留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同类型气溶胶对长三角地区地闪活动影响

吴啸天 王晓妍 郑栋 张义军

吴啸天, 王晓妍, 郑栋, 等. 不同类型气溶胶对长三角地区地闪活动影响. 应用气象学报, 2023, 34(5): 608-618. DOI:  10.11898/1001-7313.20230509..
引用本文: 吴啸天, 王晓妍, 郑栋, 等. 不同类型气溶胶对长三角地区地闪活动影响. 应用气象学报, 2023, 34(5): 608-618. DOI:  10.11898/1001-7313.20230509.
Wu Xiaotian, Wang Xiaoyan, Zheng Dong, et al. Effects of different aerosols on cloud-to-ground lightning activity in the Yangtze River Delta. J Appl Meteor Sci, 2023, 34(5): 608-618. DOI:  10.11898/1001-7313.20230509.
Citation: Wu Xiaotian, Wang Xiaoyan, Zheng Dong, et al. Effects of different aerosols on cloud-to-ground lightning activity in the Yangtze River Delta. J Appl Meteor Sci, 2023, 34(5): 608-618. DOI:  10.11898/1001-7313.20230509.

不同类型气溶胶对长三角地区地闪活动影响

DOI: 10.11898/1001-7313.20230509
资助项目: 

国家自然科学基金项目 42175090

详细信息
    通信作者:

    吴啸天, 邮箱:22113020028@m.fudan.edu.cn

Effects of Different Aerosols on Cloud-to-ground Lightning Activity in the Yangtze River Delta

  • 摘要: 利用2015—2021年4—9月中国气象局全国地闪定位网的地闪观测资料与MERRA2气溶胶光学厚度再分析资料,分析长江三角洲及其周边地区(27.5°~35°N,115°~122.5°E)地闪活动与不同种类气溶胶的关系。结果表明:不同种类气溶胶与地闪活动的关系不同,有地闪日的硫酸盐气溶胶光学厚度更高,无地闪日的沙尘气溶胶光学厚度更高,地闪多发生在硫酸盐气溶胶光学厚度较高且沙尘气溶胶光学厚度较低的环境中。当硫酸盐气溶胶光学厚度低于阈值时,在一定相对湿度条件下地闪密度与硫酸盐气溶胶光学厚度为正相关关系,当硫酸盐气溶胶光学厚度高于阈值时,地闪密度有减小的趋势或趋势不明显,且不同月份的阈值不同。因此,气溶胶的云微物理作用与辐射效应的叠加使得气溶胶与地闪活动的关系更为复杂,而沙尘气溶胶与地闪密度在4—6月呈负相关关系,7—9月相关不显著。
  • 图  1  2015—2021年长三角及周边地区地闪密度、大气AOD、硫酸盐AOD和沙尘AOD空间分布

    Fig. 1  Spatial distribution of cloud-to-ground lightning density, atmosphere AOD, sulfate AOD and dust AOD in the Yangtze River Delta from 2015 to 2021

    图  2  2015—2021年长三角及周边地区逐月平均的大气AOD、硫酸盐AOD、沙尘AOD和地闪数

    Fig. 2  Monthly averaged atmosphere AOD, sulfate AOD, dust AOD and cloud-to-ground lightning number in the Yangtze River Delta from 2015 to 2021

    图  3  2015—2021年长三角及其周边地区有地闪日平均大气AOD、硫酸盐AOD和沙尘AOD较无地闪日的相对变化

    Fig. 3  Spatial distribution of differences in monthly averaged atmosphere AOD, sulfate AOD and dust AOD between cloud-to-ground lightning days and no cloud-to-ground lightning days in the Yangtze River Delta from 2015 to 2021

    图  4  2015—2021年4—9月长三角及其周边地区逐月平均的大气AOD、硫酸盐AOD和沙尘AOD在有地闪日和无地闪日的箱线图

    Fig. 4  Box plots of monthly averaged total AOD, sulfate AOD and dust AOD in cloud-to-ground lighting days and no cloud-to-ground lightning days in the Yangtze River Delta from Apr to Sep during 2015-2021

    图  5  AOD较高与较低条件下地闪密度差值

    Fig. 5  Spatial distribution of differences in cloud-to-ground lightning density between high and low AOD conditions

    图  6  2015—2021年4—9月长三角及其周边地区地闪密度与硫酸盐AOD散点图

    Fig. 6  Scatter plots of cloud-to-ground lightning density and sulfate AOD in the Yangtze River Delta from Apr to Sep during 2015-2021

    图  7  2015—2021年4—9月长三角及其周边地区地闪密度与850 hPa相对湿度散点图

    Fig. 7  Scatter plots of cloud-to-ground lightning density and 850 hPa relative humidity in the Yangtze River Delta from Apr to Sep during 2015-2021

    图  8  2015—2021年4—9月长三角及其周边地区硫酸盐AOD与850 hPa相对湿度散点图

    Fig. 8  Scatter plots of sulfate AOD and 850 hPa relative humidity in the Yangtze River Delta from Apr to Sep during 2015-2021

    图  9  2015—2021年4—9月长三角及其周边地区地闪密度与沙尘AOD散点图

    Fig. 9  Scatter plots of cloud-to-ground lightning density and dust AOD in the Yangtze River Delta from Apr to Sep during 2015-2021

  • [1] 陈绍东, 张义军, 颜旭, 等. 初始长连续电流引起的地电位抬升和SPD损坏. 应用气象学报, 2020, 31(2):236-246. doi:  10.11898/1001-7313.20200210

    Chen S D, Zhang Y J, Yan X, et al. Ground potential rise and surge protective device damage caused by initial long continuous current process in triggered lightning. J Appl Meteor Sci, 2020, 31(2): 236-246. doi:  10.11898/1001-7313.20200210
    [2] 马瑞阳, 郑栋, 姚雯, 等. 雷暴云特征数据集及我国雷暴活动特征. 应用气象学报, 2021, 32(3): 358-369. doi:  10.11898/1001-7313.20210308

    Ma R Y, Zheng D, Yao W, et al. Thunderstorm feature dataset and characteristics of thunderstorm activities in China. J Appl Meteor Sci, 2021, 32(3): 358-369. doi:  10.11898/1001-7313.20210308
    [3] 任素玲, 牛宁, 覃丹宇, 等. 2021年2月北美极端低温暴雪的卫星遥感监测. 应用气象学报, 2022, 33(6): 696-710. doi:  10.11898/1001-7313.20220605

    Ren S L, Niu N, Qin D Y, et al. Extreme cold and snowstorm event in North America in February 2021 based on satellite data. J Appl Meteor Sci, 2022, 33(6): 696-710. doi:  10.11898/1001-7313.20220605
    [4] Fan J, Wang Y, Rosenfeld D, et al. Review of aerosol-cloud interactions: Mechanisms, significance and challenges. J Atmos Sci, 2016, 73(11): 4221-4252. doi:  10.1175/JAS-D-16-0037.1
    [5] Kaufman Y J, Tanré D, Holben B N, et al. Aerosol radiative impact on spectral solar flux at the surface, derived from principal-plane sky measurements. J Atmos Sci, 2002, 59(3): 635-646. doi:  10.1175/1520-0469(2002)059<0635:ARIOSS>2.0.CO;2
    [6] Tao W K, Chen J P, Li Z, et al. Impact of aerosols on convective clouds and precipitation. Rev Geophys, 2012, 50. DOI:  10.1029/2011RG000369.
    [7] Proestakis E, Kazadzis S, Lagouvardos K, et al. Lightning activity and aerosols in the Mediterranean region. Atmos Res, 2016, 170: 66-75. doi:  10.1016/j.atmosres.2015.11.010
    [8] Lal D M, Ghude S D, Mahakur M, et al. Relationship between aerosol and lightning over Indo-Gangetic Plain(IGP), India. Climate Dyn, 2018, 50(9): 3865-3884.
    [9] Altaratz O, Kucienska B, Kostinski A, et al. Global association of aerosol with flash density of intense lightning. Environ Res Lett, 2017, 12(11). DOI:  10.1088/1748-9326/aa922b.
    [10] Naccarato K P, Pinto Jr O, Pinto I R C A. Evidence of thermal and aerosol effects on the cloud-to-ground lightning density and polarity over large urban areas of Southeastern Brazil. Geophys Res Lett, 2003, 30(13). DOI:  10.1029/2003GL017496.
    [11] Steiger S M, Orville R E. Cloud-to-ground lightning enhancement over Southern Louisiana. Geophys Res Lett, 2003, 30(19). DOI:  10.1029/2003GL017923.
    [12] Kar S K, Liou Y A. Enhancement of cloud-to-ground lightning activity over Taipei, Taiwan in relation to urbanization. Atmos Res, 2014, 147/148: 111-120.
    [13] Westcott N E. Summertime cloud-to-ground lightning activity around major Midwestern urban areas. J Appl Meteor, 1995, 34(7): 1633-1642. doi:  10.1175/1520-0450-34.7.1633
    [14] Wang H C, Shi Z, Wang X J, et al. Cloud-to-ground lightning response to aerosol over air-polluted urban areas in China. Remote Sensing, 2021, 13(3). DOI:  10.3390/rs13132600.
    [15] 梁苑新, 车慧正, 王宏, 等. 北京一次污染过程气溶胶光学特性及辐射效应. 应用气象学报, 2020, 31(5): 583-594. doi:  10.11898/1001-7313.20200506

    Liang Y X, Che H Z, Wang H, et al. Aerosol optical properties and radiative effects during a pollution episode in Beijing. J Appl Meteor Sci, 2020, 31(5): 583-594. doi:  10.11898/1001-7313.20200506
    [16] 杨先逸, 车慧正, 陈权亮, 等. 天空辐射计观测反演北京城区气溶胶光学特性. 应用气象学报, 2020, 31(3): 373-384. doi:  10.11898/1001-7313.20200311

    Yang X Y, Che H Z, Chen Q L, et al. Retrieval of aerosol optical properties by sky radiometer over urban Beijing. J Appl Meteor Sci, 2020, 31(3): 373-384. doi:  10.11898/1001-7313.20200311
    [17] Altaratz O, Koren I, Yair Y, et al. Lightning response to smoke from Amazonian fires. Geophys Res Lett, 2010, 37(7). DOI:  10.1029/2010GL042679.
    [18] Tan Y B, Peng L, Shi Z, et al. Lightning flash density in relation to aerosol over Nanjing(China). Atmos Res, 2016, 174/175: 1-8. doi:  10.1016/j.atmosres.2016.01.009
    [19] Du S, Tan Y B, Wang R, et al. Lightning and aerosol correlation in different regions of China. Sci Technol Eng, 2018, 18(6): 22-30.
    [20] Zhao P G, Li Z Q, Xiao H, et al. Distinct aerosol effects on cloud-to-ground lightning in the plateau and basin regions of Sichuan, Southwest China. Atmos Chem Phys, 2020, 20(21): 13379-13397. doi:  10.5194/acp-20-13379-2020
    [21] Sun M Y, Qie X S, Liu D X, et al. Analysis of potential effects of aerosol on lightning activity in Beijing metropolitan region. Chinese J Geophys, 2020, 63(5): 1766-1744.
    [22] Sun C F, Liu D X, Xiao X, et al. The electrical activity of a thunderstorm under high dust circumstances over Beijing metropolis region. Atmos Res, 2023, 285. DOI:  10.1016/j.atmosres.2023.106628.
    [23] Wang Q, Li Z, Guo J, et al. The climate impact of aerosols on the lightning flash rate: Is it detectable from long-term measurements?. Atmos Chem Phys, 2018, 18(17): 12797-12816. doi:  10.5194/acp-18-12797-2018
    [24] Pan Z X, Mao F Y, Rosenfeld D, et al. Coarse sea spray inhibits lightning. Nature Communications, 2022, 13. DOI:  10.1038/s41467-022-31714-5.
    [25] Yang X, Li Z Q. Increases in thunderstorm activity and relationships with air pollution in southeast China. J Geophys Res Atmos, 2014, 119(4): 1835-1844.
    [26] Xia R, Zhang D, Wang B. A 6-yr cloud-to-ground lightning climatology and its relationship to rainfall over central and eastern China. J Appl Meteor Climatol, 2015(12): 2443-2460.
    [27] Randles C A, da Silva A M, Buchard V, et al. The MERRA-2 aerosol reanalysis, 1980 onward. Part Ⅰ: System description and data assimilation evaluation. J Climate, 2017, 30(17): 6823-6850.
    [28] Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Quart J Royal Meteor Soc, 2020, 146(730): 1999-2049.
    [29] Stolz D C, Rutledge S A, Pierce J R. Simultaneous influences of thermodynamics and aerosols on deep convection and lightning in the tropics. J Geophys Res Atmos, 2015, 120(12): 6207-6231.
    [30] Pérez-Invernón F J, Huntrieser H, Gordillo-Vázquez F J, et al. Influence of the COVID-19 lockdown on lightning activity in the Po Valley. Atmos Res, 2021, 263. DOI:  10.1016/j.atmosres.2021.105808.
    [31] 张腾飞, 许迎杰, 张杰, 等. 云南省闪电活动时大气相对湿度结构特征. 应用气象学报, 2010, 21(2): 180-188. http://qikan.camscma.cn/article/id/20100207

    Zhang T F, Xu Y J, Zhang J, et al. Structural characteristics of atmospheric relative humidity during lightning activity in Yunnan Province. J Appl Meteor Sci, 2010, 21(2): 180-188. http://qikan.camscma.cn/article/id/20100207
    [32] 俞海洋, 张杰, 李婷, 等. 2000—2013年北京及周边地区大气气溶胶光学厚度时空变化特征及气象影响因素分析. 气象科学, 2018, 38(4): 512-522. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201804009.htm

    Yu H Y, Zhang J, Li T, et al. Spatia-temporal variation of atmospheric aerosol optical depth and the meteorological factors in Beijing and surrounding area from 2000 to 2013. J Meteor Sci, 2018, 38(4): 512-522. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201804009.htm
    [33] 高茜, 刘全, 毕凯, 等. 基于航测的云底气溶胶活化率与过饱和度估算. 应用气象学报, 2021, 32(6): 653-664. doi:  10.11898/1001-7313.20210602

    Gao Q, Liu Q, Bi K, et al. Estimation of aerosol activation ratio and water vapor supersaturation at cloud base using aircraft measurement. J Appl Meteor Sci, 2021, 32(6): 653-664. doi:  10.11898/1001-7313.20210602
    [34] 马学谦, 郭学良, 刘娜, 等. 青藏高原中东部气溶胶特征的飞机观测. 应用气象学报, 2021, 32(6): 706-719. doi:  10.11898/1001-7313.20210606

    Ma X Q, Guo X L, Liu N, et al. Aircraft measurements on properties of aerosols over the central and eastern Qinghai-Tibet Plateau. J Appl Meteor Sci, 2021, 32(6): 706-719. doi:  10.11898/1001-7313.20210606
    [35] Rosenfeld D, Andreae M O, Asmi A, et al. Global observations of aerosol-cloud-precipitation-climate interactions. Rev Geophys, 2014, 52: 750-808.
    [36] Yuan T, Remer L A, Pickering K E, et al. Observational evidence of aerosol enhancement of lightning activity and convective invigoration. Geophys Res Lett, 2011, 34(4). DOI:  10.1029/201GL046052.
    [37] 李义宇, 孙鸿娉, 杨俊梅, 等. 华北中部夏季气溶胶和云分布特征. 应用气象学报, 2021, 32(6): 665-676. doi:  10.11898/1001-7313.20210603

    Li Y Y, Sun H P, Yang J M, et al. Characteristics of aerosol and cloud over the central plain of North China in summer. J Appl Meteor Sci, 2021, 32(6): 665-676. doi:  10.11898/1001-7313.20210603
    [38] Hu J, Rosenfeld D, Ryzhkov A, et al. Polarimetric radar convective cell tracking reveals large sensitivity of cloud precipitation and electrification properties to CCN. J Geophys Res Atmos, 2019, 124(22): 12194-12205.
    [39] Sokolik I, Toon O. Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature, 1996, 381: 681-683.
    [40] Andreae M O, Rosenfeld D. Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth Science Reviews, 2008, 89(1/2): 13-41.
    [41] Zhu H, Li R, Yang S, et al. The impacts of dust aerosol and convective available potential energy on precipitation vertical structure in southeastern China as seen from multisource observations. Atmos Chem Phys, 2023, 23: 2421-2437.
    [42] 毛华云, 田刚, 黄玉虎, 等. 北京市大气环境中硫酸盐、硝酸盐粒径分布及存在形式. 环境科学, 2011, 32(5): 1237-1241. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201105004.htm

    Mao H Y, Tian G, Huang Y H, et al. Mass size distributions and existing forms of sulfate and nitrate at atmospheric environment in Beijing. Environmental Science, 2011, 32(5): 1237-1241. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201105004.htm
    [43] Xiong J, Zhao T L, Bai Y Q, et al. Simulation and analyses of the potential impacts of different particle-size dust aerosols caused by the Qinghai-Tibet Plateau desertification on East Asia. Sustainability, 2020, 12(8). DOI:  10.3390/su12083231.
  • 加载中
图(9)
计量
  • 摘要浏览量:  173
  • HTML全文浏览量:  63
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-03
  • 修回日期:  2023-06-12
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回