Verification and Assessment of "23·7" Severe Rainstorm Numerical Prediction in North China
-
摘要: 针对“23·7”华北特大暴雨过程, 采用天气学检验及TS(threat score)评分和MODE(method for object-based diagnostic evaluation)方法对中国气象局高分辨率全球同化预报系统(CMA-GFS)、较低分辨率全球集合预报系统(CMA-EPS)、欧洲中期数值预报中心集合预报系统(EC-EPS)和业务预报模式(EC-HR)、美国环境预报中心全球预报系统(NCEP-GFS)等全球模式和中国气象局区域台风数值预报系统(CMA-TYM)、中尺度天气数值预报系统(CMA-MESO)和区域数值预报系统(CMA-BJ)等进行中短期预报效果检验评估。结果表明:EC-EPS提前14 d预报京津冀一带有过程累积降水量超过100 mm强降水的发生概率, CMA-EPS可提前12 d报出, 但预报欠稳定且落区偏东偏南。EC-HR对100 mm以上过程累积降水量及2 d以上暴雨日的位置预报提前时效均达8 d左右, CMA-GFS的过程累积降水量预报显著偏小、强降水落区明显偏东, 可用预报时效短;NCEP-GFS预报性能介于二者之间。各模式均可提前36 h预报强降水落区和强度的变化趋势, 中尺度模式可更加精细地刻画其形态和位置分布, 尤以CMA-BJ为佳, 但其预报偏强, 其余模式不同程度偏弱, 其中CMA-GFS显著偏弱。EC-HR提前8 d预报关键影响系统发生发展, 但低层倒槽位置偏西偏北, 低空急流偏弱, 低估了地形对强降水的增幅作用, 是太行山东麓降水量预报偏弱的重要原因之一。整体上, EC-EPS、EC-HR的提前时效和稳定性, 以及CMA-BJ的落区形态和强度预报等对预报业务有较高参考价值。Abstract: During the severe rainstorm in North China from 31 July to 1 August in 2023, CMA-GFS, CMA-EPS, EC-EPS, EC-HR, NCEP-GFS, CMA-TYM, CMA-MESO, and CMA-BJ are tested and evaluated using synoptic verification, threat score (TS), and MODE (method for object-based diagnostic evaluatin). The persistence and intensity of long-term heavy rainfall, as well as the area and intensity of short-term heavy rainfall, are tested and analyzed for their effectiveness over time. Results indicate that the cumulative precipitation predicted by EC-EPS may exceed 100 mm for 14 days in advance, but there is no prediction ability for extreme heavy precipitation above 600 mm. EC-HR forecast for the location of precipitation is generally accurate up to 8 days in advance. In the short term, the daily precipitation intensity forecast by CMA-BJ closely matches the actual situation, indicating its significance in predicting precipitation extremes. The average and maximum precipitation values of CMA-GFS, EC-HR, and NCEP-GFS in the areas with concentrated heavy precipitation are lower than actual values. CMA-GFS doesn't perform very well while EC-HR is closer to the actual situation. CMA-GFS, EC-HR, and NCEP-GFS models all provide inadequate forecasts for the persistence of heavy rainfall. However, EC-HR has a relative advantage in predicting persistent precipitation 8 days in advance. TS of CMA-BJ is highest for precipitation forecasts above 50 mm and 100 mm. EC-HR and CMA-TYM precipitation forecasts above 50 mm are relatively stable. From the daily MODE results of the precipitation concentration period from 29 July to 31 July, it is evident that EC-HR exhibits a northward predictive characteristic, while the prediction of CMA-BJ is slightly southward. The forecasting ability of CMA-GFS is insufficient, and forecasts from NCEP-GFS and CMA-MESO are not stable. The high-pressure system in North China has a significant impact on the precipitation. EC-HR model forecasts the formation and reinforcement of a 500 hPa high-pressure system 3 to 4 days earlier than CMA-GFS and NCEP-GFS models. It also surpasses both in predicting the precise location and strength of intense precipitation. Additionally, EC-HR model predicts the emergence of a 925 hPa low-pressure trough and a low-level jet 7 days in advance. However, it underestimates the intensity of the trough and jet system, with the actual location being to the west to north. CMA-GFS and NCEP-GFS underestimate the impact of the Taihang Mountains on easterly winds, leading to significantly lower precipitation forecasts. The analysis of the deviation in the 36 h precipitation forecast for 30 July also shows that EC-HR has weak predictions for low-level wind fields, trough positions, and convective precipitation, resulting in a weak intensity of heavy precipitation and a west-north precipitation area.
-
Key words:
- North China severe rainstorm;
- numerical model;
- synoptic verification;
- verification;
- TS;
- MODE
-
图 3 EC-EPS对2023年7月29日08:00—8月2日08:00累积降水量不低于100 mm的概率预报检验(· 代表实况累积降水量不低于100 mm的格点)
Fig. 3 Probability prediction verification of accumulated rainfall no less than 100 mm in EC-EPS from 0800 BT 29 Jul to 0800 BT 2 Aug in 2023(· denotes grid point with observed accumulated rainfall no less than 100 mm)
-
[1] 李喆, 陈炯, 马占山, 等. CMA-GFS云预报的偏差分布特征. 应用气象学报, 2022, 33(5):527-540. doi: 10.11898/1001-7313.20220502Li Z, Chen J, Ma Z S, et al. Deviation distribution features of CMA-GFS cloud prediction. J Appl Meteor Sci, 2022, 33(5): 527-540. doi: 10.11898/1001-7313.20220502 [2] 皇甫雪官. 国家气象中心集合数值预报检验评价. 应用气象学报, 2002, 13(1): 29-36. http://qikan.camscma.cn/article/id/20020103Huangfu X G. The verification for ensemble prediction system of National Meteorological Center. J Appl Meteor Sci, 2002, 13(1): 29-36. http://qikan.camscma.cn/article/id/20020103 [3] 王雨, 公颖, 陈法敬, 等. 区域业务模式6 h降水预报检验方案比较. 应用气象学报, 2013, 24(2): 171-178. http://qikan.camscma.cn/article/id/20130205Wang Y, Gong Y, Chen F J, et al. Comparison of two verification methods for 6 h precipitation forecasts of regional models. J Appl Meteor Sci, 2013, 24(2): 171-178. http://qikan.camscma.cn/article/id/20130205 [4] 刘郁珏, 黄倩倩, 张涵斌, 等. 基于大涡模拟的冬奥赛区风环境精细化评估. 应用气象学报, 2022, 33(2): 129-141. doi: 10.11898/1001-7313.20220201Liu Y J, Huang Q Q, Zhang H B, et al. Refined assessment of wind environment over Winter Olympic competition zone based on large eddy simulation. J Appl Meteor Sci, 2022, 33(2): 129-141. doi: 10.11898/1001-7313.20220201 [5] 张舒婷, 仲跻芹, 卢冰, 等. CMA-BJ V2. 0系统华北地区降水预报性能评估. 应用气象学报, 2023, 34(2): 129-141. doi: 10.11898/1001-7313.20230201Zhang S T, Zhong J Q, Lu B, et al. Performance evaluation of CMA-BJ V2. 0 system for precipitation forecast in North China. J Appl Meteor Sci, 2023, 34(2): 129-141. doi: 10.11898/1001-7313.20230201 [6] 李俊, 杜钧, 许建玉, 等. 一次特大暴雨过程高分辨率集合预报试验的检验和评估. 暴雨灾害, 2020, 39(2): 176-184.Li J, Du J, Xu J Y, et al. The assessment and verification of high-resolution ensemble forecast for a heavy rainstorm. Torrential Rain Disasters, 2020, 39(2): 176-184. [7] 潘留杰, 薛春芳, 张宏芳, 等. 两个集合预报系统对秦岭及周边降水预报性能对比. 应用气象学报, 2016, 27(6): 676-687. doi: 10.11898/1001-7313.20160604Pan L J, Xue C F, Zhang H F, et al. Comparative analysis on precipitation forecasting capabilities of two ensemble prediction systems around Qinling Area. J Appl Meteor Sci, 2016, 27(6): 676-687. doi: 10.11898/1001-7313.20160604 [8] 黄丽萍, 邓莲堂, 王瑞春, 等. CMA-MESO关键技术集成及应用. 应用气象学报, 2022, 33(6): 641-654. doi: 10.11898/1001-7313.20220601Huang L P, Deng L T, Wang R C, et al. Key technologies of CMA-MESO and application to operational forecast. J Appl Meteor Sci, 2022, 33(6): 641-654. doi: 10.11898/1001-7313.20220601 [9] Moore P G. Statistical theory and methodology in science and engineering. J R Stat Soc Ser A Stat Soc, 1961, 124(4): 573-574. doi: 10.2307/2342937 [10] 张寅, 罗亚丽, 管兆勇. NCEP全球预报系统在ARM SGP站点预报大气温度、湿度和云量的检验. 大气科学, 2012, 36(1): 170-184.Zhang Y, Luo Y L, Guan Z Y. Temperature, relative humidity, and cloud fraction predicted by the NCEP global forecast system at the ARM SGP site during 2001-2008:Comparison with ARM observations. Chinese J Atmos Sci, 2012, 36(1): 170-184. [11] 潘留杰, 张宏芳, 朱伟军, 等. ECMWF模式对东北半球气象要素场预报能力的检验. 气候与环境研究, 2013, 18(1): 111-123.Pan L J, Zhang H F, Zhu W J, et al. Forecast performance verification of the ECMWF model over the Northeast Hemisphere. Clim Environ Res, 2013, 18(1): 111-123. [12] 戴建华, 茅懋, 邵玲玲, 等. 强对流天气预报检验新方法在上海的应用尝试. 气象科技进展, 2013, 3(3): 40-45.Dai J H, Mao M, Shao L L, et al. Applications of a new verification method for severe convection forecasting and nowcasting in Shanghai. Adv Meteor Sci Tech, 2013, 3(3): 40-45. [13] Hoffman R N, Liu Z, Louis J F, et al. Distortion representation of forecast errors. Mon Wea Rev, 1995, 123(9): 2758-2770. doi: 10.1175/1520-0493(1995)123<2758:DROFE>2.0.CO;2 [14] 潘留杰, 张宏芳, 王建鹏. 数值天气预报检验方法研究进展. 地球科学进展, 2014, 29(3): 327-335.Pan L J, Zhang H F, Wang J P. Progress on verification methods of numerical weather prediction. Adv Earth Sci, 2014, 29(3): 327-335. [15] 曲巧娜, 盛春岩, 范苏丹, 等. 基于目标对象检验法的多种模式强降水能力的比较. 气象, 2019, 45(7): 908-919.Qu Q N, Sheng C Y, Fan S D, et al. Comparison of the multi-model forecasts for severe precipitation based on the object verification. Meteor Mon, 2019, 45(7): 908-919. [16] 尤凤春, 王国荣, 郭锐, 等. MODE方法在降水预报检验中的应用分析. 气象, 2011, 37(12): 1498-1503.You F C, Wang G R, Guo R, et al. The application analysis of MODE method to the rainfall forecast test. Meteor Mon, 2011, 37(12): 1498-1503. [17] 张博, 赵滨, 牛若芸, 等. 全球模式对华北区域性强降水中期预报能力检验. 暴雨灾害, 2017, 36(2): 118-124.Zhang B, Zhao B, Niu R Y, et al. The performance verification of several numerical models in middle range forecasting of regional heavy rainfall in North China. Torrential Rain Disasters, 2017, 36(2): 118-124. [18] 苏翔, 康志明, 庄潇然, 等. 2020年梅雨期暴雨雨带预报不确定性分析. 气象, 2021, 47(11): 1336-1346.Su X, Kang Z M, Zhuang X R, et al. Uncertainty analysis of heavy rain belt forecast during the 2020 Meiyu period. Meteor Mon, 2021, 47(11): 1336-1346. [19] 董立清. 1991年江淮暴雨的定量预报检验. 应用气象学报, 1993, 4(3): 333-340. http://qikan.camscma.cn/article/id/19930357Dong L Q. Verification of quantitative forecasts for storm rainfall during the period of Changjiang-Huaihe Mei-yu in 1991. J Appl Meteor Sci, 1993, 4(3): 333-340. http://qikan.camscma.cn/article/id/19930357 [20] Ebert E E, McBride J L. Verification of precipitation in weather systems: Determination of systematic errors. J Hydrol, 2000, 239(1/2/3/4): 179-202. [21] 符娇兰, 代刊. 基于CRA空间检验技术的西南地区东部强降水EC模式预报误差分析. 气象, 2016, 42(12): 1456-1464.Fu J L, Dai K. The ECMWF model precipitation systematic error in the east of southwest China based on the contiguous rain area method for spatial forecast verification. Meteor Mon, 2016, 42(12): 1456-1464. [22] 常煜, 温建伟, 杨雪峰, 等. 基于CMA-TYM和SCMOC的嫩江流域暴雨检验. 应用气象学报, 2023, 34(2): 154-165. doi: 10.11898/1001-7313.20230203Chang Y, Wen J W, Yang X F, et al. Verification of rainstorm based on numerical model about CMA-TYM and SCMOC in Nenjiang Basin. J Appl Meteor Sci, 2023, 34(2): 154-165. doi: 10.11898/1001-7313.20230203 [23] 王新敏, 栗晗. 多数值模式对台风暴雨过程预报的空间检验评估. 气象, 2020, 46(6): 753-764.Wang X M, Li H. Spatial verification evaluation of typhoon rainstorm by multiple numerical models. Meteor Mon, 2020, 46(6): 753-764. [24] 齐道日娜, 何立富, 王秀明, 等. "7·20"河南极端暴雨精细观测及热动力成因. 应用气象学报, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101 [25] 李泽椿, 谌芸, 王新敏, 等. 从"75·8"到"21·7"的思考. 气象与环境科学, 2022, 45(2): 1-13.Li Z C, Chen Y, Wang X M, et al. Thinking of extreme rainstorms from the August 1975 event to the July 2021 event. Meteor Environ Sci, 2022, 45(2): 1-13. [26] 栗晗, 王新敏, 朱枫. "21·7"河南极端暴雨多模式预报性能综合评估. 大气科学学报, 2022, 45(4): 573-590.Li H, Wang X M, Zhu F. Comprehensive evaluations of multi-model forecast performance for "21·7" Henan extreme rainstorm. Trans Atmos Sci, 2022, 45(4): 573-590. [27] 蔡芗宁, 宗志平, 马杰, 等. 2020年梅雨特征分析及模式中期预报性能检验. 暴雨灾害, 2020, 39(6): 629-636.Cai X N, Zong Z P, Ma J, et al. Analysis of Meiyu characteristics and performance verification of the medium-range forecasting models in 2020. Torrential Rain Disasters, 2020, 39(6): 629-636. [28] 陆琛莉, 李海军, 宋刘明, 等. 一次"梅中返春"稳定性持续暴雨过程的预报失误分析. 气象, 2018, 44(1): 132-141.Lu C L, Li H J, Song L M, et al. Analysis of forecast error in a continuous heavy rain event during the spring-like plum rain season. Meteor Mon, 2018, 44(1): 132-141. [29] 符娇兰, 陈双, 沈晓琳, 等. 两次华北冷涡降水成因及预报偏差对比分析. 气象, 2019, 45(5): 606-620.Fu J L, Chen S, Shen X L, et al. Comparative study of the cause of rainfall and its forecast biases of two cold vortex rainfall events in North China. Meteor Mon, 2019, 45(5): 606-620. [30] 霍振华, 李晓莉, 陈静, 等. 基于背景场奇异向量的CMA全球集合预报试验. 应用气象学报, 2022, 33(6): 655-667. doi: 10.11898/1001-7313.20220602Huo Z H, Li X L, Chen J, et al. CMA global ensemble prediction using singular vectors from background field. J Appl Meteor Sci, 2022, 33(6): 655-667. doi: 10.11898/1001-7313.20220602 [31] 曹越, 赵琳娜, 巩远发, 等. ECMWF高分辨率模式降水预报能力评估与误差分析. 暴雨灾害, 2019, 38(3): 249-258.Cao Y, Zhao L N, Gong Y F, et al. Evaluation and error analysis of precipitation forecast capability of the ECMWF high-resolution model. Torrential Rain Disasters, 2019, 38(3): 249-258. [32] 张芳华, 杨舒楠, 胡艺, 等. "23·7"华北特大暴雨过程持续性极端强降水的水汽特征. 气象, 2023, 49(12): 1421-1434.Zhang F H, Yang S N, Hu Y, et al, Water vapor characteristics of "23·7" torrential rainstorm event in North China. Meteor Mon, 2023, 49(12): 1421-1434. [33] 杨舒楠, 张芳华, 胡艺, 等. "23·7"华北特大暴雨过程的基本特征与成因初探. 暴雨灾害, 2023, 42(5): 508-520.Yang S N, Zhang F H, Hu Y, et al. Analysis on the characteristics and causes of the "23·7" torrential rainfall event in North China. Torrential Rain and Disaster, 2023, 42(5): 508-520.