Impacts of Upper Tropospheric Cold Low on the Track of Typhoon In-fa in 2021
-
摘要: 2021年台风烟花(2106)移动路径复杂,经历多次移动方向和速度的异常变化,数值模式及主观综合预报对其路径预报均误差较大,模式对120 h预报误差最大达到400~800 km。通过研究导致模式对初次登陆时间及位置预报出现明显偏差的原因发现,高空冷涡的存在有利于副热带高压东退,使得影响台风烟花的引导气流减弱,移速明显减慢,24 h平均移动速度仅为3.6 km·h-1。随着副热带高压的继续北抬减弱,高空冷涡减弱后的西风槽前偏南气流引导是台风烟花移动路径出现明显偏北分量、登陆浙北地区的重要原因。通过对确定性预报和集合预报分析发现,数值模式对高空冷涡的预报仍存在较大误差和不确定性,是导致台风烟花路径预报误差较大的主要原因。
-
关键词:
- 台风烟花(2106);
- 北折路径;
- 高空冷涡;
- 模式误差
Abstract: Typhoon In-fa lands on the coast of Zhoushan, Zhejiang Province on 25 July 2021, bringing severe wind and rain to the coastal areas for a long time. Before landing, it maintains in the sea, east of Ryukyu Islands and then suddenly turns northward. The official subjective and numerical model forecasts both produce serious errors on the landing time and location, which has a certain impact on the decision of disaster prevention.Using the best track data of China Meteorological Administration (CMA) and the water vapor channel data of FY-4A satellite cloud image, the characteristics of Typhoon In-fa, especially the causes of its stagnation and northerly bend are investigated. Deterministic model forecast results from the regional mesoscale typhoon numerical forecast system (CMA-TYM), the fine-grid numerical forecast product of European Center for Medium-range Weather Forecasts (ECMWF) and National Center for Environmental Prediction Center (NCEP), and ECMWF ensemble forecast data are also analyzed. The fifth generation global climate reanalysis data set ERA5 is used for the analysis of the real situation field and physical quantity field. The center of the upper-tropospheric cold low (UTCL) is determined by referring to the water vapor channel of the satellite cloud image and the horizontal flow field is obtained according to the wind field data of ERA5. The center of the cyclonic circulation over 200 hPa is set as the center of UTCL.Through FY-4A water vapor cloud image, it is found that in the stagnation stage of Typhoon In-fa, there is a UTCL system on the north side. By analyzing the vertical distribution of circulation situation field, steering flow, and relative vorticity, it is found that the position of the subtropical high system is to the east and north, and typhoon guiding effect on the typhoon is weak. Therefore, the main weather systems that affect the change of its track are the UTCL and westerly trough system in the upper troposphere. There are also differences in the interaction between UTCL and typhoon at different intensities and distances. By analyzing the deterministic and ensemble prediction of ECMWF and CMA-TYM models, it is found that the prediction errors and deviations of UTCL are important reasons for the track predictions. There are still large errors and uncertainties of ensemble prediction in the prediction of UTCL, especially for long lead time forecast products. The UTCL slows down Typhoon In-fa and makes it bend to the left, which indirectly leads to the northerly bend of Typhoon In-fa.In the future, it is necessary to further study the influence of UTCL on typhoon track and intensity, pay more attention to the prediction performance of UTCL, and carry out the prediction and inspection of UTCL in the model, so as to support the interpretation and improvement of the model product. -
图 1 2021年7月19日20:00—24日20:00台风烟花最佳路径与数值模式120 h预报
(a)7月19日20:00起报的路径预报比较,(b)7月20日20:00起报的路径预报比较,(c)7月19日20:00起报的移动速度与最佳路径移动速度比较,(d)7月19日与20日20:00起报的12~120 h路径预报误差比较
Fig. 1 The best track and numerical model 120 h track forecast of Typhoon In-Fa from 2000 BT 19 Jul to 2000 BT 24 Jul in 2021
(a)initiated at 2000 BT 19 Jul,(b)initiated at 2000 BT 20 Jul, (c)speed of the best track moving and numerical model forecast initiated at 2000 BT 19 Jul, (d)12-120 h track errors of numerical model initiated at 2000 BT 19 Jul and 2000 BT 20 Jul
图 5 2021年7月17—29日ECMWF确定性模式分析场计算得到的1000 hPa至100 hPa平均引导气流(蓝线)(红线为台风路径) (a)以及整层引导气流分布(b)
Fig. 5 Mean steering flow (the blue line) from 1000 hPa to 100 hPa (the red line denotes the track of typhoon) (a) and vertical steering flow distribution(b) of Typhoon In-Fa based on ECMWF deterministic model from 17 Jul to 29 Jul in 2021
图 9 ECMWF确定性预报在2021年7月19日20:00(a)和20日20:00(b)起报路径(红线) 的引导气流(对流层中高层平均(黄线),中低层平均(蓝线),中层平均(黑线))
Fig. 9 ECMWF deterministic forecasts track (the red line) at 2000 BT 19 Jul(a) and 2000 BT 20 Jul(b) in 2021 and steering flows of tropospheric mid-upper mean (the yellow line), mid-lower mean (the blue line), and mid-level mean (the black line)
图 10 ECMWF在2021年7月19日20:00起报的西行组(a)和西北行组(b)的72 h 500 Pa高度场集合预报(红色等值线) 和分析场(蓝色等值线)(单位:gpm)(黑线为最佳路径,棕线为预报路径)
Fig. 10 Composited 500 hPa height of forecast (the red contour) and analysis field (the blue contour) for westbound group members(a) and northwest group members(b) in ECMWF 72 h forecast initiated at 2000 BT 19 Jul 2021 (unit:gpm) (the black curve denotes the best track, the brown curve denotes the forecast track)
图 11 2021年7月22日200 hPa流场(流线) 和风速(填色) (a)CMA-TYM 19日20:00起报,(b)ECMWF 19日20:00起报,(c)CMA-TYM 20日20:00起报,(d)ECMWF 20日20:00起报,(e)ERA5 22日20:00分析场
Fig. 11 200 hPa wind stream field (the streamline) on 22 Jul 2021 and wind speed diagram (the shaded) (a)CMA-TYM forecast initiated at 2000 BT 19 Jul, (b)ECMWF forecast initiated at 2000BT 19 Jul, (c)CMA-TYM forecast initiated at 2000 BT 20 Jul, (d)ECMWF forecast initiated at 2000 BT 20 Jul, (e)analysis fields of ERA5 at 2000 BT 22 Jul
-
[1] 霍振华, 李晓莉, 陈静, 等.基于背景场奇异向量的CMA全球集合预报试验.应用气象学报, 2022, 33(6):655-667. doi: 10.11898/1001-7313.20220602Huo Z H, Li X L, Chen J, et al. CMA global ensemble prediction using singular vectors from background field. J Appl Meteor Sci, 2022, 33(6): 655-667. doi: 10.11898/1001-7313.20220602 [2] Qian C H, Zhang F Q, Benjamin W, et al. Probabilistic evaluation of the dynamics and prediction of super Typhoon Megi. Wea Forecasting, 2013, 28(6): 1562-1577. doi: 10.1175/WAF-D-12-00121.1 [3] Campenella C M, Possie N E. Upper-level cut-off lows in southern South America. Meteor Atmos Phys, 2007, 96: 181-191. doi: 10.1007/s00703-006-0227-2 [4] 陈联寿, 丁一汇. 西太平洋台风概论. 北京: 科学出版社, 1979: 318-474.Chen L S, Ding Y H. An Introduction to the Western Pacific Typhoon. Beijing: Science Press, 1979: 318-474. [5] Patla J E, Stevens D G, Barnes M. A conceptual model for the influence of TUTT cells on tropical cyclone motion in the northwest Pacific Ocean. Wea Forecasting, 2009, 24: 1215-1235. doi: 10.1175/2009WAF2222181.1 [6] 温典, 李英, 魏娜, 等. 高空冷涡影响台风Meranti(1010)北翘路径的集合预报分析. 大气科学, 2019, 43(4): 730-740. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201904017.htmWen D, Li Y, Wei N, et al. An ensemble analysis on abrupt northward turning of Typhoon Meranti(1010) under the influence of an upper-tropospheric cold low. Chinese J Atmos Sci, 2019, 43(4): 730-740. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201904017.htm [7] Yan Z Y, Ge X Y, Wang Z. Understanding the impacts of upper-tropospheric cold low on Typhoon Jongdari(2018) using piecewise potential vorticity inversion. Mon Wea Rev, 2021, 149: 1499-1515. doi: 10.1175/MWR-D-20-0271.1 [8] Wei N, Li Y, Zhang D L, et al. A statistical analysis of the relationship between upper-tropospheric cold low and tropical cyclone track and intensity change over the western North Pacific. Mon Wea Rev, 2016, 144(5): 1805-1822. doi: 10.1175/MWR-D-15-0370.1 [9] Chen G, Chou L F. An investigation of cold vortices in the upper troposphere over the western North Pacific during the warm season. Mon Wea Rev, 1994, 122: 1436-1448. doi: 10.1175/1520-0493(1994)122<1436:AIOCVI>2.0.CO;2 [10] Davis C A. Piecewise potential vorticity inversion. J Atmos Sci, 1992, 49: 1397-1411. doi: 10.1175/1520-0469(1992)049<1397:PPVI>2.0.CO;2 [11] Wu C C, Emanuel K. Potential vorticity diagnostics of hurricane movement. Part Ⅰ: A case study of Hurricane Bob(1991). Mon Wea Rev, 1995, 123: 69-92. doi: 10.1175/1520-0493(1995)123<0069:PVDOHM>2.0.CO;2 [12] Wu C C, Emanuel K. Potential vorticity diagnostics of hurricane movement. Part Ⅱ: Tropical Storm Ana(1991) and Hurricane Andrew(1992). Mon Wea Rev, 1995, 123: 93-109. doi: 10.1175/1520-0493(1995)123<0093:PVDOHM>2.0.CO;2 [13] 周明珠, 徐晶. 西北太平洋热带气旋强度和尺度协同变化特征. 应用气象学报, 2023, 34(4): 463-474. doi: 10.11898/1001-7313.20230407Zhou M Z, Xu J. Covariation relationship between tropical cyclone intensity and size change over the Northwest Pacific. J Appl Meteor Sci, 2023, 34(4): 463-474. doi: 10.11898/1001-7313.20230407 [14] 覃皓, 郑凤琴, 伍丽泉. 台风威马逊(1409)强度与降水变化的相互作用. 应用气象学报, 2022, 33(4): 477-488. doi: 10.11898/1001-7313.20220408Qin H, Zheng F Q, Wu L Q. The interaction between intensity and rainfall of Typhoon Rammasun(1409). J Appl Meteor Sci, 2022, 33(4): 477-488. doi: 10.11898/1001-7313.20220408 [15] Chan J C, Gray W M. Tropical cyclone movement and surrounding flow relationships. Mon Wea Rev, 1982, 110: 1354-1374. doi: 10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2 [16] Chan J C, Williams R T. Analytical and numerical studies of the beta-effect in tropical cyclone motion. Part Ⅰ: Zero mean flow. J Atmos Sci, 1987, 44: 1257-1265. doi: 10.1175/1520-0469(1987)044<1257:AANSOT>2.0.CO;2 [17] 费亮, 李小凡. 高层冷涡的不同结构对台风运动的影响. 应用气象学报, 1993, 4(1): 1-7. http://qikan.camscma.cn/article/id/19930105Fei L, Li X F. The influence of structure of upper-tropospheric cold vortex on typhoon motion. J Appl Meteor Sci, 1993, 4(1): 1-7. http://qikan.camscma.cn/article/id/19930105 [18] Wu L G, Wang B. A potential vorticity tendency diagnostic approach for tropical cyclone motion. Mon Wea Rev, 2000, 128: 1899-1911. doi: 10.1175/1520-0493(2000)128<1899:APVTDA>2.0.CO;2 [19] Chan J C, Ko F M, Lei Y M. Relationship between potential vorticity tendency and tropical cyclone motion. J Atmos Sci, 2002, 59: 1317-1336. doi: 10.1175/1520-0469(2002)059<1317:RBPVTA>2.0.CO;2 [20] Shapiro L J. Potential vorticity asymmetries and tropical cyclone motion. Mon Wea Rev, 1999, 127: 124-131. doi: 10.1175/1520-0493(1999)127<0124:PVAATC>2.0.CO;2 [21] 张胜军, 陈联寿, 徐祥德. Helen台风(9505)异常路径的诊断分析与数值模拟. 大气科学, 2005, 29(6): 937-946. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200506008.htmZhang S J, Chen L S, Xu X D. The diagnoses and numerical simulation on the unusual track of Helen(9505). Chinese J Atmos Sci, 2005, 29(6): 937-946. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200506008.htm [22] 张晓慧, 张立凤, 周海申, 等. 双台风相互作用及其影响. 应用气象学报, 2019, 30(4): 456-466. doi: 10.11898/1001-7313.20190406Zhang X H, Zhang L F, Zhou H S, et al. Interaction and influence of binary typhoons. J Appl Meteor Sci, 2019, 30(4): 456-466. doi: 10.11898/1001-7313.20190406 [23] 王海平, 董林, 许映龙, 等. 台风"烟花"的主要特点和路径预报难点分析. 海洋气象学报, 2022, 42(1): 83-91. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX202301004.htmWang H P, Dong L, Xu Y L, et al. Analysis on main characteristics of Typhoon In-fa and difficulties in its track forecast. J Marine Meteor, 2022, 42(1): 83-91. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX202301004.htm [24] 麻素红, 张进, 瞿安祥, 等. 垂直分层加密和预报区域扩大对GRAPES_TYM台风预报的影响. 气象学报, 2021, 79(1): 94-103. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202101007.htmMa S H, Zhang J, Qu A X, et al. Impacts to tropical cyclone prediction of GRAPES_TYM from increasing of model vertical levels and enlargement of model forecast domain. Acta Meteor Sinica, 2021, 79(1): 94-103. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202101007.htm [25] Dvorak V F, Smigielski F. A Workbook on Tropical Clouds and Cloud Systems Observed in Satellite Image//National Oceanic and Atmospheric Administation, National Environmental Satellite, Data, and Information Service and National Weather Service, 1990-1993, 1993. [26] 郑倩, 毛程燕, 丁丽华, 等. 台风利奇马(1909)与台风摩羯(1814)云特征对比. 应用气象学报, 2022, 33(1): 43-55. doi: 10.11898/1001-7313.20220104Zheng Q, Mao C Y, Ding L H, et al. Comparison of cloud characteristics between Typhoon Lekima(1909) and Typhoon Yagi(1814). J Appl Meteor Sci, 2022, 33(1): 43-55. doi: 10.11898/1001-7313.20220104 [27] Chen Y A, Wu C C. Environmental forcing of upper-troposhperic cold low on tropical cyclone intensity and structural change. J Atmos Sci, 2023, 80: 1123-1144. [28] George J E, Gray W M. Tropical cyclone motion and surrounding parameter relationships. J Appl Meteor, 1976, 15: 1252-1264. [29] Velden C S, Leslie L M. The basic relationship between tropical cyclone intensity and the depth of the environmental steering layer in the Austrian Region. Wea Forecasting, 1991, 6(2): 244-253. [30] Dong K Q, Neumann C J. The relationship between tropical cyclone motion and environmental geostrophic nows. Mon Wea Rev, 1986, 114(1): 115-122. [31] Sanders F, Adams N J, Gordon B, et al. Further development of a barotropic operational model for predicting paths of tropical storms. Mon Wea Rev, 1980, 108(5): 642-654. [32] 许映龙, 吕心艳, 张玲, 等. 1323号强台风菲特特点及预报难点分析. 气象, 2015, 41(10): 1222-1231. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201510005.htmXu Y L, Lü X Y, Zhang L, et al. Analysis on the characteristics and forecasting difficulty of severe Typhoon Fitow(No. 1323). Meteor Mon, 2015, 41(10): 1222-1231. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201510005.htm [33] 张萌, 于海鹏, 黄建平, 等. GRAPES_GFS 2.0模式系统误差评估. 应用气象学报, 2018, 29(5): 571-583. doi: 10.11898/1001-7313.20180506Zhang M, Yu H P, Huang J P, et al. Assessment on systematic errors of GRAPES_GFS 2.0. J Appl Meteor Sci, 2018, 29(5): 571-583. doi: 10.11898/1001-7313.20180506 [34] 麻素红, 张进, 沈学顺, 等. 2016年GRAPES_TYM改进及对台风预报影响. 应用气象学报, 2018, 29(3): 257-269. doi: 10.11898/1001-7313.20180301Ma S H, Zhang J, Shen X S, et al. The upgrade of GRAPE_TYM in 2016 and its impacts on tropical cyclone prediction. J Appl Meteor Sci, 2018, 29(3): 257-269. doi: 10.11898/1001-7313.20180301 [35] 黄江平, 董佩明, 李超, 等. 台风北冕(0809)数值预报敏感初始误差研究. 应用气象学报, 2013, 24(4): 425-434. http://qikan.camscma.cn/article/id/20130405Huang J P, Dong P M, Li C, et al. Influences of sensitive initial error on the numerical forecast of Typhoon Kammuri(0809). J Appl Meteor Sci, 2013, 24(4): 425-434. http://qikan.camscma.cn/article/id/20130405 [36] 刘永柱, 张林, 陈炯, 等. CMA-GFS 4DVar边界层过程线性化的改进. 应用气象学报, 2023, 34(1): 15-26. doi: 10.11898/1001-7313.20230102Liu Y Z, Zhang L, Chen J, et al. An improvement of the linearized planetary boundary layer parameterization scheme for CMA-GFS 4DVar. J Appl Meteor Sci, 2023, 34(1): 15-26. doi: 10.11898/1001-7313.20230102