A Probabilistic Forecast Experiment of Short-duration Heavy Rainfall in Beijing Based on CMA-BJ
-
摘要: 基于2019—2021年4—9月北京快速更新数值预报系统(CMA-BJ)产品以及北京地区地面气象站逐时降水实况, 从表征水汽条件、热力和能量条件以及动力条件的多个物理量中筛选出在有无降水、是否强降水情形中有显著差异的物理量作为因子, 采用配料法和模糊逻辑算法构建北京地区0~12 h时效逐小时短时强降水概率预报模型。以2019—2021年4—9月最优TS评分和偏差评分的概率值和组合反射率因子为确定性预报的概率阈值和消空处理阈值, 运用该预报模型对2022年4—9月每日4次0~12 h预报时效北京地区短时强降水产品进行预报和检验。结果表明:北京地区短时强降水TS评分和偏差评分分别为0.104和1.341, 预报效果明显优于CMA-BJ预报产品。概率预报模型能够有效提升强降水高发地区, 即山前及平原地区的短时强降水预报技巧, 获得较为平衡的命中率和空报率, 但对山区预报技巧的提升有限。Abstract: Based on numerical prediction products from China Meteorological Administration Beijing model (CMA-BJ), precipitation observation of ground weather stations in Beijing and ECMWF ERA5 dataset, the hourly rainfall samples from April to September during 2019-2021 are divided into short-duration heavy rainfall (SDHR, greater than 20 mm·h-1), ordinary rainfall (between 0.1 and 19.9 mm·h-1) and no rainfall (less than 0.1 mm·h-1). The probability density distribution characteristics of physical parameters are comparatively analyzed, including moisture conditions, thermal and energy conditions, and dynamic conditions for three categories. Monthly predictors are selected from these parameters by comparing their ability to discriminate among SDHR, ordinary rainfall and no rainfall weather. It is found that the distributions and thresholds of physical parameters differ between months to some extent. Among that, moisture conditions, thermal and energy conditions, and dynamic conditions are relatively stronger but with less discrimination degrees among SDHR, ordinary rainfall and no rainfall weather in July and August. The background circulation and the distributions of physical parameters show obvious monthly differences, so the forecast model is established for each different period. After that, forecast model of SDHR for 0-12 h at 1 h intervals in different periods is established by using the ingredients-based method and fuzzy logic algorithms. When probabilistic and composite reflectivity thresholds are 0.6 dBZ and 15 dBZ, threat score (TS) and bias of SDHR are 0.14 and 1.14 in Beijing from April to September during 2019-2021, showing relatively better forecasts. Therefore, the probabilistic and composite reflectivity thresholds corresponding to the optimal TS and bias for 2019-2021 are taken as the forecast probability and eliminating false thresholds of SDHR, and 0-12 h hourly forecast products of SDHR four times a day are tested from April to September of 2022. Results show that TS and bias of SDHR are 0.104 and 1.341, respectively, indicating that the probability prediction products are better than that of CMA-BJ. SDHR products achieve greater improvement, and balance hit rate and false alarm rate well in the piedmont and plain areas with high SDHR frequency. But performances in mountainous areas are not as good as that in plain areas, which may be related to less stations in the mountainous areas of the forecast model. In addition, the result based on case analysis show the predicted area of the products is relatively larger, but high probability area has a good indication for SDHR in Beijing.
-
Key words:
- short-duration heavy rainfall;
- CMA-BJ;
- physical parameters;
- forecast model
-
图 3 1991—2020年4—9月气候平均逐月500 hPa位势高度(黑线,单位:dagpm)、850 hPa风场(风羽)、850 hPa假相当位温(红线,单位:K) 和850 hPa相对湿度(填色)
Fig. 3 Monthly averaged 500 hPa geopotential height (the black line, unit:dagpm), 850 hPa wind (the barb), 850 hPa pseudo-equivalent potential temperature (the red line, unit:K), and 850 hPa relative humidity (the shaded) during 1991-2020
表 1 短时强降水与普通降水(S1)和短时强降水与无降水(S2)天气的水汽条件、热力和能量条件以及动力条件的概率密度分布重叠区(单位:%)
Table 1 Overlappingsize (unit:%) of probability density distributions of moisture conditions, thermal and energy conditions, and dynamic conditions of short-duration heavy rainfall with ordinary rainfall(S1) and with no rainfall(S2) weather types
类别 物理参量 4月和5月 6月 7月 8月 9月 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 水汽条件 整层可降水量 47.6 22.8 72.1 39.8 81.7 52.7 78.7 42.3 59.3 27.7 925 hPa比湿 41.7 24.6 57.8 40.9 79.1 69.8 71.8 53.4 51.5 35.6 850 hPa比湿 41.6 22.0 49.0 36.7 76.8 64.8 73.0 48.4 53.6 31.3 700 hPa比湿 64.1 24.8 70.9 54.5 85.5 57.8 76.7 48.4 76.2 30.0 925 hPa相对湿度 61.7 38.2 72.1 49.0 89.1 69.6 85.7 57.3 79.2 43.3 850 hPa相对湿度 67.1 36.4 76.5 43.7 90.8 68.0 86.9 52.2 81.0 35.0 700 hPa相对湿度 53.9 36.4 63.8 61.1 88.4 56.5 89.0 46.9 59.9 36.0 925 hPa水汽通量 66.2 49.6 71.4 57.9 85.3 69.8 76.9 61.8 80.2 72.5 850 hPa水汽通量 67.7 47.2 72.6 57.2 83.9 69.6 79.3 64.4 76.2 64.9 700 hPa水汽通量 65.2 45.4 74.6 55.6 85.5 61.6 78.8 54.8 78.4 60.2 热力和能量条件 对流有效位能 48.6 44.4 43.7 41.3 78.0 82.8 74.2 76.9 66.6 70.5 对流抑制能量 57.5 48.3 65.9 56.8 82.5 82.1 79.2 80.5 75.2 80.1 最优抬升指数 38.9 34.1 37.9 33.7 76.0 82.4 65.4 60.3 55.7 65.6 沙氏指数 38.3 32.3 41.8 36.2 74.7 79.8 67.1 57.3 55.9 58.8 总指数 48.1 50.7 46.3 46.1 81.6 82.4 72.1 77.5 62.3 71.1 K指数 36.9 21.0 67.8 41.2 79.8 56.1 68.1 34.5 63.4 32.8 强天气威胁指数 36.5 28.0 43.6 33.2 75.1 62.9 74.1 45.1 57.2 37.2 850 hPa和500 hPa假相当位温差 40.0 37.5 43.6 49.5 79.2 80.8 69.6 87.5 60.1 71.4 850 hPa和500 hPa温差 49.3 62.4 48.3 66.4 80.1 73.3 77.1 77.5 61.8 49.2 动力条件 925 hPa散度 72.1 69.9 74.8 67.6 87.2 74.3 79.3 67.4 81.2 80.1 850 hPa散度 74.5 67.0 74.5 67.5 87.4 75.6 81.1 71.2 78.5 77.1 300 hPa散度 68.4 68.3 63.1 55.3 83.3 66.1 76.9 63.2 78.4 75.7 850 hPa经向风 56.6 60.5 64.0 60.7 85.2 71.4 82.8 57.7 67.6 66.0 700 hPa经向风 63.5 42.0 72.1 56.7 86.7 57.4 80.1 50.5 74.4 49.4 700 hPa垂直速度 68.4 67.7 68.4 58.4 82.0 63.7 73.7 58.7 86.5 80.7 0~1 km垂直风切变 72.6 72.6 67.1 63.1 84.1 69.9 81.5 63.2 76.6 68.8 0~3 km垂直风切变 60.5 57.0 78.2 70.0 87.4 71.9 82.8 61.9 73.0 72.4 0~6 km垂直风切变 68.2 63.4 64.0 57.8 80.2 72.8 86.3 81.6 74.8 76.0 3~6 km垂直风切变 69.4 71.8 61.6 57.8 89.0 86.2 86.5 84.3 70.4 79.2 -
[1] 王笑芳, 丁一汇.北京地区强对流天气短时预报方法的研究.大气科学, 1994, 18(2):173-183. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199402004.htmWang X F, Ding Y H. Study on method of short-range forecast of severe covective weather in Beijing Area. Chinese J Atmos Sci, 1994, 18(2): 173-183. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199402004.htm [2] 刘菲凡, 郑永光, 罗琪, 等. 京津冀及周边一般性降水与短时强降水特征对比. 应用气象学报, 2023, 34(5): 619-629. doi: 10.11898/1001-7313.20230510Liu F F, Zheng Y G, Luo Q, et al. Comparison of characteristics of light precipitation and short-time heavy precipitation over Beijing, Tianjin, Hebei and neighbouring areas. J Appl Meteor Sci, 2023, 34(5): 619-629. doi: 10.11898/1001-7313.20230510 [3] 郑永光, 张春喜, 陈炯, 等. 用NCEP资料分析华北暖季对流性天气的气候背景. 北京大学学报(自然科学版), 2007, 43(5): 600-608. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200705006.htmZheng Y G, Zhang C X, Chen J, et al. Climatic background of warm-season convective weather in North China based on the NCEP analysis. Acta Scientiarum Naturalium Universitatis Pekinensis, 2007, 43(5): 600-608. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200705006.htm [4] 雷蕾, 孙继松, 王国荣, 等. 基于中尺度数值模式快速循环系统的强对流天气分类概率预报试验. 气象学报, 2012, 70(4): 752-765. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201204014.htmLei L, Sun J S, Wang G R, et al. An experimental study of the summer convective weather categorical probability forecast based on the rapid updated cycle system for the Beijing Area(BJ-RUC). Acta Meteor Sinica, 2012, 70(4): 752-765. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201204014.htm [5] 田付友, 郑永光, 张涛, 等. 我国中东部不同级别短时强降水天气的环境物理量分布特征. 暴雨灾害, 2017, 36(6): 518-526. doi: 10.3969/j.issn.1004-9045.2017.06.004Tian F Y, Zheng Y G, Zhang T, et al. Characteristics of environmental parameters for multi-intensity short-duration heavy rainfalls over East China. Torrential Rain Disasters, 2017, 36(6): 518-526. doi: 10.3969/j.issn.1004-9045.2017.06.004 [6] 郑永光, 周康辉, 盛杰, 等. 强对流天气监测预报预警技术进展. 应用气象学报, 2015, 26(6): 641-657. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX201506001.htmZheng Y G, Zhou K H, Sheng J, et al. Advances in techniques of monitoring, forecasting and warning of severe convective weather. J Appl Meteor Sci, 2015, 26(6): 641-657. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX201506001.htm [7] 杨波, 郑永光, 蓝渝, 等. 国家级强对流天气综合业务支撑体系建设. 气象, 2017, 43(7): 845-855. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201707008.htmYang B, Zheng Y G, Lan Y, et al. Development and construction of the supporting platform for national severe convective weather forecasting and service. Meteor Mon, 2017, 43(7): 845-855. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201707008.htm [8] 俞小鼎, 郑永光. 中国当代强对流天气研究与业务进展. 气象学报, 2020, 78(3): 391-418. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202003006.htmYu X D, Zheng Y G. Advances in severe convective weather research and operational service in China. Acta Meteor Sinica, 2020, 78(3): 391-418. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202003006.htm [9] 韩丰, 杨璐, 周楚炫, 等. 基于探空数据集成学习的短时强降水预报试验. 应用气象学报, 2021, 32(2): 188-199. doi: 10.11898/1001-7313.20150601Han F, Yang L, Zhou C X, et al. An experimental study of the short-time heavy rainfall event forecast based on ensemble learning and sounding data. J Appl Meteor Sci, 2021, 32(2): 188-199. doi: 10.11898/1001-7313.20150601 [10] 刘娜, 熊安元, 张强, 等. 强对流天气人工智能应用训练基础数据集构建. 应用气象学报, 2021, 32(5): 530-541. doi: 10.11898/1001-7313.20210502Liu N, Xiong A Y, Zhang Q, et al. Development of basic dataset of severe convective weather for artificial intelligence training. J Appl Meteor Sci, 2021, 32(5): 530-541. doi: 10.11898/1001-7313.20210502 [11] 孙健, 曹卓, 李恒, 等. 人工智能技术在数值天气预报中的应用. 应用气象学报, 2021, 32(1): 1-11. doi: 10.11898/1001-7313.20210101Sun J, Cao Z, Li H, et al. Application of artificial intelligence technology to numerical weather prediction. J Appl Meteor Sci, 2021, 32(1): 1-11. doi: 10.11898/1001-7313.20210101 [12] Weisman M L, Rotunno R. The use of vertical wind shear versus helicity in interpreting supercell dynamics. J Atmos Sci, 2000, 57(9): 1452-1472. [13] 张芳华, 曹勇, 徐珺, 等. Logistic判别模型在强降水预报中的应用. 气象, 2016, 42(4): 398-405. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201604002.htmZhang F H, Cao Y, Xu J, et al. Application of the Logistic discriminant model in heavy rain forecasting. Meteor Mon, 2016, 42(4): 398-405. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201604002.htm [14] 周方媛, 戴建华, 陈雷. 基于关键对流参数分级的强对流潜势预报. 气象科技, 2020, 48(2): 229-241. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202002011.htmZhou F Y, Dai J H, Chen L. Severe convective potential forecast based on key convective parameter classification. Meteor Sci Technol, 2020, 48(2): 229-241. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202002011.htm [15] 曹艳察, 郑永光, 盛杰, 等. 基于GRAPES_3 km模式输出的风雹概率预报技术研究. 气象, 2021, 47(9): 1047-1061. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202109002.htmCao Y C, Zheng Y G, Sheng J, et al. Severe convective wind and hail probabilistic forecasting method based on outputs of GRAPES_3 km model. Meteor Mon, 2021, 47(9): 1047-1061. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202109002.htm [16] 张华龙, 伍志方, 肖柳斯, 等. 基于因子分析的广东省短时强降水预报模型及其业务试验. 气象学报, 2021, 79(1): 15-30. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202101002.htmZhang H L, Wu Z F, Xiao L S, et al. A probabilistic forecast model of short-time heavy rainfall in Guangdong Province based on factor analysis and its operational experiments. Acta Meteor Sinica, 2021, 79(1): 15-30. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202101002.htm [17] 李文娟, 赵放, 郦敏杰, 等. 基于数值预报和随机森林算法的强对流天气分类预报技术. 气象, 2018, 44(12): 1555-1564. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201812005.htmLi W J, Zhao F, Li M J, et al. Forecasting and classification of severe convective weather based on numerical forecast and random forest algorithm. Meteor Mon, 2018, 44(12): 1555-1564. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201812005.htm [18] 陈锦鹏, 冯业荣, 蒙伟光, 等. 基于卷积神经网络的逐时降水预报订正方法研究. 气象, 2021, 47(1): 60-70. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202101006.htmChen J P, Feng Y R, Meng W G, et al. A correction method of hourly precipitation forecast based on convolutional neural network. Meteor Mon, 2021, 47(1): 60-70. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202101006.htm [19] Zhou K H, Sun J S, Zheng Y G, et al. Quantitative precipitation forecast experiment based on basic NWP variables using deep learning. Adv Atmos Sci, 2022, 39(9): 1472-1486. [20] Doswell C A Ⅲ, Brooks H E, Maddox R A. Flash flood forecasting: An ingredients-based methodology. Wea Forecasting, 1996, 11(4): 560-581. [21] Wetzel S W, Martin J E. An operational ingredients-based methodology for forecasting midlatitude winter season precipitation. Wea Forecasting, 2001, 16(1): 156-167. [22] Wang D H, Yang S. An atmospheric dry intrusion parameter and its application. Acta Meteor Sinica, 2010, 24(4): 492-500. [23] 朱月佳, 邢蕊, 朱明佳, 等. 联合概率方法在安徽强对流潜势预报中的应用和检验. 地球科学进展, 2019, 34(7): 731-746. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201907010.htmZhu Y J, Xing R, Zhu M J, et al. Application and verification of joint probability method in potential forecast for severe convective weather in Anhui Province. Adv Earth Sci, 2019, 34(7): 731-746. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201907010.htm [24] Tian F Y, Zhang X L, Xia K, et al. Probability forecasting of short-term short-duration heavy rainfall combining ingredients-based methodology and fuzzy logic approach. Atmosphere, 2022, 13(7). DOI: 10.3390/atmos13071074. [25] 雷蕾, 孙继松, 魏东. 利用探空资料判别北京地区夏季强对流的天气类别. 气象, 2011, 37(2): 136-141. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201102003.htmLei L, Sun J S, Wei D. Distinguishing the category of the summer convective weather by sounding data in Beijing. Meteor Mon, 2011, 37(2): 136-141. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201102003.htm [26] Tian F Y, Zheng Y G, Zhang T, et al. Statistical characteristics of environmental parameters for warm season short-duration heavy rainfall over central and Eastern China. J Meteor Res, 2015, 29(3): 370-384. [27] 黄丽萍, 邓莲堂, 王瑞春, 等. CMA-MESO关键技术集成及应用. 应用气象学报, 2022, 33(6): 641-654. doi: 10.11898/1001-7313.20220601Huang L P, Deng L T, Wang R C, et al. Key technologies of CMA-MESO and application to operational forecast. J Appl Meteor Sci, 2022, 33(6): 641-654. doi: 10.11898/1001-7313.20220601 [28] 全继萍, 李青春, 仲跻芹, 等. "CMA北京模式"中三种不同阵风诊断方案在北京地区大风预报中的评估. 气象学报, 2022, 80(1): 108-123. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202201008.htmQuan J P, Li Q C, Zhong J Q, et al. Evaluation of three different gust diagnostic schemes in the CMA-BJ for gale forecasting over Beijing. Acta Meteor Sinica, 2022, 80(1): 108-123. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202201008.htm [29] 张舒婷, 仲跻芹, 卢冰, 等. CMA-BJ V2.0系统华北地区降水预报性能评估. 应用气象学报, 2023, 34(2): 129-141. doi: 10.11898/1001-7313.20230201Zhang S T, Zhong J Q, Lu B, et al. Performance evaluation of CMA-BJ V2.0 system for precipitation forecast in North China. J Appl Meteor Sci, 2023, 34(2): 129-141. doi: 10.11898/1001-7313.20230201 [30] 董春卿, 武永利, 郭媛媛, 等. 山西强对流天气分类指标与判据的应用. 干旱气象, 2021, 39(2): 345-355. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX202102020.htmDong C Q, Wu Y L, Guo Y Y, et al. Application of classification indexes and criterion on severe convection weather in Shanxi Province. J Arid Meteor, 2021, 39(2): 345-355. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX202102020.htm [31] 何静, 陈敏, 仲跻芹, 等. 雷达反射率三维拼图观测资料在北方区域数值模式预报系统中的同化应用研究. 气象学报, 2019, 77(2): 210-232. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201902004.htmHe J, Chen M, Zhong J Q, et al. A study of three-dimensional radar reflectivity mosaic assimilation in the regional forecasting model for North China. Acta Meteor Sinica, 2019, 77(2): 210-232. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201902004.htm [32] Hersbach H, Bell B, Berrisford P, et al. ERA5 Monthly Averaged Data on Pressure Levels from 1940 to Present. Copernicus Climate Change Service(C3S) Climate Data Store(CDS), 2023. DOI: 10.24381/cds.6860a573. [33] 唐文苑, 周庆亮, 刘鑫华, 等. 国家级强对流天气分类预报检验分析. 气象, 2017, 43(1): 67-76. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201701007.htmTang W Y, Zhou Q L, Liu X H, et al. Anlysis on verification of national severe convective weather categorical forecasts. Meteor Mon, 2017, 43(1): 67-76. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201701007.htm [34] 王国荣, 王令. 北京地区夏季短时强降水时空分布特征. 暴雨灾害, 2013, 32(3): 276-279. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201303014.htmWang G R, Wang L. Temporal and spatial distribution of short-time heavy rain of Beijing in summer. Torrential Rain Disasters, 2013, 32(3): 276-279. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201303014.htm [35] 孙明生, 李国旺, 尹青, 等. "7·21"北京特大暴雨成因分析(Ⅰ): 天气特征、层结与水汽条件. 暴雨灾害, 2013, 32(3): 210-217. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201303004.htmSun M S, Li G W, Yin Q, et al. Analysis on the cause of a torrential rain occurring in Beijing on 21 July 2012(Ⅰ): Weather characteristics, stratification and water vapor conditions. Torrential Rain Disasters, 2013, 32(3): 210-217. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201303004.htm [36] 孟妙志. K指数在暴雨分析预报中的应用. 气象, 2003, 29(8): 1-2. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200308000.htmMeng M Z. Application of K index in rainstorm analysis and forecast. Meteor Mon, 2003, 29(8): 1-2. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200308000.htm [37] 韩宁, 苗春生. 近6年陕甘宁三省5—9月短时强降水统计特征. 应用气象学报, 2012, 23(6): 691-701. http://qikan.camscma.cn/article/id/20120606Han N, Miao C S. Statistical characteristics of short-time heavy precipitation in Shan-Gan-Ning Region from May to September in recent 6 years. J Appl Meteor Sci, 2012, 23(6): 691-701. http://qikan.camscma.cn/article/id/20120606 [38] 刘淑媛, 郑永光, 陶祖钰. 利用风廓线雷达资料分析低空急流的脉动与暴雨关系. 热带气象学报, 2003, 19(3): 285-290. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200303007.htmLiu S Y, Zheng Y G, Tao Z Y. The analysis of the relationship between pulse of LLJ and heavy rain using wind profiler data. J Trop Meteor, 2003, 19(3): 285-290. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200303007.htm [39] 孙军, 谌芸, 杨舒楠, 等. 北京721特大暴雨极端性分析及思考(二)极端性降水成因初探及思考. 气象, 2012, 38(10): 1267-1277. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201210015.htmSun J, Chen Y, Yang S N, et al. Analysis and thinking on the extremes of the 21 July 2012 torrential rain in Beijing Part Ⅱ: Preliminary causation analysis and thinking. Meteor Mon, 2012, 38(10): 1267-1277. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201210015.htm [40] Nuijens L, Stevens B, Siebesma A P. The environment of precipitating shallow cumulus convection. J Atmos Sci, 2009, 66(7): 1962-1979. [41] 杨扬, 卢冰, 王薇, 等. 基于WRF的积云对流参数化方案对中国夏季降水预报的影响研究. 气象学报, 2021, 79(4): 612-625. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202104006.htmYang Y, Lu B, Wang W, et al. Impacts of cumulus parameterization schemes on the summertime precipitation forecast in China based on the WRF model. Acta Meteor Sinica, 2021, 79(4): 612-625. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202104006.htm [42] 雷蕾, 邢楠, 周璇, 等. 2018年北京"7.16"暖区特大暴雨特征及形成机制研究. 气象学报, 2020, 78(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202001001.htmLei L, Xing N, Zhou X, et al. A study on the warm-sector torrential rainfall during 15-16 July 2018 in Beijing Area. Acta Meteor Sinica, 2020, 78(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202001001.htm [43] 李欣, 张璐. 北上台风强降水形成机制及微物理特征. 应用气象学报, 2022, 33(1): 29-42. doi: 10.11898/1001-7313.20220103Li X, Zhang L. Formation mechanism and microphysics characteristics of heavy rainfall caused by northward-moving typhoons. J Appl Meteor Sci, 2022, 33(1): 29-42. doi: 10.11898/1001-7313.20220103 [44] 王黉, 李英, 文永仁. 川藏高原一次混合型强对流天气的观测特征. 应用气象学报, 2021, 32(5): 567-579. doi: 10.11898/1001-7313.20210505Wang H, Li Y, Wen Y R. Observational characteristics of a hybrid severe convective event in the Sichuan-Tibet Region. J Appl Meteor Sci, 2021, 32(5): 567-579. doi: 10.11898/1001-7313.20210505 [45] 齐道日娜, 何立富, 王秀明, 等. "7·20"河南极端暴雨精细观测及热动力成因. 应用气象学报, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101