Construction and Application of Weather Radar Aerial Ecological Monitoring System
-
摘要: 为深度挖掘天气雷达数据应用价值,设计并建设了天气雷达空中生态监测系统。分析天气雷达晴空回波数据特征和空中生物散射特性,利用模糊逻辑算法识别天气雷达网数据中的生物回波,实现对生物密度、迁飞路径、时空分布等昆虫生态活动的实时动态监测。2022年5月天气雷达空中生态监测系统投入试运行,在实时监测期间发现昆虫活动具有明显的时空分布特征、昼夜活动和迁飞活动规律,8—9月全国昆虫活动呈现数量大、活动范围广的特点,是虫灾防治的重点关注时段,监测结果符合昆虫活动特征。该系统可有效服务空中生态实时监测,为虫灾精准防治提供监测技术与数据支持。Abstract: Ecological monitoring is an important part of environmental protection. To monitor the movement and abundance of animals in the airspace, an Aerial Ecological Monitoring System (AEMS) is developed by CMA Meteorological Observation Center for China's next-generation weather radar (CINRAD) network. Characteristics of weather radar clear air echo data and airborne biological scattering data are studied to identify biological echoes through fuzzy logic algorithm, and the system can monitor real-time ecological activities of insects such as biological density, migration path and space-time distribution.Weather Radar Airborne Ecological Monitoring System has been put into trial operation since May 2022. During the real-time monitoring period, it's found that the insect activity shows obvious spatial and temporal distribution characteristics. From August to September, pests are of large quantity and wide range, indicating urgent need of insect disaster prevention and control. In May, June, September, and October, insect activity gradually increases from 2000 BT every day, reaches its peak from 2200 BT to 2300 BT, gradually decreases thereafter, and disappears mostly by 0600 BT. In July and August, insect activity gradually increases from 2000 BT every day, with a peak from 2100 BT to 2200 BT. Insect activity begins during the daytime, increases at 0600 BT, becomes more frequent at 1300 BT, and gradually decreases thereafter. From May to July, there is a significant shift from south to north (i.e., northward migration process), and in late August, it quickly changes into a to southward migration. The southward migration process of insects is larger and more numerous than the northward migration process. It's verified that the system can effectively monitor real-time aerial ecology, providing technology and data support for precise pest control.However, characteristics of pests need further research and clear distribution of pests is an urgent need. Therefore, in-depth research will be carried out on aerial ecological classification technology, combined with other direct observation means such as real-time monitoring by drones to explore the relationship between radar detection and different pests, and improve the ability to identify different kinds of insects.
-
Key words:
- ecological monitoring;
- weather radar;
- biological echoes;
- insect flight
-
表 1 不同类型回波的指标阈值
Table 1 Characteristic parameters of different echoes
回波类型 特征参数 阈值1 阈值2 阈值3 阈值4 湍流回波 差分反射率/dB -4 -1 3 5 相关系数 0.3 0.5 0.8 0.9 反射率因子纹理/dB -1 0 6 10 差分相位纹理/(°) 0 10 40 180 生物回波 差分反射率/dB 0 2 10 12 相关系数 0.3 0.5 0.8 1 反射率因子纹理/dB 1 2 4 7 差分相位纹理/(°) 8 10 40 60 降水回波 差分反射率/dB f1-0.3 f1 f2 f2+0.3 相关系数 0.92 0.94 1 1.01 反射率因子纹理(dB) 0 0.5 5 8 差分相位纹理(°) 0 1 25 30 表 2 常见昆虫的体态参数及其等效仿真参数
Table 2 Body parameters and equivalent simulation parameters of common insects
昆虫 平均体重/mg 平均体长/mm 平均体宽/mm S波段生物体后向散射截面积/m2 X波段生物体后向散射截面积/m2 桃蛀螟、甜菜白带野螟、二点委夜蛾 22.1 13.0 3.2 5.6234×10-6 3.2×10-3 棉铃虫、银纹夜蛾 114.8 16.7 5.4 1.0471×10-4 3.8019×10-4 粘虫、小地老虎、黄地老虎、斜纹夜蛾 145.4 19.0 5.8 2.3988×10-4 4.1687×10-4 -
[1] 桑文, 高俏, 张长禹, 等.我国农业害虫物理防治研究与应用进展.植物保护学报, 2022, 49(1):173-183. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBF202201016.htmSang W, Gao Q, Zhang Z Y, et al. Researches and applications of physical control of agricultural insect pests in China. Journal of Plant Protection, 2022, 49(1): 173-183. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBF202201016.htm [2] 张凯, 陈彦宾, 张昭, 等. 中国"十四五"重大病虫害防控综合技术研发实施展望. 植物保护学报, 2022, 49(1): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBF202201007.htmZhang K, Chen Y B, Zhang Z, et al. Research and development of techniques for integrated control of major diseases and insect pests during the Fourteenth Five-year Plan in China. Journal of Plant Protection, 2022, 49(1): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBF202201007.htm [3] 张云慧, 程登发. 突发性暴发性害虫监测预警研究进展. 植物保护, 2013, 39(5): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBH201305010.htmZhang Y H, Cheng D F. Progress in monitoring and forecasting of insect pests in China. Plant Protection, 2013, 39(5): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBH201305010.htm [4] 萧玉涛, 吴超, 吴孔明. 中国农业害虫防治科技70年的成就与展望. 应用昆虫学报, 2019, 56(6): 1115-1124. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS201906001.htmXiao Y T, Wu C, Wu K M. Agricultural pest control in China over the past 70 years: Achievements and future prospects. Chinese Journal of Applied Entomology, 2019, 56(6): 1115-1124. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS201906001.htm [5] 张智, 祁俊锋, 张瑜, 等. 迁飞性害虫监测预警技术发展概况与应用展望. 应用昆虫学报, 2021, 58(3): 530-541. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS202103006.htmZhang Z, Qi J F, Zhang Y, et al. Development of monitoring and forecasting technologies for migratory insect pests and suggestions for their future application. Chinese Journal of Applied Entomology, 2021, 58(3): 530-541. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS202103006.htm [6] 王佳宇, 杜波波, 高书晶, 等. 草原蝗虫监测预警技术的研究进展. 植物保护学报, 2021, 48(1): 65-72. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBF202101009.htmWang J Y, Du B B, Gao S J, et al. Research progresses in grassland locust monitoring and early warning technology. Journal of Plant Protection, 2021, 48(1): 65-72. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBF202101009.htm [7] Schmaljohann H. Radar aeroecology-A missing piece of the puzzle for studying the migration ecology of animals. Ecography, 2020, 43(2): 236-238. doi: 10.1111/ecog.04807 [8] Martin W J, Shapiro A. Discrimination of bird and insect radar echoes in clear air using high-resolution radars. J Atmos Ocean Technol, 2007, 24(7): 1215-1230. doi: 10.1175/JTECH2038.1 [9] Van Den Broeke M S. Polarimetric radar observations of biological scatterers in Hurricanes Irene(2011) and Sandy(2012). J Atmos Ocean Technol, 2013, 30(12): 2754-2767. doi: 10.1175/JTECH-D-13-00056.1 [10] Westbrook J K, Eyster R S, Wolf W W. WSR-88D Doppler radar detection of corn earworm moth migration. Int J Biometeorol, 2014, 58(5): 931-940. doi: 10.1007/s00484-013-0676-5 [11] Park H S, Ryzhkov A V, Zrnić D S, et al. The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea Forecasting, 2009, 24(3): 730-748. doi: 10.1175/2008WAF2222205.1 [12] Huuskonen A, Saltikoff E, Holleman I. The operational weather radar network in Europe. Bull Amer Meteor Soc, 2014, 95(6): 897-907. doi: 10.1175/BAMS-D-12-00216.1 [13] Benjamin M, Van Doren L, Kyle G, et al. A continental system for forecasting bird migration. Science, 2018, 361(6407): 1115-1117. doi: 10.1126/science.aat7526 [14] Kunz T H, Gauthreaux S A, Hristov N I, et al. Aeroecology: Probing and modeling the aerosphere. Integrative and Comparative Biology, 2008, 48(1): 1-11. [15] Horton K G, La Sorte F A, Sheldon D, et al. Phenology of nocturnal avian migration has shifted at the continental scale. Nature Climate Change, 2020, 10(1): 63-68. doi: 10.1038/s41558-019-0648-9 [16] Dokter A M, Farnsworth A, Fink D, et al. Seasonal abundance and survival of North America's migratory avifauna determined by weather radar. Nature Ecology & Evolution, 2018, 2(10): 1603-1609. [17] 刘黎平, 葛润生. 中国气象科学研究院雷达气象研究50年. 应用气象学报, 2006, 17(6): 682-689. http://qikan.camscma.cn/article/id/200606117Liu L P, Ge R S. An overview on radar meteorology research in Chinese Academy of Meteorological Sciences for a half century. J Appl Meteor Sci, 2006, 17(6): 682-689. http://qikan.camscma.cn/article/id/200606117 [18] 王洪, 孔凡铀, Jung Youngsun, et al. 面向资料同化的S波段双偏振雷达质量控制. 应用气象学报, 2018, 29(5): 546-558. doi: 10.11898/1001-7313.20180504Wang H, Kong F Y, Jung Y S, et al. Quality control of S-band polarimetric radar measurements for data assimilation. J Appl Meteor Sci, 2018, 29(5): 546-558. doi: 10.11898/1001-7313.20180504 [19] 管理, 魏鸣, 吴昊. 晴空湍流在强天气过程临近预报中的应用研究. 科学技术与工程, 2014, 14(31): 6-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201431003.htmGuan L, Wei M, Wu H. Study of clear-air turbulence to the nowcasting forecast of severe convective weather. Science Technology and Engineering, 2014, 14(31): 6-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201431003.htm [20] 陶法, 官莉, 张雪芬, 等. Ka波段云雷达晴空回波垂直结构及变化特征. 应用气象学报, 2020, 31(6): 719-728. doi: 10.11898/1001-7313.20200607Tao F, Guan L, Zhang X F, et al. Variation and vertical structure of clear-air echo by Ka-band cloud radar. J Appl Meteor Sci, 2020, 31(6): 719-728. doi: 10.11898/1001-7313.20200607 [21] 滕玉鹏, 陈洪滨, 马舒庆, 等. 北京S波段天气雷达夜间晴空回波产生原因. 应用气象学报, 2020, 31(5): 595-607. doi: 10.11898/1001-7313.20200507Teng Y P, Chen H B, Ma S Q, et al. The cause of night clear air echo of S-band weather radar in Beijing. J Appl Meteor Sci, 2020, 31(5): 595-607. doi: 10.11898/1001-7313.20200507 [22] 张林, 李峰, 吴蕾, 等. CINRAD/SAD双偏振雷达非降水回波识别技术. 应用气象学报, 2022, 33(6): 724-735. doi: 10.11898/1001-7313.20220607Zhang L, Li F, Wu L, et al. Non-precipitation identification technique for CINRAD/SAD dual polarimetric weather radar. J Appl Meteor Sci, 2022, 33(6): 724-735. doi: 10.11898/1001-7313.20220607 [23] 曾正茂, 郑佳锋, 杨晖, 等. Ka波段云雷达非云回波质量控制及效果评估. 应用气象学报, 2021, 32(3): 347-357. doi: 10.11898/1001-7313.20210307Zeng Z M, Zheng J F, Yang H, et al. Quality control and evaluation on non-cloud echo of Ka-band cloud radar. J Appl Meteor Sci, 2021, 32(3): 347-357. doi: 10.11898/1001-7313.20210307 [24] Wilson J W, Weckwerth T M, Vivekanandan J, et al. Boundary layer clear-air radar echoes: Origin of echoes and accuracy of derived winds. J Atmos Oceanic Technol, 1994, 11(5): 1184-1206. [25] 滕玉鹏. 多波段雷达观测的晴空回波识别方法研究. 北京: 中国科学院大学, 2021.Teng Y P. Research on Clear Sky Echo Recognition Method for Multi-band Radar Observation. Beijing: University of Chinese Academy of Sciences, 2021. [26] 李哲, 吴翀, 刘黎平, 等. 双偏振相控阵雷达误差评估与相态识别方法. 应用气象学报, 2022, 33(1): 16-28. doi: 10.11898/1001-7313.20220102Li Z, Wu C, Liu L P, et al. Error evaluation and hydrometeor classification method of dual polarization phased array radar. J Appl Meteor Sci, 2022, 33(1): 16-28. doi: 10.11898/1001-7313.20220102 [27] 江源. 天气雷达观测资料质量控制方法研究及其应用. 北京: 中国气象科学研究院, 2013.Jiang Y. Meteorological Radar Data Quality Control Study and Application. Beijing: Chinese Academy of Meteorological Sciences, 2013. [28] Stepanian P M, Horton K G, Melnikov V M, et al. Dual-polarization radar products for biological applications. Ecosphere, 2016, 7(11). DOI: 10.1002/ecs2.1539. [29] 胡程, 方琳琳, 王锐, 等. 昆虫雷达散射截面积特性分析. 电子与信息学报, 2020, 42(1): 140-153. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202001015.htmHu C, Fang L L, Wang R, et al. Analysis of insect RCS characteristics. Journal of Electronics & Information Technology, 2020, 42(1): 140-153. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202001015.htm [30] Richardson L M, Cunningham J G, Zittel W D, et al. Bragg scatter detection by the WSR-88D. Part Ⅰ: Algorithm development. J Atmos Oceanic Technol, 2016, 34(3): 465-478. [31] 余文华. 渤海湾地区迁飞昆虫振翅频率研究. 北京: 中国农业科学院, 2020.Yu W H. Study on the Wingbeat Frequency of Migratory Insects across the Bohai Strait in China. Beijing: Chinese Academy of Agricultural Sciences, 2020. [32] 郭安红, 王纯枝, 邓环环, 等. 草地贪夜蛾迁飞大气动力条件分析及过程模拟. 应用气象学报, 2022, 33(5): 541-554. doi: 10.11898/1001-7313.20220503Guo A H, Wang C Z, Deng H H, et al. Atmospheric dynamics analysis and simulation of the migration of fall armyworm. J Appl Meteor Sci, 2022, 33(5): 541-554. doi: 10.11898/1001-7313.20220503 [33] 王纯枝, 霍治国, 郭安红, 等. 中国北方冬小麦蚜虫气候风险评估. 应用气象学报, 2021, 32(2): 160-174. doi: 10.11898/1001-7313.20210203Wang C Z, Huo Z G, Guo A H, et al. Climatic risk assessment of winter wheat aphids in northern China. J Appl Meteor Sci, 2021, 32(2): 160-174. doi: 10.11898/1001-7313.20210203 [34] 王纯枝, 张蕾, 郭安红, 等. 基于大气环流的稻纵卷叶螟气象预测模型. 应用气象学报, 2019, 30(5): 565-576. doi: 10.11898/1001-7313.20190505Wang C Z, Zhang L, Guo A H, et al. Long-term meteorological prediction model on the occurrence and development of rice leaf roller based on atmospheric circulation. J Appl Meteor Sci, 2019, 30(5): 565-576. doi: 10.11898/1001-7313.20190505