留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2014—2022年古田人工增雨随机试验物理检验

胡淑萍 林文 林长城 李丹 江善赐 冯宏芳

胡淑萍, 林文, 林长城, 等. 2014—2022年古田人工增雨随机试验物理检验. 应用气象学报, 2023, 34(6): 706-716. DOI:  10.11898/1001-7313.20230606..
引用本文: 胡淑萍, 林文, 林长城, 等. 2014—2022年古田人工增雨随机试验物理检验. 应用气象学报, 2023, 34(6): 706-716. DOI:  10.11898/1001-7313.20230606.
Hu Shuping, Lin Wen, Lin Changcheng, et al. Physical inspection of randomized trial for the artificial rain enhancement experiment at Gutian from 2014 to 2022. J Appl Meteor Sci, 2023, 34(6): 706-716. DOI:  10.11898/1001-7313.20230606.
Citation: Hu Shuping, Lin Wen, Lin Changcheng, et al. Physical inspection of randomized trial for the artificial rain enhancement experiment at Gutian from 2014 to 2022. J Appl Meteor Sci, 2023, 34(6): 706-716. DOI:  10.11898/1001-7313.20230606.

2014—2022年古田人工增雨随机试验物理检验

DOI: 10.11898/1001-7313.20230606
资助项目: 

国家重点研发计划 2019YFC1510303

中央引导地方科技发展专项 2021L3010040

详细信息
    通信作者:

    林文, 邮箱:donnakoon@foxmail.com

Physical Inspection of Randomized Trial for the Artificial Rain Enhancement Experiment at Gutian from 2014 to 2022

  • 摘要: 基于2014—2022年福建古田地面火箭人工增雨随机试验样本, 利用回波强度、回波顶高和负温层厚度等雷达宏观参量以及双偏振参量差分反射率和差分相位差, 开展人工增雨随机试验物理检验及催化个例的物理响应研究。结果表明:与作业后非催化样本回波强度小幅上升后快速减弱相比, 81.6%的催化样本在作业后回波强度增强, 其中52.6%的样本最大增幅为0~20%(不含0), 21.1%的样本增幅为20%~50%(不含20%), 7.9%的样本增幅超过50%;作业后52.6%的催化样本出现回波顶高升高和负温层增厚现象, 其中36.8%的样本增长0~20%(不含0), 13.2%的样本增长20%~50%(不含20%), 2.6%的样本增长超过50%;催化样本的双偏振参量差分反射率和差分相位差在作业后也出现持续增强;个例分析显示, 催化作业有助于云体发展、增强和维持, 促使降水量显著增加, 不仅降水粒子增多增大, 云体生命史也延长。
  • 图  1  作业前后雷达回波强度变化

    Fig. 1  Change in radar echo intensity before and after operation

    图  2  作业前后最大回波顶高和最大负温层厚度变化

    Fig. 2  Changes in echo top height and negative temperature layer thickness before and after operation

    图  3  催化样本和非催化样本的ZDRKDP最大值变化

    Fig. 3  Change in maximum of ZDR and KDP for seeded and non-seeded samples

    图  4  2021年5月4日作业前后雷达回波强度时序拼图(作业时段为17:03—17:05)

    Fig. 4  Radar echo intensity sequence puzzle before and after operation on 4 May 2021 (operation period is 1703-1705 BT)

    图  5  2021年5月4日催化作业回波顶高ZH、差分反射率ZDR和差分相位差KDP剖面

    Fig. 5  Cross-sections of ZH, ZDR and KDP of the seeded sample on 4 May 2021

    图  6  作业前后雨滴尺度平均谱对比

    Fig. 6  Comparison of raindrop-scale mean spectra before and after operation

    表  1  作业后60 min样本雷达回波强度变化

    Table  1  Change in radar echo intensity within 60 min after operation

    作业后状态 催化样本 非催化样本
    样本量 比例/% 样本量 比例/%
    增强 31 81.6 12 30.8
    维持 5 13.1 8 20.5
    减弱 2 5.3 19 48.7
    注:增强含先增强后减弱、持续增强、先增强后维持3种情况,减弱含持续减弱、先减弱后维持两种情况,维持指参数连续30 min以上保持不变。
    下载: 导出CSV

    表  2  作业后60 min样本雷达回波强度增长率

    Table  2  Radar echo intensity growth rate within 60 min after operation

    增长率r/% 催化样本 非催化样本
    样本量 比例/% 样本量 比例/%
    r<0 2 5.3 19 48.7
    r=0 5 13.1 8 20.5
    0<r≤20 20 52.6 10 25.7
    20<r≤50 8 21.1 2 5.1
    r>50 3 7.9 0 0
    注:参量X增长率:r=(X2-X1)/X1×100%,X1表示作业时样本的参量值,X2表示作业后样本参量X的极值。
    下载: 导出CSV

    表  3  作业后60 min样本雷达最大回波顶高变化

    Table  3  Change in radar echo top height within 60 min after operation

    最大回波顶高变化 催化样本 非催化样本
    样本量 比例/% 样本量 比例/%
    增长 20 52.6 13 33.3
    维持 16 42.1 8 20.5
    降低 2 5.3 18 46.2
    注:增长含先增长后降低、先增长后维持、持续增长3种情况,降低含持续降低、先降低后维持两种情况,维持指参数连续30 min以上保持不变。
    下载: 导出CSV

    表  4  作业后60 min样本雷达最大回波顶高增长率

    Table  4  Radar echo top height growth rate within 60 min after operation

    增长率r/% 催化样本 非催化样本
    样本量 比例/% 样本量 比例/%
    r<0 2 5.3 18 46.2
    r=0 16 42.1 8 20.5
    0<r≤20 14 36.8 11 28.2
    20<r≤50 5 13.2 2 5.1
    r>50 1 2.6 0 0
    下载: 导出CSV

    表  5  催化样本与非催化样本的雷达回波参量双比值

    Table  5  Double ratio of radar echo parameters between seeded and non-seeded samples

    作业后时间 回波强度 回波顶高 负温层厚度
    6 min 1.00 1.02 1.01
    12 min 1.05 1.08 1.16
    18 min 1.10 1.08 1.17
    24 min 1.12 1.08 1.17
    30 min 1.18 1.10 1.21
    36 min 1.19 1.12 1.19
    42 min 1.18 1.17 1.22
    48 min 1.17 1.15 1.26
    54 min 1.19 1.20 1.31
    60 min 1.20 1.17 1.25
    下载: 导出CSV
  • [1] 姚展予.中国气象科学研究院人工影响天气研究进展回顾.应用气象学报,2006,17(6):786-795. doi:  10.3969/j.issn.1001-7313.2006.06.016

    Yao Z Y. Review of weather modification research in Chinese Academy of Meteorological Sciences. J Appl Meteor Sci, 2006, 17(6): 786-795. doi:  10.3969/j.issn.1001-7313.2006.06.016
    [2] 毛节泰, 郑国光. 对人工影响天气若干问题的探讨. 应用气象学报, 2006, 17(5): 643-646. doi:  10.3969/j.issn.1001-7313.2006.05.015

    Mao J T, Zheng G G. Discussions on some weather modification issues. J Appl Meteor Sci, 2006, 17(5): 643-646. doi:  10.3969/j.issn.1001-7313.2006.05.015
    [3] 曾光平, 刘峻. 人工降水试验效果检验的统计模拟方法研究. 气象学报, 1993, 51(2): 241-247. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199302015.htm

    Zeng G P, Liu J. A research on a statistical simulation method for the test of the artificial rainfall effect. Acta Meteor Sinica, 1993, 51(2): 241-247. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199302015.htm
    [4] 孙旭映, 王劲松, 王静. 火箭增雨效果雷达回波分析. 干旱气象, 2005, 23(3): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX200503006.htm

    Sun X Y, Wang J S, Wang J. Analysis of radar echoes on effects of rain enhancement by AgI-loading rockets. J Arid Meteor, 2005, 23(3): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX200503006.htm
    [5] 于丽娟. 人工增雨效果物理检验适用方法研究和个例分析. 北京: 中国气象科学研究院, 2009.

    Yu L J. The Research of Physical Approaches for Effectiveness Evaluation of Artificial Precipitation Enhancement and Case Studies. Beijing: Chinese Academy of Meteorological Sciences, 2009.
    [6] 叶家东. 人工降水的试验设计和效果检验. 气象, 1979, 5(2): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX197902010.htm

    Ye J D. Experimental design and effect test of artificial precipitation. Meteor Mon, 1979, 5(2): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX197902010.htm
    [7] 王飞, 李集明, 姚展予, 等. 我国人工增雨作业效果定量评估研究综述. 气象, 2022, 48(8): 945-962. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202208001.htm

    Wang F, Li J M, Yao Z Y, et al. Advances of quantitative evaluation studies of artificial precipitation enhancement in China. Meteor Mon, 2022, 48(8): 945-962. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202208001.htm
    [8] 郭学良, 方春刚, 卢广献, 等. 2008—2018年我国人工影响天气技术及应用进展. 应用气象学报, 2019, 30(6): 641-650. doi:  10.11898/1001-7313.20190601

    Guo X L, Fang C G, Lu G X, et al. Progresses of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. doi:  10.11898/1001-7313.20190601
    [9] 楼小凤, 傅瑜, 苏正军. 人工影响天气碘化银催化剂研究进展. 应用气象学报, 2021, 32(2): 146-159. doi:  10.11898/1001-7313.20210202

    Lou X F, Fu Y, Su Z J. Advances of silver iodide seeding agents for weather modification. J Appl Meteor Sci, 2021, 32(2): 146-159. doi:  10.11898/1001-7313.20210202
    [10] 郭学良, 付丹红, 郭欣, 等. 我国云降水物理飞机观测研究进展. 应用气象学报, 2021, 32(6): 641-652. doi:  10.11898/1001-7313.20210601

    Guo X L, Fu D H, Guo X, et al. Advances in aircraft measurements of clouds and precipitation in China. J Appl Meteor Sci, 2021, 32(6): 641-652. doi:  10.11898/1001-7313.20210601
    [11] 樊志超, 周盛, 汪玲, 等. 湖南秋季积层混合云系飞机人工增雨作业方法. 应用气象学报, 2018, 29(2): 200-216. doi:  10.11898/1001-7313.20180207

    Fan Z C, Zhou S, Wang L, et al. Methods of aircraft-based precipitation enhancement operation for convective-stratiform mixed clouds in autumn in Hunan Province. J Appl Meteor Sci, 2018, 29(2): 200-216. doi:  10.11898/1001-7313.20180207
    [12] 李德俊, 唐仁茂, 江鸿, 等. 武汉一次对流云火箭人工增雨作业的综合观测分析. 干旱气象, 2016, 34(2): 362-369. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201602019.htm

    Li D J, Tang R M, Jiang H, et al. Analysis on comprehensive observation of an artificial precipitation enhancement operation for convective clouds in Wuhan. J Arid Meteor, 2016, 34(2): 362-369. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201602019.htm
    [13] 王以琳, 姚展予, 林长城. 一次火箭人工增雨作业雷达回波响应探讨. 气象科技, 2016, 44(6): 1053-1059. doi:  10.3969/j.issn.1671-6345.2016.06.030

    Wang Y L, Yao Z Y, Lin C C. Radar echo response to rocket precipitation enhancement in a field operation. Meteor Sci Technol, 2016, 44(6): 1053-1059. doi:  10.3969/j.issn.1671-6345.2016.06.030
    [14] 朱明佳, 袁野, 刘姝媛, 等. 基于雷达回波的江淮夏季对流云人工增雨效果分析. 中国气象学会年会, 2016.

    Zhu M J, Yuan Y, Liu S Y, et al. Analysis of Artificial Precipitation Enhancement Effect of Convective Cloud in Jianghuai Summer Based on Radar Echo. Annual Meeting of China Meteorological Society, 2016.
    [15] 王以琳, 姚展予, 林长城. 人工增雨作业前后不同高度雷达回波分析. 干旱气象, 2018, 36(4): 644-651. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201804014.htm

    Wang Y L, Yao Z Y, Lin C C. Analysis of radar echoes at different heights before and after precipitation enhancement. J Arid Meteor, 2018, 36(4): 644-651. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201804014.htm
    [16] 崔丹, 黄彦彬, 肖辉, 等. 多普勒雷达数据在海南省人工增雨效果评估中的应用. 大气科学学报, 2012, 35(1): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201201009.htm

    Cui D, Huang Y B, Xiao H, et al. Application of Doppler-radar data in the effect evaluation of artificial precipitation enhancement in Hainan Province. Trans Atmos Sci, 2012, 35(1): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201201009.htm
    [17] 王以琳, 王俊. 地面人工增雨随机试验方法的探讨. 干旱气象, 2015, 33(5): 756-760. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201505006.htm

    Wang Y L, Wang J. Discussion on random experiment method of ground precipitation enhancement operation. J Arid Meteor, 2015, 33(5): 756-760. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201505006.htm
    [18] 周亦凌, 姚展予. 一次积层混合云增雨作业天气条件分析和雷达回波效果检验. 气象与环境科学, 2017, 40(1): 11-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HNQX201701004.htm

    Zhou Y L, Yao Z Y. Weather condition analysis and radar echo evaluation of precipitation enhancement operation for a stratiform mixed clouds. Meteor Environ Sci, 2017, 40(1): 11-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HNQX201701004.htm
    [19] 唐仁茂, 向玉春, 叶建元, 等. 多种探测资料在人工增雨作业效果物理检验中的应用. 气象, 2009, 35(8): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200908007.htm

    Tang R M, Xiang Y C, Ye J Y, et al. Application of data observed by several instruments in effective verification of artificial precipitation enhancement. Meteor Mon, 2009, 35(8): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200908007.htm
    [20] 胡雯, 申宜运, 曾光平. 南方夏季对流云人工增雨技术研究. 应用气象学报, 2005, 16(3): 413-416. http://qikan.camscma.cn/article/id/20050351

    Hu W, Shen Y Y, Zeng G P. Study on artificial precipitation enhancement technology of convective clouds in summer in southern China. J Appl Meteor Sci, 2005, 16(3): 413-416. http://qikan.camscma.cn/article/id/20050351
    [21] 黄彦彬, 毛志远, 邢峰华, 等. 海南岛西部山区人工催化暖底积云随机化效果检验. 气象科技, 2019, 47(3): 486-494. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201903016.htm

    Huang Y B, Mao Z Y, Xing F H, et al. Randomized effectiveness evaluation of artificially catalyzing heating-bottom cumulus in mountainous western Hainan Island. Meteor Sci Technol, 2019, 47(3): 486-494. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201903016.htm
    [22] 贾烁, 姚展予. 江淮对流云人工增雨作业效果检验个例分析. 气象, 2016, 42(2): 238-245. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201602012.htm

    Jia S, Yao Z Y. Case study on the convective clouds seeding effects in Yangtze-Huaihe Region. Meteor Mon, 2016, 42(2): 238-245. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201602012.htm
    [23] 贾烁. 江淮对流云人工增雨作业效果检验技术方法研究和个例分析. 北京: 中国气象科学研究院, 2015.

    Jia S. Technical Methods Study and Cases Analysis on the Testing of Convective Clouds Seeding Effects in Yangtze-Huaihe Region. Beijing: Chinese Academy of Meteorological Sciences, 2015.
    [24] 查思佳, 张慧娇, 李逍潇, 等. 2014年南京青奥会开幕式日降水过程数值模拟研究. 大气科学, 2020, 44(6): 1258-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202006008.htm

    Zha S J, Zhang H J, Li X X, et al. Numerical simulation of precipitation processes during the opening ceremony of the Nanjing 2014 Youth Olympic Games. Chinese J Atmos Sci, 2020, 44(6): 1258-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202006008.htm
    [25] 何晖, 金华, 李宏宇, 等. 2008年奥运会开幕式日人工消减雨作业中尺度数值模拟的初步结果. 气候与环境研究, 2012, 17(1): 46-58. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201201007.htm

    He H, Jin H, Li H Y, et al. Preliminary study of the mesoscale numerical simulation of the rain mitigation operation during the opening ceremony of the 2008 Beijing Olympic Games. Clim Environ Res, 2012, 17(1): 46-58. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201201007.htm
    [26] 刘卫国, 陶玥, 周毓荃. 层状云催化宏微观物理响应的数值模拟研究. 大气科学, 2021, 45(1): 37-57. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202101003.htm

    Liu W G, Tao Y, Zhou Y Q. Numerical simulation of the macro and micro physical responses of stratiform cloud seeding. Chinese J Atmos Sci, 2021, 45(1): 37-57. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202101003.htm
    [27] 岳治国, 余兴, 刘贵华, 等. 一次飞机冷云增雨作业效果检验. 气象学报, 2021, 79(5): 853-863. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202105011.htm

    Yue Z G, Yu X, Liu G H, et al. . Effect evaluation of an operational precipitation enhancement in cold clouds by aircraf. Acta Meteor Sinica, 2021, 79(5): 853-863. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202105011.htm
    [28] 曾光平, 吴章云. 人工降水. 福州: 福建科学技术出版社, 1997.

    Zeng G P, Wu Z Y. Artificial Precipitation. Fuzhou: Fujian Science & Technology Publishing House, 1997.
    [29] 曾光平, 吴明林, 林长城, 等. 古田水库人工降雨效果的综合评价. 应用气象学报, 1993, 4(2): 154-161. http://qikan.camscma.cn/article/id/19930229

    Zeng G P, Wu M L, Lin C C, et al. A comprehensive evaluation of the effect of artificial precipitation in Gutian Reservior area. J Appl Meteor, 1993, 4(2): 154-161. http://qikan.camscma.cn/article/id/19930229
    [30] 曾光平, 朱鼎华, 王祖炉. 古田人工降雨应用研究. 气象, 1997, 23(12): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX712.007.htm

    Zeng G P, Zhu D H, Wang Z L. An application study on the artificial rainfall over Gutian Reservoir region. Meteor Mon, 1997, 23(12): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX712.007.htm
    [31] 林祥明, 郑淑贞, 黄文娟, 等. 催化作业对炮点雨滴谱的影响. 南京气象学院学报, 1988, 11(3): 356-362. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX198803011.htm

    Lin X M, Zheng S Z, Huang W J, et al. The influence of seeding operation on the raindrop spectrum at the worksite. J Nanjing Inst Meteor, 1988, 11(3): 356-362. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX198803011.htm
    [32] 林长城, 姚展予, 林文, 等. 福建省古田试验区云系回波特征与人工增雨作业条件分析. 大气科学学报, 2017, 40(1): 138-144. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201701015.htm

    Lin C C, Yao Z Y, Lin W, et al. Analysis on cloud echoes characteristics and operational conditions of precipitation enhancement in Gutian of Fujian. Trans Atmos Sci, 2017, 40(1): 138-144. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201701015.htm
    [33] 刁秀广, 李芳, 万夫敬. 两次强冰雹超级单体风暴双偏振特征对比. 应用气象学报, 2022, 33(4): 414-428. doi:  10.11898/1001-7313.20220403

    Diao X G, Li F, Wan F J. Comparative analysis on dual polarization features of two severe hail supercells. J Appl Meteor Sci, 2022, 33(4): 414-428. doi:  10.11898/1001-7313.20220403
    [34] 王俊, 王文青, 王洪, 等. 山东北部一次夏末雹暴地面降水粒子谱特征. 应用气象学报, 2021, 32(3): 370-384. doi:  10.11898/1001-7313.20210309

    Wang J, Wang W Q, Wang H, et al. Hydrometeor particle characteristics during a late summer hailstorm in northern Shandong. J Appl Meteor Sci, 2021, 32(3): 370-384. doi:  10.11898/1001-7313.20210309
    [35] Yuter S E, Kingsmill D E, Nance L B, et al. Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow. J Appl Meteor Climatol, 2006, 45(10): 1450-1464.
    [36] Friedrich K, Kalina E A, Masters F J, et al. Drop-size distributions in thunderstorms measured by optical disdrometers during VORTEX2. Mon Wea Rev, 2013, 141(4): 1182-1203.
    [37] Jia X C, Liu Y G, Ding D P, et al. Combining disdrometer, microscopic photography, and cloud radar to study distributions of hydrometeor types, size and fall velocity. Atmos Res, 2019, 228: 176-185.
    [38] 林长城, 高步云. 福建古田地区人工降水试验效果的回波参量统计分析. 南京气象学院学报, 1987, 10(3): 355-360. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX198703010.htm

    Lin C C, Gao B Y. Statistical analysis of radar echo parameters for the appraisement of rain-making experiments over Gutian area, Fujian Province. J Nanjing Inst Meteor, 1987, 10(3): 355-360. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX198703010.htm
    [39] 曾光平, 方仕珍, 肖锋. 1975—1986年古田水库人工降雨效果总分析. 大气科学, 1991, 15(4): 97-108. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199104010.htm

    Zeng G P, Fang S Z, Xiao F. The total analysis of the effect of artificial rainfall in Gutian Reservoir area, Fujian(1975-1986). Chinese J Atmos Sci, 1991, 15(4): 97-108. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199104010.htm
    [40] Kumjian M R, Ryzhkov A V. The impact of size sorting on the polarimetric radar variables. J Atmos Sci, 2012, 69(6): 2042-2060.
    [41] 何清芳, 林文, 张深寿, 等. 闽西南地区一次春季降雹过程的双偏振参量及降水粒子谱特征. 气象, 2022, 48(7): 856-867. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202207004.htm

    He Q F, Lin W, Zhang S S, et al. Dual polarization parameters and precipitation particle spectrum characteristics of a spring hail event in southwestern Fujian. Meteor Mon, 2022, 48(7): 856-867. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202207004.htm
    [42] Bringi V N, Chandrasekar V(李忱, 张越, 译). 偏振多普勒天气雷达原理和应用. 北京: 气象出版社, 2010: 263-349.

    Bringi V N, Chandrasekar V(Li C, Zhang Y, Trans). Polarimetric Doppler Weather Radar: Principles and Applications. Beijing: China Meteorological Press, 2010: 263-349.
    [43] Kumjian M R, Mishra S, Giangrande S E, et al. Polarimetric radar and aircraft observations of saggy bright bands during MC3E. J Geophys Res Atmos, 2016, 121(7): 3584-3607.
    [44] 孙跃, 任刚, 孙鸿娉, 等. 一次高炮防雹的相控阵双偏振雷达观测特征. 应用气象学报, 2023, 34(1): 65-77. doi:  10.11898/1001-7313.20230106

    Sun Y, Ren G, Sun H P, et al. Features of phased-array dual polarization radar observation during an anti-aircraft gun hail suppression operation. J Appl Meteor Sci, 2023, 34(1): 65-77. doi:  10.11898/1001-7313.20230106
    [45] 林文, 张深寿, 罗昌荣, 等. 不同强度强对流云系S波段双偏振雷达观测分析. 气象, 2020, 46(1): 63-72. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202001006.htm

    Lin W, Zhang S S, Luo C R, et al. Observational analysis of different intensity sever convective clouds by S-band dual-polarization radar. Meteor Mon, 2020, 46(1): 63-72. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202001006.htm
    [46] Kumjian M R, Ryzhkov A V, Melnikov V M, et al. Rapid-scan super-resolution observations of a cyclic supercell with a dual-polarization WSR-88D. Mon Wea Rev, 2010, 138(10): 3762-3786.
    [47] Loney M L, Zrnić D S, Straka J M, et al. Enhanced polarimetric radar signatures above the melting level in a supercell storm. J Appl Meteor, 2002, 41(12): 1179-1194.
  • 加载中
图(6) / 表(5)
计量
  • 摘要浏览量:  369
  • HTML全文浏览量:  120
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-09
  • 修回日期:  2023-09-25
  • 刊出日期:  2023-11-27

目录

    /

    返回文章
    返回