留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

珠江三角洲“9·7”极端暴雨精细观测特征及成因

陈训来 徐婷 王蕊 李媛 张舒婷 王书欣 王明洁 陈元昭

陈训来, 徐婷, 王蕊, 等. 珠江三角洲“9·7”极端暴雨精细观测特征及成因. 应用气象学报, 2024, 35(1): 1-16. DOI:  10.11898/1001-7313.20240101..
引用本文: 陈训来, 徐婷, 王蕊, 等. 珠江三角洲“9·7”极端暴雨精细观测特征及成因. 应用气象学报, 2024, 35(1): 1-16. DOI:  10.11898/1001-7313.20240101.
Chen Xunlai, Xu Ting, Wang Rui, et al. Fine observation characteristics and causes of '9·7' extreme heavy rainstorm over Pearl River Delta, China. J Appl Meteor Sci, 2024, 35(1): 1-16. DOI:  10.11898/1001-7313.20240101.
Citation: Chen Xunlai, Xu Ting, Wang Rui, et al. Fine observation characteristics and causes of "9·7" extreme heavy rainstorm over Pearl River Delta, China. J Appl Meteor Sci, 2024, 35(1): 1-16. DOI:  10.11898/1001-7313.20240101.

珠江三角洲“9·7”极端暴雨精细观测特征及成因

DOI: 10.11898/1001-7313.20240101
资助项目: 

深圳市科技创新可持续发展专项 KCXFZ20230731094905010

国家自然科学基金项目 41975124

广东省气象局科技创新团队项目 GR-MCTD202004

广东省气象局项目 GRMC2021Q11

详细信息
    通信作者:

    陈元昭, 邮箱:943508839@qq.com

Fine Observation Characteristics and Causes of "9·7" Extreme Heavy Rainstorm over Pearl River Delta, China

  • 摘要: 2023年9月7—8日珠江三角洲出现极端特大暴雨(简称“9·7”极端暴雨)。应用多源资料分析该过程的精细化观测特征及成因, 结果表明:“9·7”极端暴雨由高层辐散、中层弱引导气流、低层西南季风和台风海葵(2311)残涡共同造成, 水平尺度约为100 km的带状中尺度对流复合体长时间维持, 列车效应和暖云降水特征显著, 雷达回波质心低, 最强降水阶段不低于45 dBZ的强回波质心位于4 km高度以下, 不低于30 dBZ的强回波在深圳持续时间长达21 h。该天气过程以中小雨滴为主且数浓度较大, 当降水强度大于20 mm·h-1时, 雨滴粒径增大但数浓度明显降低。“9·7”极端暴雨持续时间、强度和落区与边界层低空急流脉动、急流核区位置对应很好, 强降水出现在低空急流指数迅速加强后的1~2 h内, 低空急流和低空急流指数变化对强降水具有重要指示意义。台风海葵(2311)残涡在珠江三角洲的长时间滞留是此次极端暴雨的天气尺度原因, 深厚的边界层低空急流提供了良好的动力和水汽条件, 对流风暴的持续生成和维持是此次极端暴雨的直接原因。
  • 图  1  2023年9月7日16:00—8日16:00降水量(单位:mm)(a) 和最大降水强度(单位:mm·h-1)(b)

    Fig. 1  Rainfall(unit:mm)(a) and maximum rainfall intensity(unit:mm·h-1)(b) from 1600 BT 7 Sep to 1600 BT 8 Sep in 2023

    图  2  2023年9月7日17:00—8日16:00代表站逐小时降水量

    Fig. 2  Hourly rainfall of typical stations from 1700 BT 7 Sep to 1600 BT 8 Sep in 2023

    图  3  2023年9月5—8日风场(风羽)、风速(填色)和位势高度(红色等值线,单位:dagpm)

    Fig. 3  Wind(the barb), wind speed(the shaded) and geopotential height(the red contour, unit:dagpm)from 5 Sep to 8 Sep in 2023

    图  4  2023年9月7—8日FY-4B长波红外通道TBB

    Fig. 4  FY-4B TBB from 7 Sep to 8 Sep in 2023

    图  5  2023年9月7—8日广东多普勒天气雷达组合反射率因子

    Fig. 5  Radar combination reflectivity of Guangdong from 7 Sep to 8 Sep in 2023

    图  6  2023年9月7日18:00—8日20:00深圳小梧桐站组合反射率因子时间-高度剖面(填色)和降水强度(黑色实线)

    Fig. 6  Time-height section of radar combination reflectivity(the shaded) and rainfall intensity(the black solid line)at Xiaowutong Station of Shenzhen from 1800 BT 7 Sep to 2000 BT 8 Sep in 2023

    图  7  2023年9月7日16:00—8日16:00深圳石岩站雨滴谱数浓度lgN(D)(填色)、雨滴直径(填色高度)和降水强度(黑色实线)

    Fig. 7  Raindrop number concentration(the shaded), raindrop diameter(height of the shaded)and rainfall intensity(the black solid line) at Shiyan Station of Shenzhen from 1600 BT 7 Sep to 1600 BT 8 Sep in 2023

    图  8  2023年9月7日16:00—8日16 :00深圳石岩站降水强度与雨滴质量加权平均直径(a)和标准化数浓度(b)的散点分布

    Fig. 8  Scatter plots of rainfall intensity with raindrop mass-weighted average diameter(a)and standardized number concentration(b) at Shiyan Station of Shenzhen from 1600 BT 7 Sep to 1600 BT 8 Sep in 2023

    图  9  2023年9月7—8日850 hPa风场(红色实线为辐合线)

    Fig. 9  Wind at 850 hPa(the red solid line denotes converging line) from 7 Sep to 8 Sep in 2023

    图  10  2023年9月7—8日深圳龙岗的雷达风廓线(填色表示风速不低于12 m·s-1)(a)和低空急流指数和降水强度(b)

    Fig. 10  Wind profile of radar(the shaded denotes wind speed no less than 12 m·s-1) at Longgang Station of Shengzhen(a) and low jet index and hourly rainfall(b) from 7 Sep to 8 Sep in 2023

    图  11  2023年9月7—8日975 hPa风场(矢量)和散度场(填色区散度小于-2×10-5 s-1)

    Fig. 11  Wind(the vector) and divergence(the shaded denotes less than -2×10-5 s-1)at 975 hPa from 7 Sep to 8 Sep in 2023

    图  12  2023年9月7—8日925 hPa水汽输送(矢量,单位:g·cm-1·hPa·s-1)(填色为通量)

    Fig. 12  Water vapor transport at 925 hPa(the vector, unit:g·cm-1·hPa·s-1)from 7 Sep to 8 Sep in 2023(the shaded denotes water vapor flux)

  • [1] 何立富, 陈涛, 孔期. 华南暖区暴市研究进展. 应用气象学报, 2016, 27(5):559-569. doi:  10.11898/1001-7313.20160505

    He L F, Chen T, Kong Q. A review of studies on prefrontal torrential rain in South China. J Appl Meteor Sci, 2016, 27(5): 559-569. doi:  10.11898/1001-7313.20160505
    [2] 翟盘茂, 李蕾, 周佰铨, 等. 江淮流域持续性极端降水及预报方法研究进展. 应用气象学报, 2016, 27(5): 631-640. doi:  10.11898/1001-7313.20160511

    Zhai P M, Li L, Zhou B Q, et al. Progress on mechanism and prediction methods for persistent extreme precipitation in the Yangtze-Huai River Valley. J Appl Meteor Sci, 2016, 27(5): 631-640. doi:  10.11898/1001-7313.20160511
    [3] 伍红雨, 邹燕, 刘尉. 广东区域性暴雨过程的定量化评估及气候特征. 应用气象学报, 2019, 30(2): 233-244. doi:  10.11898/1001-7313.20190210

    Wu H Y, Zou Y, Liu W. Quantitative assessment of regional heavy rainfall process in Guangdong and its climatological characteristics. J Appl Meteor Sci, 2019, 30(2): 233-244. doi:  10.11898/1001-7313.20190210
    [4] Wang Y J, Zhou B T, Qin D H, et al. Changes in mean and extreme temperature and precipitation over the arid region of northwestern China: Observation and projection. Adv Atmos Sci, 2017, 34(3): 289-305. doi:  10.1007/s00376-016-6160-5
    [5] 刘菲凡, 郑永光, 罗琪, 等. 京津冀及周边一般性降水与短时强降水特征对比. 应用气象学报, 2023, 34(5): 619-629. doi:  10.11898/1001-7313.20230510

    Liu F F, Zheng Y G, Luo Q, et al. Comparison of characteristics of light precipitation and short-time heavy precipitation over Beijing, Tianjin, Hebei and neighbouring areas. J Appl Meteor Sci, 2023, 34(5): 619-629. doi:  10.11898/1001-7313.20230510
    [6] 谌芸, 孙军, 徐珺, 等. 北京721特大暴雨极端性分析及思考(一)观测分析及思考. 气象, 2012, 38(10): 1255-1266.

    Chen Y, Sun J, Xu J, et al. Analysis and thinking on the extremes of the 21 July 2012 torrential rain in Beijing part Ⅰ: Observation and thinking. Meteor Mon, 2012, 38(10): 1255-1266.
    [7] 宝兴华, 夏茹娣, 罗亚丽, 等. "21·7"河南特大暴雨气象和水文雨量观测对比. 应用气象学报, 2022, 33(6): 668-681. doi:  10.11898/1001-7313.20220603

    Bao X H, Xia R D, Luo Y L, et al. Comparative analysis on meteorological and hydrological rain gauge observations of the extreme heavy rainfall event in Henan Province during July 2021. J Appl Meteor Sci, 2022, 33(6): 668-681. doi:  10.11898/1001-7313.20220603
    [8] 田付友, 郑永光, 张小玲, 等. 2017年5月7日广州极端强降水对流系统结构、触发和维持机制. 气象, 2018, 44(4): 469-484.

    Tian F Y, Zheng Y G, Zhang X L, et al. Structure, triggering and maintenance mechanism of convective systems during the Guangzhou extreme rainfall on 7 May 2017. Meteor Mon, 2018, 44(4): 469-484.
    [9] 齐道日娜, 何立富, 王秀明, 等. "7·20"河南极端暴雨精细观测及热动力成因. 应用气象学报, 2022, 33(1): 1-15. doi:  10.11898/1001-7313.20220101

    Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi:  10.11898/1001-7313.20220101
    [10] 段汀, 陈权亮, 廖雨静. "21. 7"郑州极端暴雨的形成过程及致灾机理分析. 气象科学, 2022, 42(2): 152-161.

    Duan T, Chen Q L, Liao Y J. Analysis of "21. 7" extreme rainstorm formation process and disaster mechanism in Zhengzhou. J Meteor Sci, 2022, 42(2): 152-161.
    [11] 鲍名. 近50年我国持续性暴雨的统计分析及其大尺度环流背景. 大气科学, 2007, 31(5): 779-792.

    Bao M. The statistical analysis of the persistent heavy rain in the last 50 years over China and their backgrounds on the large scale circulation. Chinese J Atmos Sci, 2007, 31(5): 779-792.
    [12] 孙婧超, 管兆勇, 李明刚, 等. 华南地区7-10月两类区域性极端降水事件特征及环流异常对比. 气象学报, 2019, 77(1): 43-57.

    Sun J C, Guan Z Y, Li M G, et al. Anomalous circulation patterns in association with two types of regional daily precipitation extremes over South China from July to October. Acta Meteor Sinica, 2019, 77(1): 43-57.
    [13] 符娇兰, 马学款, 陈涛, 等. "16·7"华北极端强降水特征及天气学成因分析. 气象, 2017, 43(5): 528-539.

    Fu J L, Ma X K, Chen T, et al. Characteristics and synoptic mechanism of the July 2016 extreme precipitation event in North China. Meteor Mon, 2017, 43(5): 528-539.
    [14] 方翀, 毛冬艳, 张小雯, 等. 2012年7月21日北京地区特大暴雨中尺度对流条件和特征初步分析. 气象, 2012, 38(10): 1278-1287.

    Fang C, Mao D Y, Zhang X W, et al. Analysis on the mesoscale convective conditions and characteristics of an extreme torrential rain in Beijing on 21 July 2012. Meteor Mon, 2012, 38(10): 1278-1287.
    [15] 杨舒楠, 路屹雄, 张芳华, 等. 热带风暴艾云尼持续性强降水成因分析. 气象, 2021, 47(1): 106-116.

    Yang S N, Lu Y X, Zhang F H, et al. Analysis on causes of persistent heavy rainfall brought by tropical storm Ewiniar. Meteor Mon, 2021, 47(1): 106-116.
    [16] 林良勋, 梁巧倩, 黄忠. 华南近海急剧加强热带气旋及其环流综合分析. 气象, 2006, 32(2): 14-18.

    Lin L X, Liang Q Q, Huang Z. Analysis of circulation pattern of rapidly intensified offshore tropical cyclones of South China. Meteor Mon, 2006, 32(2): 14-18.
    [17] 陈联寿, 丁一汇. 西太平洋台风概论. 北京: 科学出版社, 1979.

    Chen L S, Ding Y H. Introduction to Typhoons in the Western Pacific. Beijing: Science Press, 1979.
    [18] 林文, 林长城, 李白良, 等. 登陆台风麦德姆不同部位降水强度及谱特征. 应用气象学报, 2016, 27(2): 239-248. doi:  10.11898/1001-7313.20160212

    Lin W, Lin C C, Li B L, et al. Rainfall intensity and raindrop spectrum for different parts in landing Typhoon Matmo. J Appl Meteor Sci, 2016, 27(2): 239-248. doi:  10.11898/1001-7313.20160212
    [19] 黄燕燕, 蒙伟光, 冯业荣, 等. 华南登陆台风降水不对称性及持续性问题. 气象, 2023, 49(4): 385-399.

    Huang Y Y, Meng W G, Feng Y R, et al. Problems in asymmetry and sustainability of landfalling typhoon precipitation over South China. Meteor Mon, 2023, 49(4): 385-399.
    [20] 毛志远, 付丹红, 黄彦彬, 等. 台风贝碧嘉(1816)外围云系结构与降水特征. 应用气象学报, 2022, 33(5): 604-616. doi:  10.11898/1001-7313.20220508

    Mao Z Y, Fu D H, Huang Y B, et al. Peripheral cloud system structure and precipitation characteristics of Typhoon Bebinca(1816). J Appl Meteor Sci, 2022, 33(5): 604-616. doi:  10.11898/1001-7313.20220508
    [21] 颜玲, 周玉淑, 王咏青. 相似路径台风Soudelor(1513)与Matmo(1410)登陆前后的降水分布特征及成因的对比分析. 大气科学, 2019, 43(2): 297-310.

    Yan L, Zhou Y S, Wang Y Q. Analysis on different characteristics and causes of precipitation distribution during the landing of Typhoon "Soudelor"(1513) and Typhoon "Matmo" (1410) with similar tracks. Chinese J Atmos Sci, 2019, 43(2): 297-310.
    [22] 卢珊, 王黎娟, 管兆勇, 等. 低纬季风涌影响登陆台风"榴莲"(0103)和"碧利斯"(0604)暴雨增幅的比较. 大气科学学报, 2012, 35(2): 175-185.

    Lu S, Wang L J, Guan Z Y, et al. Comparison of impacts of low-latitude monsoon surge on the enhanced rainstorm from landing typhoons Durian and Bilis. Trans Atmos Sci, 2012, 35(2): 175-185.
    [23] 何立富, 陈双, 郭云谦. 台风利奇马(1909)极端强降雨观测特征及成因. 应用气象学报, 2020, 31(5): 513-526. doi:  10.11898/1001-7313.20200501

    He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi:  10.11898/1001-7313.20200501
    [24] 覃皓, 郑凤琴, 伍丽泉. 台风威马逊(1409)强度与降水变化的相互作用. 应用气象学报, 2022, 33(4): 477-488. doi:  10.11898/1001-7313.20220408

    Qin H, Zheng F Q, Wu L Q. The interaction between intensity and rainfall of Typhoon Rammasun(1409). J Appl Meteor Sci, 2022, 33(4): 477-488. doi:  10.11898/1001-7313.20220408
    [25] 叶成志, 李昀英. 热带气旋"碧利斯"与南海季风相互作用的强水汽特征数值研究. 气象学报, 2011, 69(3): 496-507.

    Ye C Z, Li Y Y. A numerical study of the characteristics of strong moisture transport as a result of the interaction of tropical storm Bilis with the South China Sea monsoon. Acta Meteor Sinica, 2011, 69(3): 496-507.
    [26] 程正泉, 林良勋, 杨国杰, 等. 超强台风威马逊快速增强及大尺度环流特征. 应用气象学报, 2017, 28(3): 318-326. doi:  10.11898/1001-7313.20170306

    Cheng Z Q, Lin L X, Yang G J, et al. Rapid intensification and associated large-scale circulation of super Typhoon Rammasun in 2014. J Appl Meteor Sci, 2017, 28(3): 318-326. doi:  10.11898/1001-7313.20170306
    [27] 刘淑媛, 郑永光, 陶祖钰. 利用风廓线雷达资料分析低空急流的脉动与暴雨关系. 热带气象学报, 2003, 19(3): 285-290.

    Liu S Y, Zheng Y G, Tao Z Y. The analysis of the relationship between pulse of LLJ and heavy rain using wind profiler data. J Trop Meteor, 2003, 19(3): 285-290.
    [28] McAnelly R L, Cotton W R. Meso-β-scale characteristics of an episode of meso-α-scale convective complexes. Mon Wea Rev, 1986, 114(9): 1740-1770. doi:  10.1175/1520-0493(1986)114<1740:MSCOAE>2.0.CO;2
    [29] Doswell C A III, Brooks H E, Maddox R A. Flash flood forecasting: An ingredients-based methodology. Wea Forecasting, 1996, 11(4): 560-581. doi:  10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2
    [30] 俞小鼎, 周小刚, 王秀明. 雷暴与强对流临近天气预报技术进展. 气象学报, 2012, 70(3): 311-337.

    Yu X D, Zhou X G, Wang X M. The advances in the nowcasting techniques on thunderstorms and severe convection. Acta Meteor Sinica, 2012, 70(3): 311-337.
    [31] 朱红芳, 王东勇, 杨祖祥, 等. "海葵"台风(1211号)暴雨雨滴谱特征分析. 暴雨灾害, 2020, 39(2): 167-175.

    Zhu H F, Wang D Y, Yang Z X, et al. Analysis of raindrop spectrum characteristics for a heavy rain event caused by Typhoon Haikui(No. 1211) in Anhui. Torrential Rain Disasters, 2020, 39(2): 167-175.
    [32] 俞小鼎. 短时强降水临近预报的思路与方法. 暴雨灾害, 2013, 32(3): 202-209.

    Yu X D. Nowcasting thinking and method of flash heavy rain. Torrential Rain Disasters, 2013, 32(3): 202-209.
    [33] 郑永光, 周康辉, 盛杰, 等. 强对流天气监测预报预警技术进展. 应用气象学报, 2015, 26(6): 641-657. doi:  10.11898/1001-7313.20150601

    Zheng Y G, Zhou K H, Sheng J, et al. Advances in techniques of monitoring, forecasting and warning of severe convective weather. J Appl Meteor Sci, 2015, 26(6): 641-657. doi:  10.11898/1001-7313.20150601
    [34] 高洋, 蔡淼, 曹治强, 等. "21·7"河南暴雨环境场及云的宏微观特征. 应用气象学报, 2022, 33(6): 682-695. doi:  10.11898/1001-7313.20220604

    Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. doi:  10.11898/1001-7313.20220604
    [35] 陈刚, 赵坤, 吕迎辉, 等. 河南"21·7"特大暴雨过程微物理特征变化分析. 中国科学(地球科学), 2022, 52(10): 1887-1904.

    Chen G, Zhao K, Lu Y, et al. Variability of microphysical characteristics in the "21·7" Henan extremely heavy rainfall event. Sci China(Earth Sci), 2022, 65(10): 1861-1878.
    [36] 张哲, 戚友存, 李东欢, 等. 2021年郑州"7·20"极端暴雨雨滴谱特征及其对雷达定量降水估测的影响. 大气科学, 2022, 46(4): 1002-1016.

    Zhang Z, Qi Y C, Li D H, et al. Raindrop size distribution characteristics of the extreme rainstorm event in Zhengzhou 20 July, 2021 and its impacts on radar quantitative precipitation estimation. Chinese J Atmos Sci, 2022, 46(4): 1002-1016.
    [37] Bringi V N, Chandrasekar V. Polarimetric Doppler Weather Radar. Cambridge: Cambridge University Press, 2001.
    [38] Ma Y, Ni G H, Chandra C V, et al. Statistical characteristics of raindrop size distribution during rainy seasons in the Beijing urban area and implications for radar rainfall estimation. Hydrol Earth Syst Sci, 2019, 23(10): 4153-4170.
    [39] 苟阿宁, 吴翠红, 王玉娟, 等. 基于风廓线雷达的湖北梅雨期暴雨中小尺度特征. 干旱气象, 2022, 40(1): 84-94.

    Gou A N, Wu C H, Wang Y J, et al. Meso and small-scale characteristics of heavy rain during Meiyu period in Hubei based on wind profile radar. J Arid Meteor, 2022, 40(1): 84-94.
    [40] 廖菲, 邓华, 侯灵. 降水条件下风廓线雷达数据质量分析及处理. 热带气象学报, 2016, 32(5): 588-595.

    Liao F, Deng H, Hou L. The effect assessment of wind field inversion based on WPR in precipitation. J Trop Meteor, 2016, 32(5): 588-595.
  • 加载中
图(12)
计量
  • 摘要浏览量:  474
  • HTML全文浏览量:  80
  • PDF下载量:  208
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-13
  • 修回日期:  2023-12-19
  • 刊出日期:  2024-01-31

目录

    /

    返回文章
    返回