[1]
|
陈绍东, 张义军, 颜旭, 等. 初始长连续电流引起的地电位抬升和SPD损坏. 应用气象学报, 2020, 31(2):236-246. doi: 10.11898/1001-7313.20200210Chen S D, Zhang Y J, Yan X, et al. Ground potential rise and surge protective device damage caused by initial long continuous current process in triggered lightning. J Appl Meteor Sci, 2020, 31(2): 236-246. doi: 10.11898/1001-7313.20200210
|
[2]
|
马瑞阳, 郑栋, 姚雯, 等. 雷暴云特征数据集及我国雷暴活动特征. 应用气象学报, 2021, 32(3): 358-369. doi: 10.11898/1001-7313.20210308Ma R Y, Zheng D, Yao W, et al. Thunderstorm feature dataset and characteristics of thunderstorm activities in China. J Appl Meteor Sci, 2021, 32(3): 358-369. doi: 10.11898/1001-7313.20210308
|
[3]
|
任素玲, 牛宁, 覃丹宇, 等. 2021年2月北美极端低温暴雪的卫星遥感监测. 应用气象学报, 2022, 33(6): 696-710. doi: 10.11898/1001-7313.20220605Ren S L, Niu N, Qin D Y, et al. Extreme cold and snowstorm event in North America in February 2021 based on satellite data. J Appl Meteor Sci, 2022, 33(6): 696-710. doi: 10.11898/1001-7313.20220605
|
[4]
|
Fan J, Wang Y, Rosenfeld D, et al. Review of aerosol-cloud interactions: Mechanisms, significance and challenges. J Atmos Sci, 2016, 73(11): 4221-4252. doi: 10.1175/JAS-D-16-0037.1
|
[5]
|
Kaufman Y J, Tanré D, Holben B N, et al. Aerosol radiative impact on spectral solar flux at the surface, derived from principal-plane sky measurements. J Atmos Sci, 2002, 59(3): 635-646. doi: 10.1175/1520-0469(2002)059<0635:ARIOSS>2.0.CO;2
|
[6]
|
Tao W K, Chen J P, Li Z, et al. Impact of aerosols on convective clouds and precipitation. Rev Geophys, 2012, 50. DOI: 10.1029/2011RG000369.
|
[7]
|
Proestakis E, Kazadzis S, Lagouvardos K, et al. Lightning activity and aerosols in the Mediterranean region. Atmos Res, 2016, 170: 66-75. doi: 10.1016/j.atmosres.2015.11.010
|
[8]
|
Lal D M, Ghude S D, Mahakur M, et al. Relationship between aerosol and lightning over Indo-Gangetic Plain(IGP), India. Climate Dyn, 2018, 50(9): 3865-3884.
|
[9]
|
Altaratz O, Kucienska B, Kostinski A, et al. Global association of aerosol with flash density of intense lightning. Environ Res Lett, 2017, 12(11). DOI: 10.1088/1748-9326/aa922b.
|
[10]
|
Naccarato K P, Pinto Jr O, Pinto I R C A. Evidence of thermal and aerosol effects on the cloud-to-ground lightning density and polarity over large urban areas of Southeastern Brazil. Geophys Res Lett, 2003, 30(13). DOI: 10.1029/2003GL017496.
|
[11]
|
Steiger S M, Orville R E. Cloud-to-ground lightning enhancement over Southern Louisiana. Geophys Res Lett, 2003, 30(19). DOI: 10.1029/2003GL017923.
|
[12]
|
Kar S K, Liou Y A. Enhancement of cloud-to-ground lightning activity over Taipei, Taiwan in relation to urbanization. Atmos Res, 2014, 147/148: 111-120.
|
[13]
|
Westcott N E. Summertime cloud-to-ground lightning activity around major Midwestern urban areas. J Appl Meteor, 1995, 34(7): 1633-1642. doi: 10.1175/1520-0450-34.7.1633
|
[14]
|
Wang H C, Shi Z, Wang X J, et al. Cloud-to-ground lightning response to aerosol over air-polluted urban areas in China. Remote Sensing, 2021, 13(3). DOI: 10.3390/rs13132600.
|
[15]
|
梁苑新, 车慧正, 王宏, 等. 北京一次污染过程气溶胶光学特性及辐射效应. 应用气象学报, 2020, 31(5): 583-594. doi: 10.11898/1001-7313.20200506Liang Y X, Che H Z, Wang H, et al. Aerosol optical properties and radiative effects during a pollution episode in Beijing. J Appl Meteor Sci, 2020, 31(5): 583-594. doi: 10.11898/1001-7313.20200506
|
[16]
|
杨先逸, 车慧正, 陈权亮, 等. 天空辐射计观测反演北京城区气溶胶光学特性. 应用气象学报, 2020, 31(3): 373-384. doi: 10.11898/1001-7313.20200311Yang X Y, Che H Z, Chen Q L, et al. Retrieval of aerosol optical properties by sky radiometer over urban Beijing. J Appl Meteor Sci, 2020, 31(3): 373-384. doi: 10.11898/1001-7313.20200311
|
[17]
|
Altaratz O, Koren I, Yair Y, et al. Lightning response to smoke from Amazonian fires. Geophys Res Lett, 2010, 37(7). DOI: 10.1029/2010GL042679.
|
[18]
|
Tan Y B, Peng L, Shi Z, et al. Lightning flash density in relation to aerosol over Nanjing(China). Atmos Res, 2016, 174/175: 1-8. doi: 10.1016/j.atmosres.2016.01.009
|
[19]
|
Du S, Tan Y B, Wang R, et al. Lightning and aerosol correlation in different regions of China. Sci Technol Eng, 2018, 18(6): 22-30.
|
[20]
|
Zhao P G, Li Z Q, Xiao H, et al. Distinct aerosol effects on cloud-to-ground lightning in the plateau and basin regions of Sichuan, Southwest China. Atmos Chem Phys, 2020, 20(21): 13379-13397. doi: 10.5194/acp-20-13379-2020
|
[21]
|
Sun M Y, Qie X S, Liu D X, et al. Analysis of potential effects of aerosol on lightning activity in Beijing metropolitan region. Chinese J Geophys, 2020, 63(5): 1766-1744.
|
[22]
|
Sun C F, Liu D X, Xiao X, et al. The electrical activity of a thunderstorm under high dust circumstances over Beijing metropolis region. Atmos Res, 2023, 285. DOI: 10.1016/j.atmosres.2023.106628.
|
[23]
|
Wang Q, Li Z, Guo J, et al. The climate impact of aerosols on the lightning flash rate: Is it detectable from long-term measurements?. Atmos Chem Phys, 2018, 18(17): 12797-12816. doi: 10.5194/acp-18-12797-2018
|
[24]
|
Pan Z X, Mao F Y, Rosenfeld D, et al. Coarse sea spray inhibits lightning. Nature Communications, 2022, 13. DOI: 10.1038/s41467-022-31714-5.
|
[25]
|
Yang X, Li Z Q. Increases in thunderstorm activity and relationships with air pollution in southeast China. J Geophys Res Atmos, 2014, 119(4): 1835-1844.
|
[26]
|
Xia R, Zhang D, Wang B. A 6-yr cloud-to-ground lightning climatology and its relationship to rainfall over central and eastern China. J Appl Meteor Climatol, 2015(12): 2443-2460.
|
[27]
|
Randles C A, da Silva A M, Buchard V, et al. The MERRA-2 aerosol reanalysis, 1980 onward. Part Ⅰ: System description and data assimilation evaluation. J Climate, 2017, 30(17): 6823-6850.
|
[28]
|
Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Quart J Royal Meteor Soc, 2020, 146(730): 1999-2049.
|
[29]
|
Stolz D C, Rutledge S A, Pierce J R. Simultaneous influences of thermodynamics and aerosols on deep convection and lightning in the tropics. J Geophys Res Atmos, 2015, 120(12): 6207-6231.
|
[30]
|
Pérez-Invernón F J, Huntrieser H, Gordillo-Vázquez F J, et al. Influence of the COVID-19 lockdown on lightning activity in the Po Valley. Atmos Res, 2021, 263. DOI: 10.1016/j.atmosres.2021.105808.
|
[31]
|
张腾飞, 许迎杰, 张杰, 等. 云南省闪电活动时大气相对湿度结构特征. 应用气象学报, 2010, 21(2): 180-188. http://qikan.camscma.cn/article/id/20100207Zhang T F, Xu Y J, Zhang J, et al. Structural characteristics of atmospheric relative humidity during lightning activity in Yunnan Province. J Appl Meteor Sci, 2010, 21(2): 180-188. http://qikan.camscma.cn/article/id/20100207
|
[32]
|
俞海洋, 张杰, 李婷, 等. 2000—2013年北京及周边地区大气气溶胶光学厚度时空变化特征及气象影响因素分析. 气象科学, 2018, 38(4): 512-522. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201804009.htmYu H Y, Zhang J, Li T, et al. Spatia-temporal variation of atmospheric aerosol optical depth and the meteorological factors in Beijing and surrounding area from 2000 to 2013. J Meteor Sci, 2018, 38(4): 512-522. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201804009.htm
|
[33]
|
高茜, 刘全, 毕凯, 等. 基于航测的云底气溶胶活化率与过饱和度估算. 应用气象学报, 2021, 32(6): 653-664. doi: 10.11898/1001-7313.20210602Gao Q, Liu Q, Bi K, et al. Estimation of aerosol activation ratio and water vapor supersaturation at cloud base using aircraft measurement. J Appl Meteor Sci, 2021, 32(6): 653-664. doi: 10.11898/1001-7313.20210602
|
[34]
|
马学谦, 郭学良, 刘娜, 等. 青藏高原中东部气溶胶特征的飞机观测. 应用气象学报, 2021, 32(6): 706-719. doi: 10.11898/1001-7313.20210606Ma X Q, Guo X L, Liu N, et al. Aircraft measurements on properties of aerosols over the central and eastern Qinghai-Tibet Plateau. J Appl Meteor Sci, 2021, 32(6): 706-719. doi: 10.11898/1001-7313.20210606
|
[35]
|
Rosenfeld D, Andreae M O, Asmi A, et al. Global observations of aerosol-cloud-precipitation-climate interactions. Rev Geophys, 2014, 52: 750-808.
|
[36]
|
Yuan T, Remer L A, Pickering K E, et al. Observational evidence of aerosol enhancement of lightning activity and convective invigoration. Geophys Res Lett, 2011, 34(4). DOI: 10.1029/201GL046052.
|
[37]
|
李义宇, 孙鸿娉, 杨俊梅, 等. 华北中部夏季气溶胶和云分布特征. 应用气象学报, 2021, 32(6): 665-676. doi: 10.11898/1001-7313.20210603Li Y Y, Sun H P, Yang J M, et al. Characteristics of aerosol and cloud over the central plain of North China in summer. J Appl Meteor Sci, 2021, 32(6): 665-676. doi: 10.11898/1001-7313.20210603
|
[38]
|
Hu J, Rosenfeld D, Ryzhkov A, et al. Polarimetric radar convective cell tracking reveals large sensitivity of cloud precipitation and electrification properties to CCN. J Geophys Res Atmos, 2019, 124(22): 12194-12205.
|
[39]
|
Sokolik I, Toon O. Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature, 1996, 381: 681-683.
|
[40]
|
Andreae M O, Rosenfeld D. Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth Science Reviews, 2008, 89(1/2): 13-41.
|
[41]
|
Zhu H, Li R, Yang S, et al. The impacts of dust aerosol and convective available potential energy on precipitation vertical structure in southeastern China as seen from multisource observations. Atmos Chem Phys, 2023, 23: 2421-2437.
|
[42]
|
毛华云, 田刚, 黄玉虎, 等. 北京市大气环境中硫酸盐、硝酸盐粒径分布及存在形式. 环境科学, 2011, 32(5): 1237-1241. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201105004.htmMao H Y, Tian G, Huang Y H, et al. Mass size distributions and existing forms of sulfate and nitrate at atmospheric environment in Beijing. Environmental Science, 2011, 32(5): 1237-1241. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201105004.htm
|
[43]
|
Xiong J, Zhao T L, Bai Y Q, et al. Simulation and analyses of the potential impacts of different particle-size dust aerosols caused by the Qinghai-Tibet Plateau desertification on East Asia. Sustainability, 2020, 12(8). DOI: 10.3390/su12083231.
|