Comparison of Characteristics of Light Precipitation and Short-time Heavy Precipitation over Beijing, Tianjin, Hebei and Neighbouring Areas
-
摘要: 京津冀及周边地区为我国北方强降水的多发区域。基于1966—2021年87个国家级气象站逐小时降水资料对比分析暖季5—9月一般性降水和短时强降水的空间分布及年际变化,并基于1980—2021年298个气象站分析日变化等特征。结果表明:京津冀及周边地区的渤海西侧平原区域存在短时强降水强度极端性显著区域。渤海西侧平原以外区域两类降水平均小时降水量、强度和降水时次百分比均呈增长趋势,但短时强降水的增幅更高,而渤海西侧平原区域趋势则均不明显。渤海西侧平原区域和渤海西侧平原以外区域的一般性降水平均小时降水量和降水时次百分比日变化幅度显著弱于短时强降水;7—9月渤海西侧平原区域降水夜发性更明显,且相比另一区域半峰持续时间多出约2 h。2005年后渤海西侧平原区域和渤海西侧平原以外区域短时强降水平均小时降水量和降水时次百分比下午时段均明显减弱,但午夜后至清晨明显增加。Abstract: Beijing, Tianjin, Hebei and neighbouring areas (34°-43°N, 113°-123°E) are located at the north edge of the East Asian summer monsoon, and they are also the main heavy-rain areas in northern China. The hourly precipitation data of 87 national meteorological stations from 1966 to 2021 are used for the analysis of spatial distribution and interannual variations, while the data of 298 stations from 1980 to 2021 are used to statistically analyze the diurnal variations and interannual variations of light precipitation (0.1-20 mm·h-1) and short-time heavy precipitation (no less than 20 mm·h-1) for the warm season (May-September) over the region. The results show that the annual average light precipitation and frequency in Beijing, Tianjin, Hebei and neighbouring areas during the warm season are much higher than those of short-time heavy precipitation. However, there is an area in the west of the Bohai Sea Region (37°-41°N, 115°-119.5°E) with high short-time heavy rainfall intensity but weak rainfall amount and frequency, which means the convective characteristics of short-time precipitation over this area are more extreme and significant. The interannual variations of two kinds of precipitation amount, frequency, and intensity in Beijing, Tianjin, Hebei and neighbouring areas excluding the west of Bohai Sea Region both present an overall growing trend in the warm season, in which the increasing trend of short-time heavy precipitation is more obvious, but the trend in the west of the Bohai Sea Region is not obvious. The diurnal variation amplitudes of light precipitation amount and frequency in Beijing, Tianjin, Hebei and neighbouring areas excluding the west of the Bohai Sea Region are significantly weaker than those of short-time heavy precipitation, but the peak durations are significantly longer. Compared to Beijing, Tianjin, Hebei and neighbouring areas excluding the west of the Bohai Sea Region, two types of precipitation in the west of the Bohai Sea Region from July to September are more frequent and the rainfall peak durations are longer. The interannual variations of precipitation in different periods of the whole day show that the light precipitation in two regions both decrease in the afternoon, while the short-time heavy precipitation has weakened significantly in the afternoon since 2005, but increased significantly from midnight to early morning.
-
图 1 京津冀及周边地区降水观测站分布
(灰度填色表示地形高度;方块为1966—2021年5—9月87个有效测站, 1980—2021年5—9月为298个有效测站,三角为较1966—2021年增加的测站;方框表示渤海西侧平原区域)
Fig. 1 Distribution of national meteorological stations in Beijing, Tianjin, Hebei and neighbouring areas
(the gray shaded denotes terrain height, square symbols denote 87 valid stations from May to Sep from 1966 to 2021 and 298 valid stations from 1980 to 2021, of which the added stations are indicated by triangles, box denotes the west plains of the Bohai Sea Region)
图 2 1966—2021年暖季降水分布(黑框表示渤海西侧平原区域)
(a)一般性降水的平均年降水量(填色),(b)短时强降水的平均年降水量(填色),(c)一般性降水的降水时次百分比(填色) 和平均小时降水强度(等值线,单位:mm·h-1),(d)短时强降水的降水时次百分比(填色) 和平均小时降水强度(等值线,单位:mm·h-1)
Fig. 2 Spatial distribution of rainfall during warm season over Beijing, Tianjin, Hebei and its neighbouring areas from 1966 to 2021 (the black box denotes the west plains of the Bohai Sea Region)
(a)averaged annual rainfall (the shaded) of light precipitation, (b)averaged annual rainfall (the shaded) of short-term heavy precipitation, (c)hourly precipitation frequency (the shaded) and averaged hourly rainfall intensity (the isoline, unit:mm·h-1) of light precipitation, (d)hourly precipitation frequency (the shaded) and averaged hourly rainfall intensity (the isoline, unit:mm·h-1) of short-term heavy precipitation
图 3 1966—2021年暖季渤海西侧平原以外区域和渤海西侧平原区域的平均小时降水量、降水时次百分比和平均小时降水强度3年滑动平均
Fig. 3 Three-year running standardized averaged hourly rainfall amount, frequency, intensity over Beijing, Tianjin, Hebei and its neighbouring areas excluding the west plains of the Bohai Sea Region and the west plains of Bohai Sea Region during warm season of 1966-2021
图 5 1980—2021年暖季渤海西侧平原以外区域和渤海西侧平原区域标准化的平均小时降水量、降水时次百分比和平均小时降水强度日变化
Fig. 5 Standardized diurnal variations of averaged hourly rainfall amount, frequency and intensity over Beijing, Tianjin, Hebei and its neighbouring areas excluding the west plains of the Bohai Sea Region and the west plain of Bohai Sea Region during warm season from 1980 to 2021
图 7 渤海西侧平原以外区域(填色) 和渤海西侧平原区域(等值线) 暖季标准化降水日变化的年际变化
(细实线表示大于1.0,粗实线表示等于1.0,细虚线表示小于1.0)
(a)一般性降水的平均小时降水量,(b)短时强降水的平均小时降水量,(c)一般性降水的降水时次百分比,(d)短时强降水的降水时次百分比,(e)一般性降水的平均小时降水强度,(f)短时强降水的平均小时降水强度Fig. 7 Interannual changes of standardized diurnal variation during warm season over Beijing, Tianjin, Hebei and its neighbouring areas excluding the west plains of Bohai Sea Region (the shaded) and the west plains of the Bohai Sea Region (the isoline)(thin solid lines denote values greater than 1.0, thick solid lines denote values equal to 1.0, thin dashed lines denote values less than 1.0)
(a)average hourly rainfall amount of light precipitation,(b)average hourly rainfall amount of short-term heavy precipitation,(c)average hourly rainfall frequency of light precipitation,(d)average hourly rainfall frequency of short-term heavy precipitation,(e)average hourly rainfall intensity of light precipitation,(f)average hourly rainfall intensity of short-term heavy precipitation
-
[1] 宝兴华, 夏茹娣, 罗亚丽, 等."21·7"河南特大暴雨气象和水文雨量观测对比.应用气象学报, 2022, 33(6):668-681. doi: 10.11898/1001-7313.20220603Bao X H, Xia R D, Luo Y L, et al. Comparative analysis on meteorological and hydrological rain gauge observations of the extreme heavy rainfall event in Henan Province during July 2021. J Appl Meteor Sci, 2022, 33(6): 668-681. doi: 10.11898/1001-7313.20220603 [2] 齐道日娜, 何立富, 王秀明, 等. "7·20"河南极端暴雨精细观测及热动力成因. 应用气象学报, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101 [3] Chen J, Zheng Y G, Zhang X L, et al. Distribution and diurnal variation of warm-season short-duration heavy rainfall in relation to the MCSs in China. Acta Meteor Sinica, 2013, 27(6): 868-888. doi: 10.1007/s13351-013-0605-x [4] Zheng Y G, Xue M, Li B, et al. Spatial characteristics of extreme rainfall over China with hourly through 24-hour accumulation periods based on national-level hourly rain gauge data. Adv Atmos Sci, 2016, 33(11): 1218-1232. doi: 10.1007/s00376-016-6128-5 [5] Zheng Y G, Gong Y D, Chen J, et al. Warm-season diurnal variations of total, stratiform, convective, and extreme hourly precipitation over central and eastern China. Adv Atmos Sci, 2019, 36(2): 143-159. doi: 10.1007/s00376-018-7307-3 [6] 公衍铎. 中国中东部暖季降水与极端强降水时空分布特征研究. 北京: 中国气象科学研究院, 2018.Gong Y D. Warm-season Spatiotemporal Distribution Characteristics of Precipitation and Extreme Heavy Precipitation over Central Eastern China. Beijing: Chinese Academy of Meteorological Sciences, 2018. [7] 卫捷, 张庆云, 陶诗言. 近20年华北地区干旱期大气环流异常特征. 应用气象学报, 2003, 14(2): 140-151. http://qikan.camscma.cn/article/id/20030219Wei J, Zhang Q Y, Tao S Y. Characteristics of atmospheric circulation anomalies during persistent droughts in North China for last two decades. J Appl Meteor Sci, 2003, 14(2): 140-151. http://qikan.camscma.cn/article/id/20030219 [8] 刘海文, 丁一汇. 华北夏季降水的年代际变化. 应用气象学报, 2011, 22(2): 129-137. http://qikan.camscma.cn/article/id/20110201Liu H W, Ding Y H. The interdecadal variability of summer precipitation over North China. J Appl Meteor Sci, 2011, 22(2): 129-137. http://qikan.camscma.cn/article/id/20110201 [9] 杨若子, 邢佩, 杜吴鹏, 等. 1961-2017年华北区域降水气候特征分析. 地理科学, 2020, 40(9): 1573-1583. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX202009019.htmYang R Z, Xing P, Du W P, et al. Climatic characteristics of precipitation in North China from 1961 to 2017. Scientia Geographica Sinica, 2020, 40(9): 1573-1583. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX202009019.htm [10] 梁苏洁, 程善俊, 郝立生, 等. 1970-2015年京津冀区域暖季小时降水变化特征. 暴雨灾害, 2018, 37(2): 105-114. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201802002.htmLiang S J, Cheng S J, Hao L S, et al. Analysis on the characteristics of hourly precipitation variations in Beijing-Tianjin-Hebei Region during 1970-2015. Torrential Rain and Disasters, 2018, 37(2): 105-114. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201802002.htm [11] 吴正华. 京津冀夏季短历时降水气候分析. 大气科学, 1993, 17(3): 268-273. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199303001.htmWu Z H. Climate analysis of summer short-period precipitation in Beijing-Tianjin-Hebei Area. Chinese J Atmos Sci, 1993, 17(3): 268-273. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199303001.htm [12] Dai A G, Lin X, Hsu K L. The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low-and mid-latitudes. Climate Dyn, 2007, 29(7): 727-744. [13] Zhou T J, Yu R C, Chen H M, et al. Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations. J Climate, 2008, 21(16): 3997-4010. [14] Chen G X, Sha W M, Iwasaki T. Diurnal variation of precipitation over southeastern China: Spatial distribution and its seasonality. J Geophys Res Atmos, 2009, 114. DOI: 10.1029/2008JD011103. [15] Yu R C, Xu Y P, Zhou T J, et al. Relation between rainfall duration and diurnal variation in the warm season precipitation over central eastern China. Geophys Res Lett, 2007, 34(13). DOI: 10.1029/2007GL030315. [16] Yuan W H, Yu R C, Li J. Changes in the diurnal cycles of precipitation over eastern China in the past 40 years. Adv Atmos Sci, 2013, 30(2): 461-467. [17] 宇如聪, 李建, 陈昊明, 等. 中国大陆降水日变化研究进展. 气象学报, 2014, 72(5): 948-968. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201405012.htmYu R C, Li J, Chen H M, et al. Progress in studies of the precipitation diurnal variation over contiguous China. Acta Meteor Sinica, 2014, 72(5): 948-968. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201405012.htm [18] 韩函, 吴昊旻, 黄安宁. 华北区域夏季降水日变化的时空分布特征. 大气科学, 2017, 41(2): 263-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201702004.htmHan H, Wu H M, Huang A N. Temporal and spatial distributions of the diurnal cycle of summer precipitation over North China. Chinese J Atmos Sci, 2017, 41(2): 263-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201702004.htm [19] Cheng C L, Li Q C, Dou Y J, et al. Diurnal variation and distribution of short-duration heavy rainfall in Beijing-Tianjin-Hebei Region in summer based on high-density automatic weather station data. Atmosphere, 2021, 12(10): 1263. [20] 张强, 赵煜飞, 范邵华. 中国国家级气象台站小时降水数据集研制. 暴雨灾害, 2016, 35(2): 182-186. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201602012.htmZhang Q, Zhao Y F, Fan S H. Development of hourly precipitation datasets for national meteorological stations in China. Torrential Rain and Disasters, 2016, 35(2): 182-186. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201602012.htm [21] 叶殿秀, 张存杰. 中国极端降水气候图集. 北京: 气象出版社, 2014.Ye D X, Zhang C J. Climatic Atlas of Extreme Precipitation in China. Beijing: China Meteorological Press, 2014. [22] 李建, 宇如聪, 孙溦. 从小时尺度考察中国中东部极端降水的持续性和季节特征. 气象学报, 2013, 71(4): 652-659. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201304006.htmLi J, Yu R C, Sun W. Duration and seasonality of the hourly extreme rainfall in the central-eastern part of China. Acta Meteor Sinica, 2013, 71(4): 652-659. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201304006.htm [23] Taszarek M, Allen J T, Groenemeijer P, et al. Severe convective storms across Europe and the United States. Part Ⅰ: Climatology of lightning, large hail, severe wind, and tornadoes. J Climate, 2020, 33(23): 10239-10261. [24] 高晓梅, 俞小鼎, 王令军, 等. 山东半岛两次海风锋引起的强对流天气对比. 应用气象学报, 2018, 29(2): 245-256. doi: 10.11898/1001-7313.20180210Gao X M, Yu X D, Wang L J, et al. Comparative analysis of two strong convections triggered by sea-breeze front in Shandong Peninsula. J Appl Meteor Sci, 2018, 29(2): 245-256. doi: 10.11898/1001-7313.20180210 [25] 王成鑫, 高守亭, 冉令坤, 等. 四川地形扰动对降水分布影响. 应用气象学报, 2019, 30(5): 586-597. doi: 10.11898/1001-7313.20190507Wang C X, Gao S T, Ran L K, et al. Effects of topographic perturbation on the precipitation distribution in Sichuan. J Appl Meteor Sci, 2019, 30(5): 586-597. doi: 10.11898/1001-7313.20190507 [26] Pan H, Chen G X. Diurnal variations of precipitation over North China regulated by the mountain-plains solenoid and boundary-layer inertial oscillation. Adv Atmos Sci, 2019, 36(8): 863-884. [27] 罗然. 华北夜间强降水统计特征和机理个例研究. 北京: 中国气象科学研究院, 2020.Luo R. Statistical Characteristics of Nocturnal Heavy Rainfall and a Case Study of Mechanism in North China. Beijing: Chinese Academy of Meteorological Sciences, 2020. [28] 李欣, 张璐. 北上台风强降水形成机制及微物理特征. 应用气象学报, 2022, 33(1): 29-42. doi: 10.11898/1001-7313.20220103Li X, Zhang L. Formation mechanism and microphysics characteristics of heavy rainfall caused by northward-moving typhoons. J Appl Meteor Sci, 2022, 33(1): 29-42. doi: 10.11898/1001-7313.20220103 [29] 常祎, 郭学良, 唐洁, 等. 青藏高原夏季对流云微物理特征和降水形成机制. 应用气象学报, 2021, 32(6): 720-734. doi: 10.11898/1001-7313.20210607Chang Y, Guo X L, Tang J, et al. Microphysical characteristics and precipitation formation mechanisms of convective clouds over the Tibetan Plateau. J Appl Meteor Sci, 2021, 32(6): 720-734. doi: 10.11898/1001-7313.20210607 [30] 蔡金圻, 谭桂容, 牛若芸. 基于迁移CNN的江淮持续性强降水环流分型. 应用气象学报, 2021, 32(2): 233-244. doi: 10.11898/1001-7313.20210208Cai J Q, Tan G R, Niu R Y. Circulation pattern classification of persistent heavy rainfall in Jianghuai Region based on the transfer learning CNN model. J Appl Meteor Sci, 2021, 32(2): 233-244. doi: 10.11898/1001-7313.20210208