留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弱垂直风切变环境下强下击暴流双偏振雷达特征

郭飞燕 刁秀广 褚颖佳 马艳

郭飞燕, 刁秀广, 褚颖佳, 等. 弱垂直风切变环境下强下击暴流双偏振雷达特征. 应用气象学报, 2023, 34(6): 681-693. DOI:  10.11898/1001-7313.20230604..
引用本文: 郭飞燕, 刁秀广, 褚颖佳, 等. 弱垂直风切变环境下强下击暴流双偏振雷达特征. 应用气象学报, 2023, 34(6): 681-693. DOI:  10.11898/1001-7313.20230604.
Guo Feiyan, Diao Xiuguang, Chu Yingjia, et al. Dual polarization radar characteristics of severe downburst occurred in weak vertical wind shear. J Appl Meteor Sci, 2023, 34(6): 681-693. DOI:  10.11898/1001-7313.20230604.
Citation: Guo Feiyan, Diao Xiuguang, Chu Yingjia, et al. Dual polarization radar characteristics of severe downburst occurred in weak vertical wind shear. J Appl Meteor Sci, 2023, 34(6): 681-693. DOI:  10.11898/1001-7313.20230604.

弱垂直风切变环境下强下击暴流双偏振雷达特征

DOI: 10.11898/1001-7313.20230604
资助项目: 

山东省自然科学基金项目 ZR2021QD028

山东省自然科学基金项目 ZR2022MD072

国家自然科学基金项目 41875049

青岛市气象局重点项目 2023qdqxz01

山东省精准预报技术创新团队 SDCXTD2021-1

详细信息
    通信作者:

    刁秀广, 邮箱:radardxg@126.com

Dual Polarization Radar Characteristics of Severe Downburst Occurred in Weak Vertical Wind Shear

  • 摘要: 基于S波段双偏振多普勒天气雷达和常规观测资料, 分析发生于2022年6月26日、6月30日和7月2日弱垂直风切变环境下强下击暴流的双偏振特征, 探讨其物理机制。研究表明:3次强下击暴流的对流不稳定能量较强, 但垂直风切变较小。6·30风暴和7·2风暴低层较湿, 中(上)层略干, 6·26风暴除近地层外整层较干。在垂直风切变较弱且0℃层高度较高的环境下, 强下击暴流同时伴有高强度分钟降水量(超过3 mm)是其重要特征之一;强下击暴流产生前, 风暴强度较强且风暴顶较高(超过10 km), 0℃层及以上高度存在超过3.0°·km-1的差分相移率高值区, 表明液态粒子或融化的小冰相粒子浓度较高, 可视为风暴液态粒子质量团的悬垂, 类似于强反射率因子核的悬垂及下降, 诱发强下击暴流并伴有短时高强度降水;由于夹卷层平均风速较小, 该类强下击暴流动量下传机制较弱, 如果空气较湿, 强下击暴流的主要机制为重力拖曳及冰相粒子的融化作用, 如果空气较干, 还应考虑干空气的夹卷蒸发作用。
  • 图  1  探空站、雷达站和自动气象站分布

    Fig. 1  Distribution of sounding, radar and automatic weather stations

    图  2  2022年6月26日、6月30日和7月2日08:00 500 hPa位势高度场(等值线,单位:dagpm) 和700 hPa风场(风羽)

    Fig. 2  500 hPa geopotential height (the contour,unit:dagpm) and 700 hPa wind (the barb) at 0800 BT 26 Jun, 0800 BT 30 Jun and 0800 BT 2 Jul in 2022

    图  3  2022年6月26日14:54青岛双偏振雷达组合反射率因子(a)和0.5°仰角径向速度(b)

    Fig. 3  Composite reflectivity(a) and 0.5° elevation radial velocity(b) by Qingdao dual polarization radar at 1454 BT 26 Jun 2022

    图  4  2022年6月26日14:54和15:00青岛双偏振雷达ZHKDPZDR沿316.5°的径向垂直剖面

    (紫色、红色和蓝色水平实线分别为湿球0℃层,0℃层和-20℃层高度)

    Fig. 4  Cross-sections of ZH, KDP and ZDR along 316.5° radial direction by Qingdao dual polarization radar at 1454 BT and 1500 BT on 26 Jun 2022 (purple, red and blue horizontal solid lines denote heights of the wet bulb 0℃ layer, 0℃ layer and -20℃ layer, respectively)

    图  5  济南双偏振雷达2022年6月30日12:42组合反射率因子(a)和0.5°仰角径向速度(b)

    Fig. 5  Composite reflectivity(a) and 0.5° elevation radial velocity(b) by Jinan dual polarization radar at 1242 BT 30 Jun 2022

    图  6  2022年6月30日12:37和12:42济南双偏振雷达ZHKDPZDR沿97°的径向垂直剖面

    (紫色、红色和蓝色水平实线分别为湿球0℃层,0℃层和-20℃层高度)

    Fig. 6  Cross-sections of ZH, KDP and ZDR along 97° radial direction by Qingdao dual polarization radar at 1237 BT and 1242 BT on 30 Jun 2022 (purple, red and blue horizontal solid lines denote heights of the wet bulb 0℃ layer, 0℃ layer and -20℃ layer, respectively)

    图  7  2022年7月2日15:36濮阳雷达组合反射率因子(a)和0.5°仰角径向速度(b)

    Fig. 7  Composite reflectivity(a) and 0.5° elevation radial velocity(b) by Puyang dual polarization radar at 1536 BT 2 Jul 2022

    图  8  2022年7月2日15:31和15:37济宁双偏振雷达ZHKDP沿258°的径向垂直剖面

    (紫色、红色和蓝色水平实线分别为湿球0℃层,0℃层和-20℃层高度)

    Fig. 8  Cross-sections of ZH and KDP along 258° radial direction by Jining dual polarization radar at 1531 BT and 1537 BT on 2 Jul 2022 (purple, red and blue horizontal solid lines denote heights of the wet bulb 0℃ layer, 0℃ layer layer and -20℃ layer, respectively)

    表  1  青岛站、章丘站和郑州站探空环境物理量

    Table  1  Environmental physical parameters obtained by sounding at Qingdao, Zhangqiu and Zhengzhou

    物理量 青岛站
    2022-06-26T08:00
    章丘站
    2022-06-30T08:00
    郑州站
    2022-07-02T08:00
    K指数/℃ -5.5 35 35
    850 hPa和500 hPa的温差/℃ 30 25 26
    有利抬升指数/℃ -6.8 -4.1 -3.9
    对流有效位能/(J·kg-1) 1880 1010 1820
    对流抑制位能/(J·kg-1) 0 0 0
    600 hPa下沉对流有效位能/(J·kg-1) 1760 470 935
    0~6 km垂直风切变/(m·s-1) 5.9 9.7 5.9
    0~3 km垂直风切变/(m·s-1) 6.6 10.4 4.3
    整层比湿度积分/(g·kg-1) 2810 4186 4109
    干层强度/℃ 45 6 13.5
    夹卷层平均风速/(m·s-1) 8.2 9.9 5.0
    湿球0℃层高度/km 3.2 4.2 4.1
    0℃层高度/km 4.9 4.4 4.9
    -10℃层高度/km 6.7 6.2 6.6
    -20℃层高度/km 8.1 7.9 8.2
    下载: 导出CSV

    表  2  风暴雷达特征

    Table  2  Radar characteristics for storms

    风暴 ZDR柱高度/km KDP柱高度/km -10℃层ZDR柱面积/(距离库数量) -10℃层KDP柱面积/(距离库数量)
    T-2 T-1 T T-2 T-1 T T-2 T-1 T T-2 T-1 T
    6·26 6.7 6.7 7.5 7.5 8.8 7.5 8 5 6 35 20 5
    6·30 6.8 6.8 6.7 9.1 7.5 7.1 6 3 7 8 11 6
    7·2 8.0 8.0 9.3 8.5 28 9 47 34
    下载: 导出CSV
  • [1] Fujita T T.Manual of Downburst Identification for Project NIMROD.SMRP Research Paper156.Chicago: University of Chicago, 1978: 1-104.
    [2] 郑永光, 周康辉, 盛杰, 等. 强对流天气监测预报预警技术进展. 应用气象学报, 2015, 26(6): 641-657. doi:  10.11898/1001-7313.20150601

    Zheng Y G, Zhou K H, Sheng J, et al. Advances in techniques of monitoring, forecasting and warning of severe convective weather. J Appl Meteor Sci, 2015, 26(6): 641-657. doi:  10.11898/1001-7313.20150601
    [3] Fujita T T, Byers H R. Spearhead echo and downburst in the crash of an airliner. Mon Wea Rev, 1977, 105(2): 129-146. doi:  10.1175/1520-0493(1977)105<0129:SEADIT>2.0.CO;2
    [4] Johns R H, Doswell C A Ⅲ. Severe local storms forecasting. Wea Forecasting, 1992, 7(4): 588-612. doi:  10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2
    [5] 高晓梅, 俞小鼎, 王令军, 等. 山东半岛两次海风锋引起的强对流天气对比. 应用气象学报, 2018, 29(2): 245-256. doi:  10.11898/1001-7313.20180210

    Gao X M, Yu X D, Wang L J, et al. Comparative analysis of two strong convections triggered by sea-breeze front in Shandong Peninsula. J Appl Meteor Sci, 2018, 29(2): 245-256. doi:  10.11898/1001-7313.20180210
    [6] 王黉, 李英, 宋丽莉, 等. 川藏地区雷暴大风活动特征和环境因子对比. 应用气象学报, 2020, 31(4): 435-446. doi:  10.11898/1001-7313.20200406

    Wang H, Li Y, Song L L, et al. Comparison of characteristics and environmental factors of thunderstorm gales over the Sichuan-Tibet Region. J Appl Meteor Sci, 2020, 31(4): 435-446. doi:  10.11898/1001-7313.20200406
    [7] 王黉, 李英, 文永仁. 川藏高原一次混合型强对流天气的观测特征. 应用气象学报, 2021, 32(5): 567-579. doi:  10.11898/1001-7313.20210505

    Wang H, Li Y, Wen Y R. Observational characteristics of a hybrid severe convective event in the Sichuan-Tibet Region. J Appl Meteor Sci, 2021, 32(5): 567-579. doi:  10.11898/1001-7313.20210505
    [8] 盛杰, 郑永光, 沈新勇, 等. 2018年一次罕见早春飑线大风过程演变和机理分析. 气象, 2019, 45(2): 141-154. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201902001.htm

    Sheng J, Zheng Y G, Shen X Y, et al. Evolution and mechanism of a rare squall line in early spring of 2018. Meteor Mon, 2019, 45(2): 141-154. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201902001.htm
    [9] 俞小鼎, 张爱民, 郑媛媛, 等. 一次系列下击暴流事件的多普勒天气雷达分析. 应用气象学报, 2006, 17(4): 385-393. doi:  10.3969/j.issn.1001-7313.2006.04.001

    Yu X D, Zhang A M, Zheng Y Y, et al. Doppler radar analysis on a series of downburst events. J Appl Meteor Sci, 2006, 17(4): 385-393. doi:  10.3969/j.issn.1001-7313.2006.04.001
    [10] Przybylinski R W. The bow echo: Observations, numerical simulations, and severe weather detection methods. Wea Forecasting, 1995, 10(2): 203-218. doi:  10.1175/1520-0434(1995)010<0203:TBEONS>2.0.CO;2
    [11] Smull B F, Houze R A Jr. Rear inflow in squall line with trailing stratiform precipitation. Mon Wea Rev, 1987, 115(12): 2869-2889. doi:  10.1175/1520-0493(1987)115<2869:RIISLW>2.0.CO;2
    [12] Eilts M D, Johnson J T, Mitchell E D, et al. Damaging Downburst Prediction and Detection Algorithm for the WSR-88D//Preprints, 18th Conference on Severe Local Storms. San Francisco, CA, Amer Meteor Soc, 1996: 541-545.
    [13] 王秀明, 周小刚, 俞小鼎. 雷暴大风环境特征及其对风暴结构影响的对比研究. 气象学报, 2013, 71(5): 839-852. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201305004.htm

    Wang X M, Zhou X G, Yu X D. Comparative study of environmental characteristics of a windstorm and their impacts on storm structures. Acta Meteor Sinica, 2013, 71(5): 839-852. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201305004.htm
    [14] 王福侠, 俞小鼎, 裴宇杰, 等. 河北省雷暴大风的雷达回波特征及预报关键点. 应用气象学报, 2016, 27(3): 342-351. doi:  10.11898/1001-7313.20160309

    Wang F X, Yu X D, Pei Y J, et al. Radar echo characteristics of thunderstorm gales and forecast key points in Hebei Province. J Appl Meteor Sci, 2016, 27(3): 342-351. doi:  10.11898/1001-7313.20160309
    [15] 王一童, 王秀明, 俞小鼎. 产生致灾大风的超级单体回波特征. 应用气象学报, 2022, 33(2): 180-191. doi:  10.11898/1001-7313.20220205

    Wang Y T, Wang X M, Yu X D. Radar characteristics of straight-line damaging wind producing supercell storms. J Appl Meteor Sci, 2022, 33(2): 180-191. doi:  10.11898/1001-7313.20220205
    [16] 王易, 郑媛媛, 庄潇然, 等. 江苏典型下击暴流风暴结构特征统计分析. 气象学报, 2022, 80(4): 592-603. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202204008.htm

    Wang Y, Zheng Y Y, Zhuang X R, et al. Statistical analysis of the structural characteristics of typical downbursts in Jiangsu Province, China. Acta Meteor Sinica, 2022, 80(4): 592-603. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202204008.htm
    [17] 王秀明, 俞小鼎, 费海燕, 等. 下击暴流形成机理及监测预警研究进展. 气象, 2023, 49(2): 129-145. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202302001.htm

    Wang X M, Yu X D, Fei H Y, et al. A review of downburst genesis mechanism and warning. Meteor Mon, 2023, 49(2): 129-145. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202302001.htm
    [18] 吴翀, 刘黎平, 仰美霖, 等. X波段双偏振雷达相态识别与拼图的关键技术. 应用气象学报, 2021, 32(2): 200-216. doi:  10.11898/1001-7313.20210206

    Wu C, Liu L P, Yang M L, et al. Key technologies of hydrometeor classification and mosaic algorithm for X-band polarimetric radar. J Appl Meteor Sci, 2021, 32(2): 200-216. doi:  10.11898/1001-7313.20210206
    [19] 李哲, 吴翀, 刘黎平, 等. 双偏振相控阵雷达误差评估与相态识别方法. 应用气象学报, 2022, 33(1): 16-28. doi:  10.11898/1001-7313.20220102

    Li Z, Wu C, Liu L P, et al. Error evaluation and hydrometeor classification method of dual polarization phased array radar. J Appl Meteor Sci, 2022, 33(1): 16-28. doi:  10.11898/1001-7313.20220102
    [20] 郭飞燕, 刁秀广, 马艳, 等. 山东一次飑线双偏振结构与地面降水滴谱特征分析. 气象学报, 2023, 81(2): 328-339. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202302010.htm

    Guo F Y, Diao X G, Ma Y, et al. Characteristics of the dual-polarization structure and raindrop size distribution of a squall line in Shandong. Acta Meteor Sinica, 2023, 81(2): 328-339. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202302010.htm
    [21] 刁秀广, 李芳, 万夫敬. 两次强冰雹超级单体风暴双偏振特征对比. 应用气象学报, 2022, 33(4): 414-428. doi:  10.11898/1001-7313.20220403

    Diao X G, Li F, Wan F J. Comparative analysis on dual polarization features of two severe hail supercells. J Appl Meteor Sci, 2022, 33(4): 414-428. doi:  10.11898/1001-7313.20220403
    [22] Kumjian M R, Ganson S M, Ryzhkov A V. Freezing of rain drops in deep convective updrafts: A microphysical and polarimetric model. J Atmos Sci, 2012, 69(12): 3471-3490.
    [23] 刁秀广, 郭飞燕. 2019年8月16日诸城着急单体风暴双偏振参量结构特征分析. 气象学报, 2021, 79(2): 181-195. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202102001.htm

    Diao X G, Guo F Y. Analysis of polarimetric signatures in the supercell thunderstorm occurred in Zhucheng on 16 August 2019. Acta Meteor Sinica, 2021, 79(2): 181-195. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202102001.htm
    [24] Loney M L, Zrnić D S, Straka J M, et al. Enhanced polarimetric radar signatures above the melting level in a supercell storm. J Appl Meteor, 2002, 41(12): 1179-1194.
    [25] van Lier-Walqui M, Fridlind A M, Ackerman A S, et al. On polarimetric radar signatures of deep convection for model evaluation: Columns of specific differential phase observed during MC3E. Mon Wea Rev, 2016, 144(2): 737-758.
    [26] Wakimoto R M, Bringi V N. Dual-polarization observations of microbursts associated with intense convection: The 20 July storm during the MIST project. Mon Wea Rev, 1988, 116(8): 1521-1539.
    [27] Scharfenberg K A. Polarimetric Radar Signatures in Microburst-producing Thunderstorms//31st Int Conf on Radar Meteorology. Seattle: Amer Meteor Soc, 2003, 8B4.
    [28] Kuster C M, Heinselman P L, Schuur, T J. Rapid-update radar observations of downbursts occurring within an intense multicell thunderstorm on 14 June 2011. Wea Forecasting, 2016, 31(3): 827-851.
    [29] Kuster C M, Bowers B R, Carlin J T, et al. Using KDP cores as a downburst precursor signature. Wea Forecasting, 2021, 36(4): 1183-1198.
    [30] Wang X, Wang H L, He J X, et al. Automated recognition of macro downburst using Doppler weather radar. Atmos, 2022, 13(5). DOI:  10.3390/atmos13050672.
    [31] Smith T M, Elmore K L, Dulin, S A. A damaging downburst prediction and detection algorithm for the WSR-88D. Wea Forecasting, 2004, 19(2): 240-250.
    [32] Miller P W, Mote T L. Characterizing severe weather potential in synoptically weakly forced thunderstorm environments. Nat Hazards Earth Syst Sci, 2018, 18: 1261-1277.
    [33] 俞小鼎, 王秀明, 李万莉, 等. 雷暴与强对流临近预报. 北京: 气象出版社, 2020.

    Yu X D, Wang X M, Li W L, et al. Thunderstorm and Strong Convection Nowcasting. Beijing: China Meteorological Press, 2020.
    [34] McCarthy J, Serafin R, Wilson J, et al. Addressing the microburst threat to aviation: Research-to-operations success story. Bull Amer Meteor Soc, 2022, 103(12). DOI:  10.1175/BAMS-D-22-0038.1.
    [35] 周后福, 刁秀广, 赵倩, 等. 一次连续下击暴流天气的成因分析. 干旱气象, 2017, 35(4): 641-648. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201704015.htm

    Zhou H F, Diao X G, Zhao Q, et al. Cause analysis of a continuous downburst weather. J Arid Meteor, 2017, 35(4): 641-648. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201704015.htm
    [36] 马淑萍, 王秀明, 俞小鼎. 极端雷暴大风的环境参量特征. 应用气象学报, 2019, 30(3): 292-301. doi:  10.11898/1001-7313.20190304

    Ma S P, Wang X M, Yu X D. Environmental parameter characteristics of severe wind with extreme thunderstorm. J Appl Meteor Sci, 2019, 30(3): 292-301. doi:  10.11898/1001-7313.20190304
    [37] 陈淑琴, 章丽娜, 俞小鼎, 等. 浙北沿海连续3次飑线演变过程的环境条件. 应用气象学报, 2017, 28(3): 357-368. doi:  10.11898/1001-7313.20170309

    Chen S Q, Zhang L N, Yu X D, et al. Environmental conditions of three squall lines in the north part of Zhejiang Province. J Appl Meteor Sci, 2017, 28(3): 357-368. doi:  10.11898/1001-7313.20170309
    [38] 刘洪恩. 微下击暴流的特征及其数值模拟. 气象学报, 2001, 59(2): 183-195. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-DIDD200109002A5E.htm

    Liu H E. Characteristics and numerical simulation of microburst. Acta Meteor Sinica, 2001, 59(2): 183-195. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-DIDD200109002A5E.htm
    [39] Hubbert J C, Wilson J W, Weckwerth T M, et al. S-Pol's polarimetric data reveal detailed storm features (and insect behavior). Bull Amer Meteor Soc, 2018, 99(10): 2045-2060.
    [40] Ryzhkov A V, Kumjian M R, Ganson S M, et al. Polarimetric radar characteristics of melting hail. Part Ⅱ: Practical implications. J Appl Meteor Climatol, 2013, 52(12): 2871-2886.
    [41] 段亚鹏, 王东海, 刘英. "东方之星"翻沉事件强对流天气分析及数值模拟. 应用气象学报, 2017, 28(6): 666-677. doi:  10.11898/1001-7313.20170603

    Duan Y P, Wang D H, Liu Y. Radar analysis and numerical simulation of strong convective weather for "Oriental Star" depression. J Appl Meteor Sci, 2017, 28(6): 666-677. doi:  10.11898/1001-7313.20170603
    [42] Mahale V N, Zhang G F, Xue M. Characterization of the 14 June 2011 Norman, Oklahoma, downburst through dual-polarization radar observations and hydrometeor classification. J Appl Meteor Climatol, 2016, 55(12): 2635-2655.
  • 加载中
图(8) / 表(2)
计量
  • 摘要浏览量:  429
  • HTML全文浏览量:  145
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-04
  • 修回日期:  2023-08-02
  • 刊出日期:  2023-11-27

目录

    /

    返回文章
    返回