留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高空冷涡对台风烟花(2106)路径的影响

王海平

王海平. 高空冷涡对台风烟花(2106)路径的影响. 应用气象学报, 2023, 34(5): 586-597. DOI:  10.11898/1001-7313.20230507..
引用本文: 王海平. 高空冷涡对台风烟花(2106)路径的影响. 应用气象学报, 2023, 34(5): 586-597. DOI:  10.11898/1001-7313.20230507.
Wang Haiping. Impacts of upper tropospheric cold low on the track of Typhoon In-fa in 2021. J Appl Meteor Sci, 2023, 34(5): 586-597. DOI:  10.11898/1001-7313.20230507.
Citation: Wang Haiping. Impacts of upper tropospheric cold low on the track of Typhoon In-fa in 2021. J Appl Meteor Sci, 2023, 34(5): 586-597. DOI:  10.11898/1001-7313.20230507.

高空冷涡对台风烟花(2106)路径的影响

DOI: 10.11898/1001-7313.20230507
资助项目: 

国家重点研发计划 2021YFB3900405

国家气象中心预报员专项 Y202109

详细信息
    通信作者:

    王海平, 邮箱:wanghp@cma.gov.cn

Impacts of Upper Tropospheric Cold Low on the Track of Typhoon In-fa in 2021

  • 摘要: 2021年台风烟花(2106)移动路径复杂,经历多次移动方向和速度的异常变化,数值模式及主观综合预报对其路径预报均误差较大,模式对120 h预报误差最大达到400~800 km。通过研究导致模式对初次登陆时间及位置预报出现明显偏差的原因发现,高空冷涡的存在有利于副热带高压东退,使得影响台风烟花的引导气流减弱,移速明显减慢,24 h平均移动速度仅为3.6 km·h-1。随着副热带高压的继续北抬减弱,高空冷涡减弱后的西风槽前偏南气流引导是台风烟花移动路径出现明显偏北分量、登陆浙北地区的重要原因。通过对确定性预报和集合预报分析发现,数值模式对高空冷涡的预报仍存在较大误差和不确定性,是导致台风烟花路径预报误差较大的主要原因。
  • 图  1  2021年7月19日20:00—24日20:00台风烟花最佳路径与数值模式120 h预报

    (a)7月19日20:00起报的路径预报比较,(b)7月20日20:00起报的路径预报比较,(c)7月19日20:00起报的移动速度与最佳路径移动速度比较,(d)7月19日与20日20:00起报的12~120 h路径预报误差比较

    Fig. 1  The best track and numerical model 120 h track forecast of Typhoon In-Fa from 2000 BT 19 Jul to 2000 BT 24 Jul in 2021

    (a)initiated at 2000 BT 19 Jul,(b)initiated at 2000 BT 20 Jul, (c)speed of the best track moving and numerical model forecast initiated at 2000 BT 19 Jul, (d)12-120 h track errors of numerical model initiated at 2000 BT 19 Jul and 2000 BT 20 Jul

    图  2  2021年7月14日、17日、19日与22日08:00 FY-4A卫星水汽云图

    (T表示台风烟花中心,C表示高空冷涡中心)

    Fig. 2  FY-4A water vapor satellite imagery of Typhoon In-Fa at 0800 BT on 14 Jul, 17 Jul, 19 Jul and 22 Jul in 2021

    (T denotes the center of Typhoon In-Fa, C denotes the center of upper-tropospheric cold low)

    图  3  台风烟花最佳路径(实线) 与高空冷涡移动路径(虚线) (a)以及两者中心相对距离(b)

    Fig. 3  The best track of Typhoon In-fa (the solid line) and the track of upper-tropospheric cold low (the dashed line) (a) and distance between their centers(b)

    图  4  2021年7月19日08:00,22日08:00和23日20:00 200 hPa (蓝色等值线) 和500 hPa (红色等值线) 位势高度场(单位:gpm)

    Fig. 4  Height of 200 hPa (the blue contour) and 500 hPa (the red contour) at 0800 BT 19 Jul and 22 Jul, and 2000 BT 23 Jul of in 2021 (unit:gpm)

    图  5  2021年7月17—29日ECMWF确定性模式分析场计算得到的1000 hPa至100 hPa平均引导气流(蓝线)(红线为台风路径) (a)以及整层引导气流分布(b)

    Fig. 5  Mean steering flow (the blue line) from 1000 hPa to 100 hPa (the red line denotes the track of typhoon) (a) and vertical steering flow distribution(b) of Typhoon In-Fa based on ECMWF deterministic model from 17 Jul to 29 Jul in 2021

    图  6  2021年7月19日和22日08:00经过台风中心和高空冷涡中心连线的相对涡度垂直剖面(单位:10-4 s-1)

    Fig. 6  Vertical profile of relative vorticity passing the line between the typhoon center and the upper-tropospheric cold low center at 0800 BT on 19 Jul and 22 Jul in 2021 (unit:10-4 s-1)

    图  7  ECMWF在2021年7月19日20:00(a)和20日20:00(b)起报的路径集合预报

    Fig. 7  Track of ECMWF ensemble forecast initiated at 2000 BT 19 Jul(a) and 2000 BT 20 Jul(b) in 2021

    图  8  ECMWF集合预报西行组(a)和西北行组(b)合成的72 h 200 hPa流场(流线) 和风速(填色) 预报

    Fig. 8  Composited flow field (the streamline) and wind velocity (the shaded) at 200 hPa for westbound group members(a) and northwest group members(b) in ECMWF 72 h forecast

    图  9  ECMWF确定性预报在2021年7月19日20:00(a)和20日20:00(b)起报路径(红线) 的引导气流(对流层中高层平均(黄线),中低层平均(蓝线),中层平均(黑线))

    Fig. 9  ECMWF deterministic forecasts track (the red line) at 2000 BT 19 Jul(a) and 2000 BT 20 Jul(b) in 2021 and steering flows of tropospheric mid-upper mean (the yellow line), mid-lower mean (the blue line), and mid-level mean (the black line)

    图  10  ECMWF在2021年7月19日20:00起报的西行组(a)和西北行组(b)的72 h 500 Pa高度场集合预报(红色等值线) 和分析场(蓝色等值线)(单位:gpm)(黑线为最佳路径,棕线为预报路径)

    Fig. 10  Composited 500 hPa height of forecast (the red contour) and analysis field (the blue contour) for westbound group members(a) and northwest group members(b) in ECMWF 72 h forecast initiated at 2000 BT 19 Jul 2021 (unit:gpm) (the black curve denotes the best track, the brown curve denotes the forecast track)

    图  11  2021年7月22日200 hPa流场(流线) 和风速(填色) (a)CMA-TYM 19日20:00起报,(b)ECMWF 19日20:00起报,(c)CMA-TYM 20日20:00起报,(d)ECMWF 20日20:00起报,(e)ERA5 22日20:00分析场

    Fig. 11  200 hPa wind stream field (the streamline) on 22 Jul 2021 and wind speed diagram (the shaded) (a)CMA-TYM forecast initiated at 2000 BT 19 Jul, (b)ECMWF forecast initiated at 2000BT 19 Jul, (c)CMA-TYM forecast initiated at 2000 BT 20 Jul, (d)ECMWF forecast initiated at 2000 BT 20 Jul, (e)analysis fields of ERA5 at 2000 BT 22 Jul

  • [1] 霍振华, 李晓莉, 陈静, 等.基于背景场奇异向量的CMA全球集合预报试验.应用气象学报, 2022, 33(6):655-667. doi:  10.11898/1001-7313.20220602

    Huo Z H, Li X L, Chen J, et al. CMA global ensemble prediction using singular vectors from background field. J Appl Meteor Sci, 2022, 33(6): 655-667. doi:  10.11898/1001-7313.20220602
    [2] Qian C H, Zhang F Q, Benjamin W, et al. Probabilistic evaluation of the dynamics and prediction of super Typhoon Megi. Wea Forecasting, 2013, 28(6): 1562-1577. doi:  10.1175/WAF-D-12-00121.1
    [3] Campenella C M, Possie N E. Upper-level cut-off lows in southern South America. Meteor Atmos Phys, 2007, 96: 181-191. doi:  10.1007/s00703-006-0227-2
    [4] 陈联寿, 丁一汇. 西太平洋台风概论. 北京: 科学出版社, 1979: 318-474.

    Chen L S, Ding Y H. An Introduction to the Western Pacific Typhoon. Beijing: Science Press, 1979: 318-474.
    [5] Patla J E, Stevens D G, Barnes M. A conceptual model for the influence of TUTT cells on tropical cyclone motion in the northwest Pacific Ocean. Wea Forecasting, 2009, 24: 1215-1235. doi:  10.1175/2009WAF2222181.1
    [6] 温典, 李英, 魏娜, 等. 高空冷涡影响台风Meranti(1010)北翘路径的集合预报分析. 大气科学, 2019, 43(4): 730-740. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201904017.htm

    Wen D, Li Y, Wei N, et al. An ensemble analysis on abrupt northward turning of Typhoon Meranti(1010) under the influence of an upper-tropospheric cold low. Chinese J Atmos Sci, 2019, 43(4): 730-740. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201904017.htm
    [7] Yan Z Y, Ge X Y, Wang Z. Understanding the impacts of upper-tropospheric cold low on Typhoon Jongdari(2018) using piecewise potential vorticity inversion. Mon Wea Rev, 2021, 149: 1499-1515. doi:  10.1175/MWR-D-20-0271.1
    [8] Wei N, Li Y, Zhang D L, et al. A statistical analysis of the relationship between upper-tropospheric cold low and tropical cyclone track and intensity change over the western North Pacific. Mon Wea Rev, 2016, 144(5): 1805-1822. doi:  10.1175/MWR-D-15-0370.1
    [9] Chen G, Chou L F. An investigation of cold vortices in the upper troposphere over the western North Pacific during the warm season. Mon Wea Rev, 1994, 122: 1436-1448. doi:  10.1175/1520-0493(1994)122<1436:AIOCVI>2.0.CO;2
    [10] Davis C A. Piecewise potential vorticity inversion. J Atmos Sci, 1992, 49: 1397-1411. doi:  10.1175/1520-0469(1992)049<1397:PPVI>2.0.CO;2
    [11] Wu C C, Emanuel K. Potential vorticity diagnostics of hurricane movement. Part Ⅰ: A case study of Hurricane Bob(1991). Mon Wea Rev, 1995, 123: 69-92. doi:  10.1175/1520-0493(1995)123<0069:PVDOHM>2.0.CO;2
    [12] Wu C C, Emanuel K. Potential vorticity diagnostics of hurricane movement. Part Ⅱ: Tropical Storm Ana(1991) and Hurricane Andrew(1992). Mon Wea Rev, 1995, 123: 93-109. doi:  10.1175/1520-0493(1995)123<0093:PVDOHM>2.0.CO;2
    [13] 周明珠, 徐晶. 西北太平洋热带气旋强度和尺度协同变化特征. 应用气象学报, 2023, 34(4): 463-474. doi:  10.11898/1001-7313.20230407

    Zhou M Z, Xu J. Covariation relationship between tropical cyclone intensity and size change over the Northwest Pacific. J Appl Meteor Sci, 2023, 34(4): 463-474. doi:  10.11898/1001-7313.20230407
    [14] 覃皓, 郑凤琴, 伍丽泉. 台风威马逊(1409)强度与降水变化的相互作用. 应用气象学报, 2022, 33(4): 477-488. doi:  10.11898/1001-7313.20220408

    Qin H, Zheng F Q, Wu L Q. The interaction between intensity and rainfall of Typhoon Rammasun(1409). J Appl Meteor Sci, 2022, 33(4): 477-488. doi:  10.11898/1001-7313.20220408
    [15] Chan J C, Gray W M. Tropical cyclone movement and surrounding flow relationships. Mon Wea Rev, 1982, 110: 1354-1374. doi:  10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2
    [16] Chan J C, Williams R T. Analytical and numerical studies of the beta-effect in tropical cyclone motion. Part Ⅰ: Zero mean flow. J Atmos Sci, 1987, 44: 1257-1265. doi:  10.1175/1520-0469(1987)044<1257:AANSOT>2.0.CO;2
    [17] 费亮, 李小凡. 高层冷涡的不同结构对台风运动的影响. 应用气象学报, 1993, 4(1): 1-7. http://qikan.camscma.cn/article/id/19930105

    Fei L, Li X F. The influence of structure of upper-tropospheric cold vortex on typhoon motion. J Appl Meteor Sci, 1993, 4(1): 1-7. http://qikan.camscma.cn/article/id/19930105
    [18] Wu L G, Wang B. A potential vorticity tendency diagnostic approach for tropical cyclone motion. Mon Wea Rev, 2000, 128: 1899-1911. doi:  10.1175/1520-0493(2000)128<1899:APVTDA>2.0.CO;2
    [19] Chan J C, Ko F M, Lei Y M. Relationship between potential vorticity tendency and tropical cyclone motion. J Atmos Sci, 2002, 59: 1317-1336. doi:  10.1175/1520-0469(2002)059<1317:RBPVTA>2.0.CO;2
    [20] Shapiro L J. Potential vorticity asymmetries and tropical cyclone motion. Mon Wea Rev, 1999, 127: 124-131. doi:  10.1175/1520-0493(1999)127<0124:PVAATC>2.0.CO;2
    [21] 张胜军, 陈联寿, 徐祥德. Helen台风(9505)异常路径的诊断分析与数值模拟. 大气科学, 2005, 29(6): 937-946. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200506008.htm

    Zhang S J, Chen L S, Xu X D. The diagnoses and numerical simulation on the unusual track of Helen(9505). Chinese J Atmos Sci, 2005, 29(6): 937-946. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200506008.htm
    [22] 张晓慧, 张立凤, 周海申, 等. 双台风相互作用及其影响. 应用气象学报, 2019, 30(4): 456-466. doi:  10.11898/1001-7313.20190406

    Zhang X H, Zhang L F, Zhou H S, et al. Interaction and influence of binary typhoons. J Appl Meteor Sci, 2019, 30(4): 456-466. doi:  10.11898/1001-7313.20190406
    [23] 王海平, 董林, 许映龙, 等. 台风"烟花"的主要特点和路径预报难点分析. 海洋气象学报, 2022, 42(1): 83-91. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX202301004.htm

    Wang H P, Dong L, Xu Y L, et al. Analysis on main characteristics of Typhoon In-fa and difficulties in its track forecast. J Marine Meteor, 2022, 42(1): 83-91. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX202301004.htm
    [24] 麻素红, 张进, 瞿安祥, 等. 垂直分层加密和预报区域扩大对GRAPES_TYM台风预报的影响. 气象学报, 2021, 79(1): 94-103. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202101007.htm

    Ma S H, Zhang J, Qu A X, et al. Impacts to tropical cyclone prediction of GRAPES_TYM from increasing of model vertical levels and enlargement of model forecast domain. Acta Meteor Sinica, 2021, 79(1): 94-103. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202101007.htm
    [25] Dvorak V F, Smigielski F. A Workbook on Tropical Clouds and Cloud Systems Observed in Satellite Image//National Oceanic and Atmospheric Administation, National Environmental Satellite, Data, and Information Service and National Weather Service, 1990-1993, 1993.
    [26] 郑倩, 毛程燕, 丁丽华, 等. 台风利奇马(1909)与台风摩羯(1814)云特征对比. 应用气象学报, 2022, 33(1): 43-55. doi:  10.11898/1001-7313.20220104

    Zheng Q, Mao C Y, Ding L H, et al. Comparison of cloud characteristics between Typhoon Lekima(1909) and Typhoon Yagi(1814). J Appl Meteor Sci, 2022, 33(1): 43-55. doi:  10.11898/1001-7313.20220104
    [27] Chen Y A, Wu C C. Environmental forcing of upper-troposhperic cold low on tropical cyclone intensity and structural change. J Atmos Sci, 2023, 80: 1123-1144.
    [28] George J E, Gray W M. Tropical cyclone motion and surrounding parameter relationships. J Appl Meteor, 1976, 15: 1252-1264.
    [29] Velden C S, Leslie L M. The basic relationship between tropical cyclone intensity and the depth of the environmental steering layer in the Austrian Region. Wea Forecasting, 1991, 6(2): 244-253.
    [30] Dong K Q, Neumann C J. The relationship between tropical cyclone motion and environmental geostrophic nows. Mon Wea Rev, 1986, 114(1): 115-122.
    [31] Sanders F, Adams N J, Gordon B, et al. Further development of a barotropic operational model for predicting paths of tropical storms. Mon Wea Rev, 1980, 108(5): 642-654.
    [32] 许映龙, 吕心艳, 张玲, 等. 1323号强台风菲特特点及预报难点分析. 气象, 2015, 41(10): 1222-1231. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201510005.htm

    Xu Y L, Lü X Y, Zhang L, et al. Analysis on the characteristics and forecasting difficulty of severe Typhoon Fitow(No. 1323). Meteor Mon, 2015, 41(10): 1222-1231. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201510005.htm
    [33] 张萌, 于海鹏, 黄建平, 等. GRAPES_GFS 2.0模式系统误差评估. 应用气象学报, 2018, 29(5): 571-583. doi:  10.11898/1001-7313.20180506

    Zhang M, Yu H P, Huang J P, et al. Assessment on systematic errors of GRAPES_GFS 2.0. J Appl Meteor Sci, 2018, 29(5): 571-583. doi:  10.11898/1001-7313.20180506
    [34] 麻素红, 张进, 沈学顺, 等. 2016年GRAPES_TYM改进及对台风预报影响. 应用气象学报, 2018, 29(3): 257-269. doi:  10.11898/1001-7313.20180301

    Ma S H, Zhang J, Shen X S, et al. The upgrade of GRAPE_TYM in 2016 and its impacts on tropical cyclone prediction. J Appl Meteor Sci, 2018, 29(3): 257-269. doi:  10.11898/1001-7313.20180301
    [35] 黄江平, 董佩明, 李超, 等. 台风北冕(0809)数值预报敏感初始误差研究. 应用气象学报, 2013, 24(4): 425-434. http://qikan.camscma.cn/article/id/20130405

    Huang J P, Dong P M, Li C, et al. Influences of sensitive initial error on the numerical forecast of Typhoon Kammuri(0809). J Appl Meteor Sci, 2013, 24(4): 425-434. http://qikan.camscma.cn/article/id/20130405
    [36] 刘永柱, 张林, 陈炯, 等. CMA-GFS 4DVar边界层过程线性化的改进. 应用气象学报, 2023, 34(1): 15-26. doi:  10.11898/1001-7313.20230102

    Liu Y Z, Zhang L, Chen J, et al. An improvement of the linearized planetary boundary layer parameterization scheme for CMA-GFS 4DVar. J Appl Meteor Sci, 2023, 34(1): 15-26. doi:  10.11898/1001-7313.20230102
  • 加载中
图(11)
计量
  • 摘要浏览量:  446
  • HTML全文浏览量:  64
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-01
  • 修回日期:  2023-08-22
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回