留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波辐射计反演大气廓线精度及降水预报应用

周冰雪 朱朗峰 吴昊 董自鹏 王璇 罗语嫣

周冰雪, 朱朗峰, 吴昊, 等. 微波辐射计反演大气廓线精度及降水预报应用. 应用气象学报, 2023, 34(6): 717-728. DOI:  10.11898/1001-7313.20230607..
引用本文: 周冰雪, 朱朗峰, 吴昊, 等. 微波辐射计反演大气廓线精度及降水预报应用. 应用气象学报, 2023, 34(6): 717-728. DOI:  10.11898/1001-7313.20230607.
Zhou Bingxue, Zhu Langfeng, Wu Hao, et al. Accuracy of atmospheric profiles retrieved from microwave radiometer and its application to precipitation forecast. J Appl Meteor Sci, 2023, 34(6): 717-728. DOI:  10.11898/1001-7313.20230607.
Citation: Zhou Bingxue, Zhu Langfeng, Wu Hao, et al. Accuracy of atmospheric profiles retrieved from microwave radiometer and its application to precipitation forecast. J Appl Meteor Sci, 2023, 34(6): 717-728. DOI:  10.11898/1001-7313.20230607.

微波辐射计反演大气廓线精度及降水预报应用

DOI: 10.11898/1001-7313.20230607
资助项目: 

高原与盆地暴雨旱涝灾害四川省重点实验室开放研究基金项目 SZKT202102

中国气象局创新发展专项 CXFZ2022P021

详细信息
    通信作者:

    吴昊, 邮箱:wuhao@cuit.edu.cn

Accuracy of Atmospheric Profiles Retrieved from Microwave Radiometer and Its Application to Precipitation Forecast

  • 摘要: 利用2018年6月—2021年7月陕西西安泾河站MWP967KV型地基微波辐射计反演数据和L波段探空数据, 分析晴天和云天(低云、中云、高云)微波辐射计反演的大气温度、相对湿度、水汽密度的精度, 探讨相关产品在降水过程中的应用能力。结果表明:晴天和云天微波辐射计与探空的温度相关系数均为0.99, 水汽密度相关系数均为0.97, 相对湿度相关系数均低于0.50, 均达到0.01显著性水平;晴天和云天的温度差异较小, 但云天相对湿度均方根误差超过25%, 较晴天的19.54%明显偏大, 且3种参数均越接近地面反演精度越高。在不同云类型条件下, 3类云的温度差异较小, 低云相对湿度均方根误差和偏差最大, 分别为26.85%和9.51%。对降水个例分析表明:在临近降水发生前空中相对湿度、液态水含量、大气可降水量和液态水路径均明显增长, 这可作为降水可能发生的指示因子。降水前1 h大气可降水量达到4 cm, 液态水路径达到0.2 mm, 可作为判断降水发生的参考阈值。
  • 图  1  晴天和云天微波辐射计与探空的温度、相对湿度和水汽密度散点密度

    Fig. 1  Scatter density of temperature, relative humidity and vapor density of microwave radiometer and radiosonde for clear and cloudy sky

    图  2  晴天和云天微波辐射计与探空的温度、相对湿度和水汽密度的相关系数、偏差和均方根误差廓线

    Fig. 2  Profiles of correlation coefficient, bias and root mean square error of temperature, relative humidity and vapor density between microwave radiometer and radiosonde for clear and cloudy sky

    图  3  微波辐射计与探空在低云、中云和高云条件下的温度、相对湿度和水汽密度散点密度

    Fig. 3  Scatter density of temperature, relative humidity and vapor density of microwave radiometer and radiosonde for low, middle and high cloud

    图  4  微波辐射计与探空在低云、中云和高云条件下的温度、相对湿度和水汽密度的相关系数、偏差和均方根误差廓线

    Fig. 4  Profiles of correlation coefficient, bias and root mean square error of temperature, relative humidity and vapor density between microwave radiometer and radiosonde for low, middle and high cloud

    图  5  2018年8月20日18:00—22日18:00相对湿度(填色)、液态水含量(填色)、大气可降水量(红线)、液态水路径(蓝线) 与降水量(灰色柱状) 变化

    Fig. 5  Relative humidity (the shaded), liquid water content (the shaded), atmospheric precipitable water vapor (the red line), liquid water path (the blue line) and rainfall (the grey column) from 1800 BT 20 Aug to 1800 BT 22 Aug in 2018

    图  6  2018—2019年6—9月非降水天气和小雨、中雨、大雨前1 h的大气可降水量和液态水路径箱线图

    Fig. 6  Box plots of atmospheric precipitable water vapor and liquid water path for non-precipitation days and 1 hour before light rain, moderate rain and heavy rain from Jun to Sep in 2018-2019

  • [1] 袁晓清,倪广恒,潘安君,等.基于最优化算法的北京市新一代天气雷达Z-R关系研究.水文,2010,30(1):1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ201001002.htm

    Yuan X Q, Ni G H, Pan A J, et al. NEXRAD Z-R power relationship in Beijing based on optimization algorithm. J China Hydrol, 2010, 30(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ201001002.htm
    [2] 常越, 陈洪滨, 施红蓉, 等. 复合翼无人机不同传感器探测大气温湿度对比. 应用气象学报, 2023, 34(1): 78-90. doi:  10.11898/1001-7313.20230107

    Chang Y, Chen H B, Shi H R, et al. Comparison of atmospheric temperature and humidity sounding by different sensors onboard a new composite wing UAV. J Appl Meteor Sci, 2023, 34(1): 78-90. doi:  10.11898/1001-7313.20230107
    [3] 鲍艳松, 钱程, 闵锦忠, 等. 利用地基微波辐射计资料反演0~10 km大气温湿廓线试验研究. 热带气象学报, 2016, 32(2): 163-171. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201602003.htm

    Bao Y S, Qian C, Min J Z, et al. 0-10 km temperature and humidity profiles retrieval from ground-based microwave radiometer. J Trop Meteor, 2016, 32(2): 163-171. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201602003.htm
    [4] Löhnert U, Turner D D, Crewell S. Ground-based temperature and humidity profiling using spectral infrared and microwave observations. Part Ⅰ: Simulated retrieval performance in clear-sky conditions. J Appl Meteor Climatol, 2009, 48(5): 1017-1032. doi:  10.1175/2008JAMC2060.1
    [5] 林晓萌, 尉英华, 张楠, 等. 基于地基遥感设备构建遥感探空廓线. 应用气象学报, 2022, 33(5): 568-580. doi:  10.11898/1001-7313.20220505

    Lin X M, Wei Y H, Zhang N, et al. Construction of air-sounding-profile system based on foundation-remote-sensing equipment. J Appl Meteor Sci, 2022, 33(5): 568-580. doi:  10.11898/1001-7313.20220505
    [6] Massaro G, Stiperski I, Pospichal B, et al. Accuracy of retrieving temperature and humidity profiles by ground-based microwave radiometry in truly complex terrain. Atmos Meas Technol, 2015, 8(8): 3355-3367. doi:  10.5194/amt-8-3355-2015
    [7] 刘晓璐, 刘东升, 郭丽君, 等. 国产MWP967KV型地基微波辐射计探测精度. 应用气象学报, 2019, 30(6): 731-744. doi:  10.11898/1001-7313.20190609

    Liu X L, Liu D S, Guo L J, et al. The observational precision of domestic MWP967KV ground-based microwave radiometer. J Appl Meteor Sci, 2019, 30(6): 731-744. doi:  10.11898/1001-7313.20190609
    [8] 张文刚, 徐桂荣, 颜国跑, 等. 微波辐射计与探空仪测值对比分析. 气象科技, 2014, 42(5): 737-741. doi:  10.3969/j.issn.1671-6345.2014.05.002

    Zhang W G, Xu G R, Yan G P, et al. Comparative analysis of microwave radiometer and radiosonde data. Meteor Sci Technol, 2014, 42(5): 737-741. doi:  10.3969/j.issn.1671-6345.2014.05.002
    [9] 车云飞, 马舒庆, 杨玲, 等. 云对地基微波辐射计反演湿度廓线的影响. 应用气象学报, 2015, 26(2): 193-202. doi:  10.11898/1001-7313.20150207

    Che Y F, Ma S Q, Yang L, et al. Cloud influence on atmospheric humidity profile retrieval by ground-based microwave radiometer. J Appl Meteor Sci, 2015, 26(2): 193-202. doi:  10.11898/1001-7313.20150207
    [10] 王洪, 周后福, 王琛, 等. 基于微波辐射计和探空的FY-4A温度廓线检验. 应用气象学报, 2023, 34(3): 295-308. doi:  10.11898/1001-7313.20230304

    Wang H, Zhou H F, Wang C, et al. Accuracy validation of FY-4A temperature profile based on microwave radiometer and radiosonde. J Appl Meteor Sci, 2023, 34(3): 295-308. doi:  10.11898/1001-7313.20230304
    [11] Cimini D, Campos E, Ware R, et al. Thermodynamic atmospheric profiling during the 2010 Winter Olympics using ground-based microwave radiometry. IEEE Trans Geosci Remote Sens, 2011, 49(12): 4959-4969. doi:  10.1109/TGRS.2011.2154337
    [12] Chan P W. Performance and application of a multi-wavelength, ground-based microwave radiometer in intense convective weather. Metz, 2009, 18(3): 253-265. doi:  10.1127/0941-2948/2009/0375
    [13] 张文刚, 徐桂荣, 廖可文, 等. 降水对地基微波辐射计反演误差的影响. 暴雨灾害, 2013, 32(1): 70-76. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201301013.htm

    Zhang W G, Xu G R, Liao K W, et al. Impact of precipitation on the retrieval deviation of ground-based microwave radiometer. Torrential Rain Disasters, 2013, 32(1): 70-76. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201301013.htm
    [14] 杨莲梅, 李霞, 赵玲, 等. MP-3000A型地基微波辐射计探测性能及其在乌鲁木齐降水天气中的初步应用. 干旱气象, 2013, 31(3): 570-578. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201303020.htm

    Yang L M, Li X, Zhao L, et al. Detection performance of MP-3000A ground-based microwave radiometer and its preliminary application during rainfall processes in Urumqi. J Arid Meteor, 2013, 31(3): 570-578. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201303020.htm
    [15] Ware R, Cimini D, Campos E, et al. Thermodynamic and liquid profiling during the 2010 Winter Olympics. Atmos Res, 2013, 132/133: 278-290. doi:  10.1016/j.atmosres.2013.05.019
    [16] 刘建忠, 何晖, 张蔷. 不同时次地基微波辐射计反演产品评估. 气象科技, 2012, 40(3): 332-339. doi:  10.3969/j.issn.1671-6345.2012.03.002

    Liu J Z, He H, Zhang Q. Evaluation and analysis of retrieval products of ground-based microwave radiometers at different times. Meteor Sci Technol, 2012, 40(3): 332-339. doi:  10.3969/j.issn.1671-6345.2012.03.002
    [17] 王志诚, 张雪芬, 茆佳佳, 等. 不同天气条件下地基微波辐射计探测性能比对. 应用气象学报, 2018, 29(3): 282-295. doi:  10.11898/1001-7313.20180303

    Wang Z C, Zhang X F, Mao J J, et al. Comparison analysis on detection performance of ground-based microwave radiometers under different weather conditions. J Appl Meteor Sci, 2018, 29(3): 282-295. doi:  10.11898/1001-7313.20180303
    [18] Xu G R, Xi B K, Zhang W G, et al. Comparison of atmospheric profiles between microwave radiometer retrievals and radiosonde soundings. J Geophys Res Atmos, 2015, 120(19): 10313-10323.
    [19] 韩珏靖, 陈飞, 张臻, 等. MP-3000A型地基微波辐射计的资料质量评估和探测特征分析. 气象, 2015, 41(2): 226-233. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201502011.htm

    Han J J, Chen F, Zhang Z, et al. Assessment and characteristics of MP-3000A ground-based microwave radiometer. Meteor Mon, 2015, 41(2): 226-233. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201502011.htm
    [20] 李军霞, 李培仁, 晋立军, 等. 地基微波辐射计在遥测大气水汽特征及降水分析中的应用. 干旱气象, 2017, 35(5): 767-775. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201705007.htm

    Li J X, Li P R, Jin L J, et al. Remote sensing of precipitable water vapor features and application in precipitation analysis by using ground-based microwave radiometer. J Arid Meteor, 2017, 35(5): 767-775. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201705007.htm
    [21] 孙京, 蔡然, 柴健, 等. 基于微波辐射计和闪电观测资料估算对流性降水方法初探. 干旱气象, 2018, 36(3): 438-446. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201803012.htm

    Sun J, Cai R, Chai J, et al. A preliminary study on estimation of rainfall in convective weather system by using lightning location system and ground microwave radiometers retrivals. J Arid Meteor, 2018, 36(3): 438-446. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201803012.htm
    [22] 敖雪, 王振会, 徐桂荣, 等. 地基微波辐射计资料在降水分析中的应用. 暴雨灾害, 2011, 30(4): 358-365. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201104012.htm

    Ao X, Wang Z H, Xu G R, et al. Apply of ground-based microwave radiometer observation in precipitation events. Torrential Rain Disasters, 2011, 30(4): 358-365. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201104012.htm
    [23] 王羽飞, 齐彦斌, 李倩, 等. 一次长白山夏季雾的宏微观特征. 应用气象学报, 2022, 33(4): 442-453. doi:  10.11898/1001-7313.20220405

    Wang Y F, Qi Y B, Li Q, et al. Macro and micro characteristics of a fog process in Changbai Mountain in summer. J Appl Meteor Sci, 2022, 33(4): 442-453. doi:  10.11898/1001-7313.20220405
    [24] 徐爽, 王硕飞, 闵晓桐, 等. 基于MWP967KV辐射计的微波辐射反演方法研究. 气象水文海洋仪器, 2019, 36(2): 38-44. https://www.cnki.com.cn/Article/CJFDTOTAL-QXSW201902008.htm

    Xu S, Wang S F, Min X T, et al. Research for inversion methods of microwave radiation based on MWP967KV radiometer. Meteor Hydrol Mar Instrum, 2019, 36(2): 38-44. https://www.cnki.com.cn/Article/CJFDTOTAL-QXSW201902008.htm
    [25] Poore K D. Cloud Base, Top and Thickness Climatology from RAOB and Surface Data. Cloud Impacts on DOD Operations and Systems 1991 Conference, 1991.
    [26] Wang J H, Rossow W B. Determination of cloud vertical structure from upper-air observations. J Appl Meteor, 1995, 34(10): 2243-2258.
    [27] 周青, 李柏, 张勇, 等. 基于北京多源资料的云宏观特征判识. 应用气象学报, 2023, 34(2): 206-219. doi:  10.11898/1001-7313.20230207

    Zhou Q, Li B, Zhang Y, et al. Identification on cloud macroscopic physical characteristics based upon multi-source observations in Beijing. J Appl Meteor Sci, 2023, 34(2): 206-219. doi:  10.11898/1001-7313.20230207
    [28] Che Y F, Ma S Q, Xing F H, et al. An improvement of the retrieval of temperature and relative humidity profiles from a combination of active and passive remote sensing. Meteor Atmos Phys, 2019, 131(3): 681-695.
    [29] Yan X, Liang C, Jiang Y Z, et al. A deep learning approach to improve the retrieval of temperature and humidity profiles from a ground-based microwave radiometer. IEEE Trans Geosci Remote Sens, 2020, 58(12): 8427-8437.
    [30] 李昀英, 方乐锌, 寇雄伟. 卫星-地基-模式统一的自动观测云分类原则和标准的研究. 地球物理学报, 2014, 57(8): 2433-2441. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201408005.htm

    Li Y Y, Fang L X, Kou X W. Principle and standard of auto-observation cloud classification for satellite, ground measurements and model. Chinese J Geophys, 2014, 57(8): 2433-2441. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201408005.htm
    [31] 盛裴轩, 毛节泰, 李建国. 大气物理学(第2版). 北京: 北京大学出版社, 2013.

    Sheng P X, Mao J T, Li J G. Atmospheric Physics(2nd ed). Beijing: Peking University Press, 2013.
    [32] 中国气象局. 地面气象观测规范. 北京: 气象出版社, 2003.

    China Meteorological Administration. Specification for Ground Meteorological Observation. Beijing: China Meteorological Press, 2003.
    [33] 丁虹鑫, 马舒庆, 杨玲, 等. 云雷达和微波辐射计联合反演大气湿度廓线的初步研究. 气象, 2018, 44(12): 1604-1611. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201812010.htm

    Ding H X, Ma S Q, Yang L, et al. Retrieval of humidity profiles by using cloud radar and microwave radiometer. Meteor Mon, 2018, 44(12): 1604-1611. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201812010.htm
    [34] Vömel H, Selkirk H, Miloshevich L, et al. Radiation dry bias of the vaisala RS92 humidity sensor. J Atmos Oceanic Technol, 2007, 24(6): 953-963.
    [35] Yoneyama K, Fujita M, Sato N, et al. Correction for radiation dry bias found in RS92 radiosonde data during the MISMO field experiment. SOLA, 2008, 4: 13-16.
    [36] Bian J C, Chen H B, Vömel H, et al. Intercomparison of humidity and temperature sensors: GTS1, Vaisala RS80, and CFH. Adv Atmos Sci, 2011, 28(1): 139-146.
    [37] 王英, 熊安元. L波段探空仪器换型对高空湿度资料的影响. 应用气象学报, 2015, 26(1): 76-86. doi:  10.11898/1001-7313.20150108

    Wang Y, Xiong A Y. Effects of radiosonde system changing to L-band radar digital radiosonde on humidity measurements in China. J Appl Meteor Sci, 2015, 26(1): 76-86. doi:  10.11898/1001-7313.20150108
    [38] 李义宇, 孙鸿娉, 杨俊梅, 等. 华北中部夏季气溶胶和云分布特征. 应用气象学报, 2021, 32(6): 665-676. doi:  10.11898/1001-7313.20210603

    Li Y Y, Sun H P, Yang J M, et al. Characteristics of aerosol and cloud over the central plain of North China in summer. J Appl Meteor Sci, 2021, 32(6): 665-676. doi:  10.11898/1001-7313.20210603
    [39] 高洋, 蔡淼, 曹治强, 等. "21·7"河南暴雨环境场及云的宏微观特征. 应用气象学报, 2022, 33(6): 682-695. doi:  10.11898/1001-7313.20220604

    Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. doi:  10.11898/1001-7313.20220604
    [40] 党张利, 张京朋, 曲宗希, 等. 微波辐射计观测数据在降水预报中的应用. 干旱气象, 2015, 33(2): 340-343. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201502020.htm

    Dang Z L, Zhang J P, Qu Z X, et al. The application of microwave radiometer observation data on precipitation forecast. J Arid Meteor, 2015, 33(2): 340-343. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201502020.htm
  • 加载中
图(6)
计量
  • 摘要浏览量:  422
  • HTML全文浏览量:  79
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-16
  • 修回日期:  2023-09-25
  • 刊出日期:  2023-11-27

目录

    /

    返回文章
    返回