留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天气雷达空中生态监测系统建设和应用

梁丽 马舒庆 滕玉鹏 胡程 崔铠 吴东丽 吴蕾 胡姮 朱永超 张光磊

梁丽, 马舒庆, 滕玉鹏, 等. 天气雷达空中生态监测系统建设和应用. 应用气象学报, 2023, 34(5): 630-640. DOI:  10.11898/1001-7313.20230511..
引用本文: 梁丽, 马舒庆, 滕玉鹏, 等. 天气雷达空中生态监测系统建设和应用. 应用气象学报, 2023, 34(5): 630-640. DOI:  10.11898/1001-7313.20230511.
Liang Li, Ma Shuqing, Teng Yupeng, et al. Construction and application of Weather Radar Aerial Ecological Monitoring System. J Appl Meteor Sci, 2023, 34(5): 630-640. DOI:  10.11898/1001-7313.20230511.
Citation: Liang Li, Ma Shuqing, Teng Yupeng, et al. Construction and application of Weather Radar Aerial Ecological Monitoring System. J Appl Meteor Sci, 2023, 34(5): 630-640. DOI:  10.11898/1001-7313.20230511.

天气雷达空中生态监测系统建设和应用

DOI: 10.11898/1001-7313.20230511
资助项目: 

国家重大科研仪器研制项目 31727901

国家自然科学基金青年科学基金项目 42205145

详细信息
    通信作者:

    梁丽, 邮箱:865632711@qq.com

Construction and Application of Weather Radar Aerial Ecological Monitoring System

  • 摘要: 为深度挖掘天气雷达数据应用价值,设计并建设了天气雷达空中生态监测系统。分析天气雷达晴空回波数据特征和空中生物散射特性,利用模糊逻辑算法识别天气雷达网数据中的生物回波,实现对生物密度、迁飞路径、时空分布等昆虫生态活动的实时动态监测。2022年5月天气雷达空中生态监测系统投入试运行,在实时监测期间发现昆虫活动具有明显的时空分布特征、昼夜活动和迁飞活动规律,8—9月全国昆虫活动呈现数量大、活动范围广的特点,是虫灾防治的重点关注时段,监测结果符合昆虫活动特征。该系统可有效服务空中生态实时监测,为虫灾精准防治提供监测技术与数据支持。
  • 图  1  天气雷达空中生态监测系统

    Fig. 1  Layout of Weather Radar Aerial Ecological Monitoring System

    图  2  系统框架图

    Fig. 2  System framework diagram

    图  3  功能框架图

    Fig. 3  Functional framework diagram

    图  4  生物回波识别流程

    Fig. 4  Biological echo recognition process

    图  5  梯形隶属函数示意图

    Fig. 5  Schematic diagram of trapezoidal membership function

    图  6  昆虫密度与反射率因子关系

    Fig. 6  Relationship between insect density and reflectivity

    图  7  2022年8月26日00:00昆虫活动情况

    Fig. 7  Insect activities at 0000 BT 26 Aug 2022

    图  8  2022年5—10月郑州站昆虫活动日变化

    Fig. 8  Diurnal activities of insect at Zhengzhou Station from May to Oct in 2022

    图  9  2022年5月24日00:00昆虫迁飞方向

    Fig. 9  Insect migration direction at 0000 BT 24 May 2022

    图  10  2022年8月30日21:00昆虫迁飞方向

    Fig. 10  Insect migration direction at 2100 BT 30 Aug 2022

    表  1  不同类型回波的指标阈值

    Table  1  Characteristic parameters of different echoes

    回波类型 特征参数 阈值1 阈值2 阈值3 阈值4
    湍流回波 差分反射率/dB -4 -1 3 5
    相关系数 0.3 0.5 0.8 0.9
    反射率因子纹理/dB -1 0 6 10
    差分相位纹理/(°) 0 10 40 180
    生物回波 差分反射率/dB 0 2 10 12
    相关系数 0.3 0.5 0.8 1
    反射率因子纹理/dB 1 2 4 7
    差分相位纹理/(°) 8 10 40 60
    降水回波 差分反射率/dB f1-0.3 f1 f2 f2+0.3
    相关系数 0.92 0.94 1 1.01
    反射率因子纹理(dB) 0 0.5 5 8
    差分相位纹理(°) 0 1 25 30
    下载: 导出CSV

    表  2  常见昆虫的体态参数及其等效仿真参数

    Table  2  Body parameters and equivalent simulation parameters of common insects

    昆虫 平均体重/mg 平均体长/mm 平均体宽/mm S波段生物体后向散射截面积/m2 X波段生物体后向散射截面积/m2
    桃蛀螟、甜菜白带野螟、二点委夜蛾 22.1 13.0 3.2 5.6234×10-6 3.2×10-3
    棉铃虫、银纹夜蛾 114.8 16.7 5.4 1.0471×10-4 3.8019×10-4
    粘虫、小地老虎、黄地老虎、斜纹夜蛾 145.4 19.0 5.8 2.3988×10-4 4.1687×10-4
    下载: 导出CSV
  • [1] 桑文, 高俏, 张长禹, 等.我国农业害虫物理防治研究与应用进展.植物保护学报, 2022, 49(1):173-183. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBF202201016.htm

    Sang W, Gao Q, Zhang Z Y, et al. Researches and applications of physical control of agricultural insect pests in China. Journal of Plant Protection, 2022, 49(1): 173-183. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBF202201016.htm
    [2] 张凯, 陈彦宾, 张昭, 等. 中国"十四五"重大病虫害防控综合技术研发实施展望. 植物保护学报, 2022, 49(1): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBF202201007.htm

    Zhang K, Chen Y B, Zhang Z, et al. Research and development of techniques for integrated control of major diseases and insect pests during the Fourteenth Five-year Plan in China. Journal of Plant Protection, 2022, 49(1): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBF202201007.htm
    [3] 张云慧, 程登发. 突发性暴发性害虫监测预警研究进展. 植物保护, 2013, 39(5): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBH201305010.htm

    Zhang Y H, Cheng D F. Progress in monitoring and forecasting of insect pests in China. Plant Protection, 2013, 39(5): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBH201305010.htm
    [4] 萧玉涛, 吴超, 吴孔明. 中国农业害虫防治科技70年的成就与展望. 应用昆虫学报, 2019, 56(6): 1115-1124. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS201906001.htm

    Xiao Y T, Wu C, Wu K M. Agricultural pest control in China over the past 70 years: Achievements and future prospects. Chinese Journal of Applied Entomology, 2019, 56(6): 1115-1124. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS201906001.htm
    [5] 张智, 祁俊锋, 张瑜, 等. 迁飞性害虫监测预警技术发展概况与应用展望. 应用昆虫学报, 2021, 58(3): 530-541. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS202103006.htm

    Zhang Z, Qi J F, Zhang Y, et al. Development of monitoring and forecasting technologies for migratory insect pests and suggestions for their future application. Chinese Journal of Applied Entomology, 2021, 58(3): 530-541. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS202103006.htm
    [6] 王佳宇, 杜波波, 高书晶, 等. 草原蝗虫监测预警技术的研究进展. 植物保护学报, 2021, 48(1): 65-72. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBF202101009.htm

    Wang J Y, Du B B, Gao S J, et al. Research progresses in grassland locust monitoring and early warning technology. Journal of Plant Protection, 2021, 48(1): 65-72. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBF202101009.htm
    [7] Schmaljohann H. Radar aeroecology-A missing piece of the puzzle for studying the migration ecology of animals. Ecography, 2020, 43(2): 236-238. doi:  10.1111/ecog.04807
    [8] Martin W J, Shapiro A. Discrimination of bird and insect radar echoes in clear air using high-resolution radars. J Atmos Ocean Technol, 2007, 24(7): 1215-1230. doi:  10.1175/JTECH2038.1
    [9] Van Den Broeke M S. Polarimetric radar observations of biological scatterers in Hurricanes Irene(2011) and Sandy(2012). J Atmos Ocean Technol, 2013, 30(12): 2754-2767. doi:  10.1175/JTECH-D-13-00056.1
    [10] Westbrook J K, Eyster R S, Wolf W W. WSR-88D Doppler radar detection of corn earworm moth migration. Int J Biometeorol, 2014, 58(5): 931-940. doi:  10.1007/s00484-013-0676-5
    [11] Park H S, Ryzhkov A V, Zrnić D S, et al. The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea Forecasting, 2009, 24(3): 730-748. doi:  10.1175/2008WAF2222205.1
    [12] Huuskonen A, Saltikoff E, Holleman I. The operational weather radar network in Europe. Bull Amer Meteor Soc, 2014, 95(6): 897-907. doi:  10.1175/BAMS-D-12-00216.1
    [13] Benjamin M, Van Doren L, Kyle G, et al. A continental system for forecasting bird migration. Science, 2018, 361(6407): 1115-1117. doi:  10.1126/science.aat7526
    [14] Kunz T H, Gauthreaux S A, Hristov N I, et al. Aeroecology: Probing and modeling the aerosphere. Integrative and Comparative Biology, 2008, 48(1): 1-11.
    [15] Horton K G, La Sorte F A, Sheldon D, et al. Phenology of nocturnal avian migration has shifted at the continental scale. Nature Climate Change, 2020, 10(1): 63-68. doi:  10.1038/s41558-019-0648-9
    [16] Dokter A M, Farnsworth A, Fink D, et al. Seasonal abundance and survival of North America's migratory avifauna determined by weather radar. Nature Ecology & Evolution, 2018, 2(10): 1603-1609.
    [17] 刘黎平, 葛润生. 中国气象科学研究院雷达气象研究50年. 应用气象学报, 2006, 17(6): 682-689. http://qikan.camscma.cn/article/id/200606117

    Liu L P, Ge R S. An overview on radar meteorology research in Chinese Academy of Meteorological Sciences for a half century. J Appl Meteor Sci, 2006, 17(6): 682-689. http://qikan.camscma.cn/article/id/200606117
    [18] 王洪, 孔凡铀, Jung Youngsun, et al. 面向资料同化的S波段双偏振雷达质量控制. 应用气象学报, 2018, 29(5): 546-558. doi:  10.11898/1001-7313.20180504

    Wang H, Kong F Y, Jung Y S, et al. Quality control of S-band polarimetric radar measurements for data assimilation. J Appl Meteor Sci, 2018, 29(5): 546-558. doi:  10.11898/1001-7313.20180504
    [19] 管理, 魏鸣, 吴昊. 晴空湍流在强天气过程临近预报中的应用研究. 科学技术与工程, 2014, 14(31): 6-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201431003.htm

    Guan L, Wei M, Wu H. Study of clear-air turbulence to the nowcasting forecast of severe convective weather. Science Technology and Engineering, 2014, 14(31): 6-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201431003.htm
    [20] 陶法, 官莉, 张雪芬, 等. Ka波段云雷达晴空回波垂直结构及变化特征. 应用气象学报, 2020, 31(6): 719-728. doi:  10.11898/1001-7313.20200607

    Tao F, Guan L, Zhang X F, et al. Variation and vertical structure of clear-air echo by Ka-band cloud radar. J Appl Meteor Sci, 2020, 31(6): 719-728. doi:  10.11898/1001-7313.20200607
    [21] 滕玉鹏, 陈洪滨, 马舒庆, 等. 北京S波段天气雷达夜间晴空回波产生原因. 应用气象学报, 2020, 31(5): 595-607. doi:  10.11898/1001-7313.20200507

    Teng Y P, Chen H B, Ma S Q, et al. The cause of night clear air echo of S-band weather radar in Beijing. J Appl Meteor Sci, 2020, 31(5): 595-607. doi:  10.11898/1001-7313.20200507
    [22] 张林, 李峰, 吴蕾, 等. CINRAD/SAD双偏振雷达非降水回波识别技术. 应用气象学报, 2022, 33(6): 724-735. doi:  10.11898/1001-7313.20220607

    Zhang L, Li F, Wu L, et al. Non-precipitation identification technique for CINRAD/SAD dual polarimetric weather radar. J Appl Meteor Sci, 2022, 33(6): 724-735. doi:  10.11898/1001-7313.20220607
    [23] 曾正茂, 郑佳锋, 杨晖, 等. Ka波段云雷达非云回波质量控制及效果评估. 应用气象学报, 2021, 32(3): 347-357. doi:  10.11898/1001-7313.20210307

    Zeng Z M, Zheng J F, Yang H, et al. Quality control and evaluation on non-cloud echo of Ka-band cloud radar. J Appl Meteor Sci, 2021, 32(3): 347-357. doi:  10.11898/1001-7313.20210307
    [24] Wilson J W, Weckwerth T M, Vivekanandan J, et al. Boundary layer clear-air radar echoes: Origin of echoes and accuracy of derived winds. J Atmos Oceanic Technol, 1994, 11(5): 1184-1206.
    [25] 滕玉鹏. 多波段雷达观测的晴空回波识别方法研究. 北京: 中国科学院大学, 2021.

    Teng Y P. Research on Clear Sky Echo Recognition Method for Multi-band Radar Observation. Beijing: University of Chinese Academy of Sciences, 2021.
    [26] 李哲, 吴翀, 刘黎平, 等. 双偏振相控阵雷达误差评估与相态识别方法. 应用气象学报, 2022, 33(1): 16-28. doi:  10.11898/1001-7313.20220102

    Li Z, Wu C, Liu L P, et al. Error evaluation and hydrometeor classification method of dual polarization phased array radar. J Appl Meteor Sci, 2022, 33(1): 16-28. doi:  10.11898/1001-7313.20220102
    [27] 江源. 天气雷达观测资料质量控制方法研究及其应用. 北京: 中国气象科学研究院, 2013.

    Jiang Y. Meteorological Radar Data Quality Control Study and Application. Beijing: Chinese Academy of Meteorological Sciences, 2013.
    [28] Stepanian P M, Horton K G, Melnikov V M, et al. Dual-polarization radar products for biological applications. Ecosphere, 2016, 7(11). DOI:  10.1002/ecs2.1539.
    [29] 胡程, 方琳琳, 王锐, 等. 昆虫雷达散射截面积特性分析. 电子与信息学报, 2020, 42(1): 140-153. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202001015.htm

    Hu C, Fang L L, Wang R, et al. Analysis of insect RCS characteristics. Journal of Electronics & Information Technology, 2020, 42(1): 140-153. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202001015.htm
    [30] Richardson L M, Cunningham J G, Zittel W D, et al. Bragg scatter detection by the WSR-88D. Part Ⅰ: Algorithm development. J Atmos Oceanic Technol, 2016, 34(3): 465-478.
    [31] 余文华. 渤海湾地区迁飞昆虫振翅频率研究. 北京: 中国农业科学院, 2020.

    Yu W H. Study on the Wingbeat Frequency of Migratory Insects across the Bohai Strait in China. Beijing: Chinese Academy of Agricultural Sciences, 2020.
    [32] 郭安红, 王纯枝, 邓环环, 等. 草地贪夜蛾迁飞大气动力条件分析及过程模拟. 应用气象学报, 2022, 33(5): 541-554. doi:  10.11898/1001-7313.20220503

    Guo A H, Wang C Z, Deng H H, et al. Atmospheric dynamics analysis and simulation of the migration of fall armyworm. J Appl Meteor Sci, 2022, 33(5): 541-554. doi:  10.11898/1001-7313.20220503
    [33] 王纯枝, 霍治国, 郭安红, 等. 中国北方冬小麦蚜虫气候风险评估. 应用气象学报, 2021, 32(2): 160-174. doi:  10.11898/1001-7313.20210203

    Wang C Z, Huo Z G, Guo A H, et al. Climatic risk assessment of winter wheat aphids in northern China. J Appl Meteor Sci, 2021, 32(2): 160-174. doi:  10.11898/1001-7313.20210203
    [34] 王纯枝, 张蕾, 郭安红, 等. 基于大气环流的稻纵卷叶螟气象预测模型. 应用气象学报, 2019, 30(5): 565-576. doi:  10.11898/1001-7313.20190505

    Wang C Z, Zhang L, Guo A H, et al. Long-term meteorological prediction model on the occurrence and development of rice leaf roller based on atmospheric circulation. J Appl Meteor Sci, 2019, 30(5): 565-576. doi:  10.11898/1001-7313.20190505
  • 加载中
图(10) / 表(2)
计量
  • 摘要浏览量:  550
  • HTML全文浏览量:  111
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-19
  • 修回日期:  2023-06-30
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回