Three-dimensional Numerical Simulation of the Protective Effect of Tall Building on Short Building
-
摘要: 运用三维高分辨率随机多先导连接模型, 设置高矮两座建筑物并改变其中矮建筑物的高度以及高矮两座建筑物水平距离, 同时设置孤立矮建筑物进行对照, 探究多先导模式下高建筑物对矮建筑物的保护作用。结果表明:高矮建筑物距离较近时, 下行先导的发展完全受高建筑影响;随着建筑物水平距离增加, 高建筑物对先导主通道仍然存在明显吸引效应。当矮建筑物雷击概率的增长趋势出现明显减缓的分界点, 此时与孤立矮建筑物的雷击概率仅相差3.6%, 但单次闪电的连接过程仍存在显著差异。通过对比不同建筑物水平距离与孤立建筑物的雷击结果, 高矮建筑物水平距离由400 m增至600 m, 差异则从44.5%降低至22.7%。在相同高建筑物影响下, 不同高度矮建筑物的雷击概率变化趋势亦存在该特征, 高度为50, 100, 150 m和200 m的矮建筑物对应的雷击增长速率分界点的水平距离为300, 450, 550 m和600 m。Abstract: Tall buildings distort the electric field of the surrounding environment, resulting in a relatively strong electric field at top corners, which affects the lightning strike process, and the protection effect that short buildings receive from tall buildings varies with the distance between them. A three-dimensional fine-resolution lightning attachment model with multiple upward leaders (LAMM) is used to simulate protection effect of a tall building and a short building with different height and distance, with an isolated building set as a control group. Experimental results show that when there is a tall building with a short building in the space and two buildings are close to each other, the distortion range of the tall building almost completely contains the distortion range of the short building, the development of downward leader is completely affected by the tall building, and the shielding effect of the tall building on the short building is significant. With the increase of the building distance, the shielding effect of the tall building on the short building decreases exponentially. When tall building is 250 m high and the short building is 150 m high, probabilities of lightning strikes on short building with distance from 50 m to 600 m with interval of 50 m are 8.3%, 15.0%, 26.5%, 36.7%, 39.5%, 47.5%, 58.9%, 57.0%, 56.0%, 57.2%, 61.0%, and 62.5%. When there is a cut-off point where the increasing trend of the probability of lightning strikes on short buildings appears to slow down significantly, the probability of lightning strikes on short building differs from its probability of lightning strikes in isolation by only 3.6%. Comparing the lightning strike results for different building distance and isolated building, the difference in lightning strike results caused by the presence of tall building decreases from 44.5% to 22.7% when the horizontal distance between tall and short buildings is increased from 400 m to 600 m. Given the height of tall building, the probability of lightning strikes on short building with different heights follows a similar trend from a large increase to a flat increase with an inflection point. Corresponding to short building height from 50 m to 200 m, the horizontal distances reaching cut-off point are 300, 450, 550 m and 600 m, respectively. When two buildings are far separated, the effect of tall building on the probability of lightning strikes on short building is weaker, and it can be assumed that there is a state when tall building have no effect on the lightning attachment process.
-
表 1 相同始发位置负地闪的雷击结果对比
Table 1 Comparison of negative ground flash lightning strike for the same initial position
建筑物水平距离/m 闪电击中地面概率/% 闪电击中矮建筑物/% 情形1 情形2 情形3 情形4 400 15.0 22.0 22.5 40.5 500 18.8 24.0 19.0 38.2 600 26.0 11.2 11.5 51.3 -
[1] 郭秀峰,谭涌波,郭凤霞,等.建筑物尖端对大气电场畸变影响的数值计算.应用气象学报,2013,24(2):189-196. http://qikan.camscma.cn/article/id/20130207Guo X F, Tan Y B, Guo F X, et al. Numerical simulation of effects of building tip on atmospheric electric field distortion. J Appl Meteor Sci, 2013, 24(2): 189-196. http://qikan.camscma.cn/article/id/20130207 [2] Jiang R J, Lyu W T, Wu B, et al. Simulation of cloud-to-ground lightning strikes to structures based on an improved stochastic lightning model. J Atmos Sol Terr Phys, 2020, 203. DOI: 10.1016/j.jastp.2020.105274. [3] 姜睿娇. 高建筑物区域地闪活动特征的观测和模拟研究. 北京: 中国气象科学研究院, 2021.Jiang R J. Observation and Simulation of CG Lightning Activity Characteristics in the Regions with Tall Structures. Beijing: Chinese Academy of Meteorological Sciences, 2021. [4] 吴啸天, 王晓妍, 郑栋, 等. 不同类型气溶胶对长三角地区地闪活动影响. 应用气象学报, 2023, 34(5): 608-618. doi: 10.11898/1001-7313.20230509Wu X T, Wang X Y, Zheng D, et al. Effects of different aerosols on cloud-to-ground lightning activity in the Yangtze River Delta. J Appl Meteor Sci, 2023, 34(5): 608-618. doi: 10.11898/1001-7313.20230509 [5] 谭涌波, 陈之禄, 张冬冬, 等. 高建筑对周围建筑雷击保护距离的模拟. 应用气象学报, 2016, 27(4): 498-505. doi: 10.11898/1001-7313.20160413Tan Y B, Chen Z L, Zhang D D, et al. Simulation on the stroke protection distance of tall buildings to surrounding buildings. J Appl Meteor Sci, 2016, 27(4): 498-505. doi: 10.11898/1001-7313.20160413 [6] 吴姗姗. 广州塔及其附近下行地闪的特征分析和模拟. 北京: 中国气象科学研究院, 2019.Wu S S. Characteristic Analysis and Simulation of Downward Cloud-to-ground Lightning Flashes Around the Canton Tower. Beijing: Chinese Academy of Meteorological Sciences, 2019. [7] 高磊, 凌晨. 关于建筑物等效截收面积计算的若干问题探讨. 气象科技, 2014, 42(6): 1126-1130. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201406030.htmGao L, Ling C. Problems encountered in calculating equivalent collection areas of structures. Meteor Sci Technol, 2014, 42(6): 1126-1130. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201406030.htm [8] 史雅静, 赵佳, 陈仁君. 电气-几何模型对位置因子精细化取值的应用研究. 湖北农业科学, 2019, 58(13): 60-63. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNY201913013.htmShi Y J, Zhao J, Chen R J. Study on the application of electro-geometric model in calculating the position factor. Hubei Agric Sci, 2019, 58(13): 60-63. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNY201913013.htm [9] IEC. Protection against Lightning. Part 2: Risk Management. 2006. [10] 中华人民共和国国家标准, GB50057—2010. 建筑物防雷设计规范. 北京: 2010: 8-12.National Standard of the People's Republic of China, GB50057-2010. Design Code for Protection of Structures Against Lightning. Beijing, 2010: 8-12. [11] 汝洪博, 马金福, 冯志伟, 等. 建筑物雷击次数等效截收面积计算方法. 气象科技, 2013, 41(1): 191-195. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201301035.htmRu H B, Ma J F, Feng Z W, et al. Method for calculating equivalent area of a building with same lightning stroke frequency. Meteor Sci Technol, 2013, 41(1): 191-195. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201301035.htm [12] 高攀亮, 史东东, 吴亭, 等. 反极性云闪的初始击穿特征. 应用气象学报, 2023, 34(3): 324-335. doi: 10.11898/1001-7313.20230306Gao P L, Shi D D, Wu T, et al. Characteristics of the preliminary breakdown in inverted-polarity intracloud lightning flashes. J Appl Meteor Sci, 2023, 34(3): 324-335. doi: 10.11898/1001-7313.20230306 [13] 关雨侬, 吕伟涛, 齐奇, 等. 一次上行闪电中先导二维和三维发展特征的差异. 应用气象学报, 2023, 34(5): 598-607. doi: 10.11898/1001-7313.20230508Guan Y N, Lü W T, Qi Q, et al. Difference between 2D and 3D development characteristics of an upward lightning leader. J Appl Meteor Sci, 2023, 34(5): 598-607. doi: 10.11898/1001-7313.20230508 [14] Hussein A, Jan S, Todorovski V, et al. Influence of the CN Tower on the Lightning Environment in its Vicinity//Proceedings of the International Lightning Detection Conference(ILDC). 2010: 1-19. [15] Birkl J, Diendorfer G, Thern S, et al. Initial Investigation of Influence of Wind Farms to Lightning Events. 2016 33rd International Conference on Lightning Protection(ICLP). Estoril, Portugal. IEEE, 2016: 1-7. [16] Zhang C X, Lu W T, Chen L W, et al. Influence of the Canton Tower on the cloud-to-ground lightning in its vicinity. J Geophys Res Atmos, 2017, 122(11): 5943-5954. doi: 10.1002/2016JD026229 [17] 吴姗姗, 吕伟涛, 齐奇, 等. 基于光学资料的广州塔附近下行地闪特征. 应用气象学报, 2019, 30(2): 203-210. doi: 10.11898/1001-7313.20190207Wu S S, Lü W T, Qi Q, et al. Characteristics of downward cloud-to-ground lightning flashes around Canton Tower based on optical observations. J Appl Meteor Sci, 2019, 30(2): 203-210. doi: 10.11898/1001-7313.20190207 [18] 闫琳城, 张文娟, 张义军, 等. 南海雷暴大风时空分布及闪电和对流活动特征. 应用气象学报, 2023, 34(4): 503-512. doi: 10.11898/1001-7313.20230410Yan L C, Zhang W J, Zhang Y J, et al. Temporal and spatial distribution of thunderstorms and strong winds with characteristics of lightning and convective activities in the South China Sea. J Appl Meteor Sci, 2023, 34(4): 503-512. doi: 10.11898/1001-7313.20230410 [19] 马瑞阳, 郑栋, 姚雯, 等. 雷暴云特征数据集及我国雷暴活动特征. 应用气象学报, 2021, 32(3): 358-369. doi: 10.11898/1001-7313.20210308Ma R Y, Zheng D, Yao W, et al. Thunderstorm feature dataset and characteristics of thunderstorm activities in China. J Appl Meteor Sci, 2021, 32(3): 358-369. doi: 10.11898/1001-7313.20210308 [20] 张悦, 吕伟涛, 陈绿文, 等. 基于人工引雷的粤港澳闪电定位系统性能评估. 应用气象学报, 2022, 33(3): 329-340. doi: 10.11898/1001-7313.20220307Zhang Y, Lü W T, Chen L W, et al. Evaluation of GHMLLS performance characteristics based on observations of artificially triggered lightning. J Appl Meteor Sci, 2022, 33(3): 329-340. doi: 10.11898/1001-7313.20220307 [21] 余骏皓, 谭涌波, 郑天雪, 等. 建筑物群中多上行先导三维模型的建立. 应用气象学报, 2020, 31(6): 740-748. doi: 10.11898/1001-7313.20200609Yu J H, Tan Y B, Zheng T X, et al. A three-dimensional model establishment of multiple connecting leaders initiated from tall structures. J Appl Meteor Sci, 2020, 31(6): 740-748. doi: 10.11898/1001-7313.20200609 [22] 林雨荷, 谭涌波, 余骏皓, 等. 地闪三维随机模型的改进及多上行先导的数值模拟研究. 气象学报, 2022, 80(6): 999-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202206011.htmLin Y H, Tan Y B, Yu J H, et al. Improvement of the three-dimensional stochastic cloud-to-ground lightning model and numerical simulation of multiple upward leaders. Acta Meteor Sinica, 2022, 80(6): 999-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202206011.htm [23] Lalande P, Mazur V. A physical model of branching in upward leaders. Journal AerospaceLab, 2012(5): 1-7. [24] 谭涌波, 张鑫, 向春燕, 等. 建筑物上侧击雷电的三维数值模拟. 应用气象学报, 2017, 28(2): 227-236. doi: 10.11898/1001-7313.20170210Tan Y B, Zhang X, Xiang C Y, et al. Three-dimensional numerical simulation of side flash on buildings. J Appl Meteor Sci, 2017, 28(2): 227-236. doi: 10.11898/1001-7313.20170210 [25] 任晓毓, 张义军, 吕伟涛, 等. 闪电先导随机模式的建立与应用. 应用气象学报, 2011, 22(2): 194-202. http://qikan.camscma.cn/article/id/20110208Ren X Y, Zhang Y J, Lü W T, et al. Establishment and application of random lightning leader model. J Appl Meteor Sci, 2011, 22(2): 194-202. http://qikan.camscma.cn/article/id/20110208 [26] Tan Y B, Zheng T X, Shi Z. Improved lightning model: Application to discuss the characteristics of upward lightning. Atmos Res, 2019, 217: 63-72. [27] 雷艺楠, 谭涌波, 余骏皓, 等. 高矮建筑物多上行先导连接过程的数值模拟. 应用气象学报, 2022, 33(1): 80-91. doi: 10.11898/1001-7313.20220107Lei Y N, Tan Y B, Yu J H, et al. Numerical simulation on multiple upward leader attachment process of tall and low buildings. J Appl Meteor Sci, 2022, 33(1): 80-91. doi: 10.11898/1001-7313.20220107 [28] Rakov V A, Uman M A. Lightning: Physics and Effects. Cambridge: Cambridge University Press, 2003. [29] Becerra M, Cooray V. On the velocity of positive connecting leaders associated with negative downward lightning leaders. Geophys Res Lett, 2008, 35(2), L02801. DOI: 10.1029/2007GL032506. [30] Helsdon J H Jr, Wu G, Farley R D. An intracloud lightning parameterization scheme for a storm electrification model. J Geophys Res, 1992, 97(D5): 5865-5884. [31] Tan Y B, Tao S C, Zhu B Y. Fine-resolution simulation of the channel structures and propagation features of intracloud lightning. Geophys Res Lett, 2006, 33(9). DOI: 10.1029/2005GL025523. [32] Lu W T, Chen L W, Zhang Y, et al. Characteristics of unconnected upward leaders initiated from tall structures observed in Guangzhou. J Geophys Res, 2012, 117, D19211. DOI: 10.1029/2012JD-18035. [33] Saba M M F, Schumann C, Warner T A, et al. Upward lightning flashes characteristics from high-speed videos. J Geophys Res Atmos, 2016, 121(14): 8493-8505. [34] Warner T A. Observations of simultaneous upward lightning leaders from multiple tall structures. Atmos Res, 2012, 117: 45-54. [35] MacGorman D R, Straka J M, Ziegler C L. A lightning parameterization for numerical cloud models. J Appl Meteor, 2001, 40(3): 459-478. [36] Mansell E R, MacGorman D R, Ziegler C L, et al. Simulated three-dimensional branched lightning in a numerical thunderstorm model. J Geophys Res, 2002, 107(D9): ACL 2-1-ACL 2-12. [37] Biagi C J, Uman M A, Gopalakrishnan J, et al. Determination of the electric field intensity and space charge density versus height prior to triggered lightning. J Geophys Res, 2011, 116(D15): D15201. [38] Chauzy S, Médale J C, Prieur S, et al. Multilevel measurement of the electric field underneath a thundercloud: 1. A new system and the associated data processing. J Geophys Res, 1991, 96(D12): 22319-22326. [39] 谭涌波, 周博文, 郭秀峰, 等. 建筑物高度对上行闪电触发以及传播影响的数值模拟. 气象学报, 2015, 73(3): 546-556. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201503011.htmTan Y B, Zhou B W, Guo X F, et al. A numerical simulation of the effects of building height on single upward lightning trigger and propagation. Acta Meteor Sinica, 2015, 73(3): 546-556. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201503011.htm [40] 谭涌波, 师正, 王宁宁, 等. 随机性与电环境特征对地闪击地点影响的数值模拟. 地球物理学报, 2012, 55(11): 3534-3541. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201211004.htmTan Y B, Shi Z, Wang N N, et al. Numerical simulation of the effects of randomness and characteristics of electrical environment on ground strike sites of cloud-to-ground lightning. Chinese J Geophys, 2012, 55(11): 3534-3541. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201211004.htm [41] Lyu W T, Zhang Y, Chen L, et al. Observation and Preliminary Analysis on the Attachment Process of Lightning Flashes Striking on High Structures. Paper Presented at Asia-pacific International Symposium on Electromagnetic Compatibility. IEEE, 2010. [42] Warner T A. Upward Leader Development from Tall Towers in Response to Downward Stepped Leaders. Paper Presented at 30th International Conference on Lightning Protection(ICLP). IEEE, 2010: 1-4. [43] Hussein A M, Milewski M, Janischewskyj W, et al. Characteristics of lightning flashes striking the CN Tower below its tip. J Electrost, 2007, 65(5/6): 307-315. [44] Cummins K L, Krider E P, Olbinski M, et al. A case study of lightning attachment to flat ground showing multiple unconnected upward leaders. Atmos Res, 2018, 202: 169-174. [45] Becerra M, Cooray V, Hartono Z A. Identification of lightning vulnerability points on complex grounded structures. J Electrost, 2007, 65(9): 562-570. [46] 郄秀书, 张其林, 袁铁. 雷电物理学. 北京: 科学出版社, 2013.Qie X S, Zhang Q L, Yuan T. Lightning Physics. Beijing: Science Press, 2013. [47] D'Alessandro F. The use of 'field intensification factors' in calculations for lightning protection of structures. J Electrost, 2003, 58(1/2): 17-43. [48] 张鑫. 建筑物上侧击雷电的三维数值模拟. 南京: 南京信息工程大学, 2017.Zhang X. A Model Study on Three Dimensional Numerical of Side Flash on Buildings. Nanjing: Nanjing University of Information Science & Technology, 2017.