge measurements. J Hydrol Eng, 2001, 6(2): 159-166. [36] Peters G, Fischer B, Munster H, et al. Profiles of raindrop size distributions as retrieved by micro rain radars. J Appl Meteor Climatol, 2005, 44(12): 1930-1949. [37] Barros A P, Joshi M, Putkonen J, et al. A study of the 1999 monsoon rainfall in a mountainous region in central Nepal using TRMM products and rain gauge observations. Geophys Res Lett, 2000, 27(22): 3683-3686. [38] Cha J W, Chang K H, Yum S S, et al. Comparison of the bright band characteristics measured by micro rain radar(MRR) at a mountain and a coastal site in South Korea. Adv Atmos Sci, 2009, 26: 211-221. [39] Morrison H, Tessendorf S A, Ikeda K, et al. Sensitivity of a simulated midlatitude squall line to parameterization of raindrop breakup. Mon Wea Rev, 2012, 140(8): 2437-2460.