留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一次触发闪电金属汽化通道的亮度与电流特征

许伟群 吕伟涛 齐奇 樊艳峰 陈绿文 武斌 王雪娟 马颖 夏登城

许伟群, 吕伟涛, 齐奇, 等. 一次触发闪电金属汽化通道的亮度与电流特征. 应用气象学报, 2023, 34(6): 739-748. DOI:  10.11898/1001-7313.20230609..
引用本文: 许伟群, 吕伟涛, 齐奇, 等. 一次触发闪电金属汽化通道的亮度与电流特征. 应用气象学报, 2023, 34(6): 739-748. DOI:  10.11898/1001-7313.20230609.
Xu Weiqun, Lü Weitao, Qi Qi, et al. Luminosity and current characteristics of metal-vaporized channel of an artificially triggered lightning. J Appl Meteor Sci, 2023, 34(6): 739-748. DOI:  10.11898/1001-7313.20230609.
Citation: Xu Weiqun, Lü Weitao, Qi Qi, et al. Luminosity and current characteristics of metal-vaporized channel of an artificially triggered lightning. J Appl Meteor Sci, 2023, 34(6): 739-748. DOI:  10.11898/1001-7313.20230609.

一次触发闪电金属汽化通道的亮度与电流特征

DOI: 10.11898/1001-7313.20230609
资助项目: 

中国气象科学研究院基本科研业务费专项 2021Z011

中国气象科学研究院基本科研业务费专项 2023Z008

广东省自然科学基金项目 2022A1515010320

详细信息
    通信作者:

    吕伟涛, 邮箱:wtlyu@cma.gov.cn

Luminosity and Current Characteristics of Metal-vaporized Channel of an Artificially Triggered Lightning

  • 摘要: 2022年夏季在广州从化人工引雷试验场的一次触发闪电过程中, 获取了近距离的高分辨率图像、通道底部电流波形和高速摄像数据。此次触发闪电的高分辨率图像清晰展现了多回击过程金属汽化通道段的空间位移, 汽化通道在连续电流过程中呈现类似火焰的发光特征。结合高速摄像与通道底部电流数据, 研究回击与连续电流过程中金属汽化通道段亮度与电流强度的相关性, 结果表明:相比于回击峰值电流, 其平方与回击峰值亮度的相关性更强, 相关系数分别为0.940和0.955(均达到0.001显著性水平)。对于伴随长连续电流的回击过程, 回击下降部分与之后连续电流过程光电线性相关性拟合的斜率有明显差异。叠加在长连续电流过程上的多个M分量脉冲亮度峰值相对于电流峰值时间滞后, 较小的脉冲峰值电流对应较大的亮度峰值滞后时间。
  • 图  1  引流杆与光学观测点位置示意图

    Fig. 1  Schematic diagram of the location of lightning rod and optical observation site

    图  2  闪电T2211金属汽化通道在220 m高度处的灰度值水平分布

    Fig. 2  Horizontal distribution of flash T2211 metal-vaporized channel gray values at 220 m height

    图  3  闪电T2211第1次回击过程的相对积分亮度(a)与电流变化(b)

    Fig. 3  Relative integrated luminosity(a) and current(b) of the first return stroke of flash T2211

    图  4  闪电T2211的亮度与电流同步观测  (a)相对积分亮度, (b)小量程测量电流,(c)大量程测量电流

    Fig. 4  Simultaneously measured luminosity and current of flash T2211 (a)relative integrated luminosity, (b)small-range measured current, (c)large-range measured current

    图  5  闪电T2211金属汽化通道静态图像(曝光时长为1 s)

    Fig. 5  Still image of the metal-vaporized channel of flash T2211 (the exposure time is 1 s)

    图  6  回击R1(a)与回击R3(b)下降阶段的亮度与电流变化

    Fig. 6  Luminosity and current variation during decay phase for return stroke R1(a) and return stroke R3(b)

    图  7  回击峰值电流(a)及回击峰值电流平方(b)与峰值相对积分亮度散点图

    Fig. 7  Scatter plots of peak current(a) and square of peak current(b) versus peak relative integrated luminosity for return strokes

    图  8  回击R13与连续电流过程的亮度与电流变化(a)及其散点图(b)

    Fig. 8  Luminosity and current variation for return stroke R13 and its continuing current(a) with scatter plot(b)

    图  9  回击R13-CC中叠加的M分量脉冲峰值电流与峰值亮度(a)及峰值亮度滞后时间(b)散点图

    Fig. 9  Scatter plots of peak current versus peak luminosity(a) and delay time of peak luminosity(b) for M components superimposed on R13-CC

  • [1] Gomes C,Cooray V.Correlation between the optical signatures and current wave forms of long sparks:Applications in lightning research.J Electrostat,1998,43(4):267-274. doi:  10.1016/S0304-3886(98)00008-4
    [2] Amarasinghe D, Sonnadara U, Berg M, et al. Correlation between brightness and channel currents of electrical discharges. IEEE Trans Dielectr Electr Insul, 2007, 14(5): 1154-1160. doi:  10.1109/TDEI.2007.4339475
    [3] Diendorfer G, Mair M, Schulz W. Detailed Brightness Versus Lightning Current Amplitude Correlation of Flashes to the Gaisberg Tower. 26th International Conference on Lightning Protection, Cracow, Poland, 2002.
    [4] 张义军, 杨少杰, 吕伟涛, 等. 2006—2011年广州人工触发闪电观测试验和应用. 应用气象学报, 2012, 23(5): 513-522. http://qikan.camscma.cn/article/id/20120501

    Zhang Y J, Yang S J, Lü W T, et al. Comprehensive observation experiments and application study of artificially triggered lightning during 2006-2011. J Appl Meteor Sci, 2012, 23(5): 513-522. http://qikan.camscma.cn/article/id/20120501
    [5] 马瑞阳, 郑栋, 姚雯, 等. 雷暴云特征数据集及我国雷暴活动特征. 应用气象学报, 2021, 32(3): 358-369. doi:  10.11898/1001-7313.20210308

    Ma R Y, Zheng D, Yao W, et al. Thunderstorm feature dataset and characteristics of thunderstorm activities in China. J Appl Meteor Sci, 2021, 32(3): 358-369. doi:  10.11898/1001-7313.20210308
    [6] 闫琳城, 张文娟, 张义军, 等. 南海雷暴大风时空分布及闪电和对流活动特征. 应用气象学报, 2023, 34(4): 503-512. doi:  10.11898/1001-7313.20230410

    Yan L C, Zhang W J, Zhang Y J, et al. Temporal and spatial distribution of thunderstorms and strong winds with characteristics of lightning and convective activities in the South China Sea. J Appl Meteor Sci, 2023, 34(4): 503-512. doi:  10.11898/1001-7313.20230410
    [7] 吴啸天, 王晓妍, 郑栋, 等. 不同类型气溶胶对长三角地区地闪活动影响. 应用气象学报, 2023, 34(5): 608-618. doi:  10.11898/1001-7313.20230509

    Wu X T, Wang X Y, Zheng D, et al. Effects of different aerosols on cloud-to-ground lightning activity in the Yangtze River Delta. J Appl Meteor Sci, 2023, 34(5): 608-618. doi:  10.11898/1001-7313.20230509
    [8] 关雨侬, 吕伟涛, 齐奇, 等. 一次上行闪电中先导二维和三维发展特征的差异. 应用气象学报, 2023, 34(5): 598-607. doi:  10.11898/1001-7313.20230508

    Guan Y N, Lü W T, Qi Q, et al. Difference between 2D and 3D development characteristics of an upward lightning leader. J Appl Meteor Sci, 2023, 34(5): 598-607. doi:  10.11898/1001-7313.20230508
    [9] 张义军, 吕伟涛, 陈绍东, 等. 广东野外雷电综合观测试验十年进展. 气象学报, 2016, 74(5): 655-671. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201605001.htm

    Zhang Y J, Lv W T, Chen S D, et al. A review of lightning observation experiments during the last ten years in Guangdong. Acta Meteor Sinica, 2016, 74(5): 655-671. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201605001.htm
    [10] 肖桐, 张阳, 吕伟涛, 等. 人工触发闪电M分量的电流与电磁场特征. 应用气象学报, 2013, 24(4): 446-454. http://qikan.camscma.cn/article/id/20130407

    Xiao T, Zhang Y, Lü W T, et al. Current and electromagnetic field of M component in triggered lightning. J Appl Meteor Sci, 2013, 24(4): 446-454. http://qikan.camscma.cn/article/id/20130407
    [11] 钱勇, 张阳, 张义军, 等. 人工触发闪电先驱电流脉冲波形特征及模拟. 应用气象学报, 2016, 27(6): 716-724. doi:  10.11898/1001-7313.20160608

    Qian Y, Zhang Y, Zhang Y J, et al. Characteristics and simulation of artificially triggered lightning precursor current pulse. J Appl Meteor Sci, 2016, 27(6): 716-724. doi:  10.11898/1001-7313.20160608
    [12] 王敬轩, 张阳, 陈泽方, 等. 人工触发闪电不同放电阶段电流特征关系. 应用气象学报, 2020, 31(2): 224-235. doi:  10.11898/1001-7313.20200209

    Wang J X, Zhang Y, Chen Z F, et al. Relationship between current characteristics of rocket-triggered lightning during different discharge stages. J Appl Meteor Sci, 2020, 31(2): 224-235. doi:  10.11898/1001-7313.20200209
    [13] 樊艳峰, 陆高鹏, 张阳, 等. 人工触发闪电初始连续电流的中低频磁场特征. 应用气象学报, 2020, 31(2): 213-223. doi:  10.11898/1001-7313.20200208

    Fan Y F, Lu G P, Zhang Y, et al. Characteristics of medium-low frequency magnetic fields of initial continuous current in rocket-triggered lightning. J Appl Meteor Sci, 2020, 31(2): 213-223. doi:  10.11898/1001-7313.20200208
    [14] 张阳, 陈泽方, 王敬轩, 等. 一次多回击触发闪电全过程的连续干涉仪观测. 应用气象学报, 2020, 31(2): 197-212. doi:  10.11898/1001-7313.20200207

    Zhang Y, Chen Z F, Wang J X, et al. Observation of the whole discharge process during a multi-stroke triggered lightning by continuous interferometer. J Appl Meteor Sci, 2020, 31(2): 197-212. doi:  10.11898/1001-7313.20200207
    [15] 张悦, 吕伟涛, 陈绿文, 等. 基于人工引雷的粤港澳闪电定位系统性能评估. 应用气象学报, 2022, 33(3): 329-340. doi:  10.11898/1001-7313.20220307

    Zhang Y, Lü W T, Chen L W, et al. Evaluation of GHMLLS performance characteristics based on observations of artificially triggered lightning. J Appl Meteor Sci, 2022, 33(3): 329-340. doi:  10.11898/1001-7313.20220307
    [16] Idone V P, Orville R E. Correlated peak relative light intensity and peak current in triggered lightning subsequent return strokes. J Geophys Res Atmos, 1985, 90(D4): 6159-6164.
    [17] Wang D, Takagi N, Watanabe T, et al. A comparison of channel-base currents and optical signals for rocket-triggered lightning strokes. Atmos Res, 2005, 76(1/2/3/4): 412-422.
    [18] Zhou M, Wang D, Wang J, et al. Correlation between the channel-bottom light intensity and channel-base current of a rocket-triggered lightning flash. J Geophys Res Atmos, 2014, 119(23): 13457-13473.
    [19] Carvalho F L, Uman M A, Jordan D M, et al. Lightning current and luminosity at and above channel bottom for return strokes and M-components. J Geophys Res Atmos, 2015, 120(20): 10645-10663.
    [20] 王才伟, 刘欣生, 董万胜, 等. 人工触发闪电通道的发光特征. 高原气象, 1998, 17(1): 10-23. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX801.001.htm

    Wang C W, Liu X S, Dong W S, et al. The characteristics of the channel luminosity of triggered lightning flashes. Plateau Meteor, 1998, 17(1): 10-23. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX801.001.htm
    [21] 吕伟涛, 张义军, 周秀骥, 等. 火箭触发闪电通道的亮度特征分析. 气象学报, 2007, 65(6): 983-993. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200706015.htm

    Lu W T, Zhang Y J, Zhou X J, et al. Analysis of channel luminosity characteristics in rocket-triggered lightning. Acta Meteor Sinica, 2007, 65(6): 983-993. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200706015.htm
    [22] Zhang H M, Zhang Y J, Lyu W T, et al. Analysis of the spectral characteristics of triggered lightning. Adv Atmos Sci, 2019, 36(11): 1265-1272.
    [23] Walker T D, Christian H J. Triggered lightning spectroscopy: Part 1. A qualitative analysis. J Geophys Res Atmos, 2017, 122(15): 8000-8011.
    [24] Pilkey J T, Uman M A, Hill J D, et al. Rocket-and-wire triggered lightning in 2012 tropical storm Debby in the absence of natural lightning. J Geophys Res Atmos, 2013, 118(23): 13158-13174.
    [25] 张华明, 张义军, 吕伟涛, 等. 一次人工触发闪电通道光谱结构分析. 光谱学与光谱分析, 2017, 37(6): 1692-1695. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201706007.htm

    Zhang H M, Zhang Y J, Lü W T, et al. The spectra structure characteristic of triggered lightning channel. Spectrosc Spectr Anal, 2017, 37(6): 1692-1695. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201706007.htm
    [26] Zhou E W, Lu W T, Zhang Y, et al. Correlation analysis between the channel current and luminosity of initial continuous and continuing current processes in an artificially triggered lightning flash. Atmos Res, 2013, 129/130: 79-89.
    [27] Wang D, Rakov V A, Uman M A, et al. Characterization of the initial stage of negative rocket-triggered lightning. J Geophys Res Atmos, 1999, 104(D4): 4213-4222.
    [28] Dayeh M A, Evans N D, Fuselier S A, et al. First images of thunder: Acoustic imaging of triggered lightning. Geophys Res Lett, 2015, 42(14): 6051-6057.
    [29] Quick M G, Krider E P. Optical power and energy radiated by natural lightning. J Geophys Res Atmos, 2013, 118(4): 1868-1879.
    [30] Liang C, Carlson B, Lehtinen N, et al. Differing current and optical return stroke speeds in lightning. Geophys Res Lett, 2014, 41(7): 2561-2567.
    [31] Uman M A. Determination of lightning temperature. J Geophys Res, 1969, 74(4): 949-957.
    [32] Walker T D, Christian H J. Triggered lightning spectroscopy: 2. A quantitative analysis. J Geophys Res Atmos, 2019, 124(7): 3930-3942.
    [33] da Silva C L, Sonnenfeld R G, Edens H E, et al. The plasma nature of lightning channels and the resulting nonlinear resistance. J Geophys Res Atmos, 2019, 124(16): 9442-9463.
  • 加载中
图(9)
计量
  • 摘要浏览量:  280
  • HTML全文浏览量:  78
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-14
  • 修回日期:  2023-09-17
  • 刊出日期:  2023-11-27

目录

    /

    返回文章
    返回