留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

“23·7”华北特大暴雨数值预报检验评估

张博 张芳华 李晓兰 胡艺

张博, 张芳华, 李晓兰, 等. “23·7”华北特大暴雨数值预报检验评估. 应用气象学报, 2024, 35(1): 17-32. DOI:  10.11898/1001-7313.20240102..
引用本文: 张博, 张芳华, 李晓兰, 等. “23·7”华北特大暴雨数值预报检验评估. 应用气象学报, 2024, 35(1): 17-32. DOI:  10.11898/1001-7313.20240102.
Zhang Bo, Zhang FangHua, Li XiaoLan, et al. Verification and assessment of '23·7' severe rainstorm numerical prediction in North China. J Appl Meteor Sci, 2024, 35(1): 17-32. DOI:  10.11898/1001-7313.20240102.
Citation: Zhang Bo, Zhang FangHua, Li XiaoLan, et al. Verification and assessment of "23·7" severe rainstorm numerical prediction in North China. J Appl Meteor Sci, 2024, 35(1): 17-32. DOI:  10.11898/1001-7313.20240102.

“23·7”华北特大暴雨数值预报检验评估

DOI: 10.11898/1001-7313.20240102
资助项目: 

国家重点研发计划 2022YFC3003905

国家自然科学基金项目 42230612

国家自然科学基金项目 U2142214

国家自然科学基金项目 U2142207

详细信息
    通信作者:

    张芳华, 邮箱:zfhnmc@126.com

Verification and Assessment of "23·7" Severe Rainstorm Numerical Prediction in North China

  • 摘要: 针对“23·7”华北特大暴雨过程, 采用天气学检验及TS(threat score)评分和MODE(method for object-based diagnostic evaluation)方法对中国气象局高分辨率全球同化预报系统(CMA-GFS)、较低分辨率全球集合预报系统(CMA-EPS)、欧洲中期数值预报中心集合预报系统(EC-EPS)和业务预报模式(EC-HR)、美国环境预报中心全球预报系统(NCEP-GFS)等全球模式和中国气象局区域台风数值预报系统(CMA-TYM)、中尺度天气数值预报系统(CMA-MESO)和区域数值预报系统(CMA-BJ)等进行中短期预报效果检验评估。结果表明:EC-EPS提前14 d预报京津冀一带有过程累积降水量超过100 mm强降水的发生概率, CMA-EPS可提前12 d报出, 但预报欠稳定且落区偏东偏南。EC-HR对100 mm以上过程累积降水量及2 d以上暴雨日的位置预报提前时效均达8 d左右, CMA-GFS的过程累积降水量预报显著偏小、强降水落区明显偏东, 可用预报时效短;NCEP-GFS预报性能介于二者之间。各模式均可提前36 h预报强降水落区和强度的变化趋势, 中尺度模式可更加精细地刻画其形态和位置分布, 尤以CMA-BJ为佳, 但其预报偏强, 其余模式不同程度偏弱, 其中CMA-GFS显著偏弱。EC-HR提前8 d预报关键影响系统发生发展, 但低层倒槽位置偏西偏北, 低空急流偏弱, 低估了地形对强降水的增幅作用, 是太行山东麓降水量预报偏弱的重要原因之一。整体上, EC-EPS、EC-HR的提前时效和稳定性, 以及CMA-BJ的落区形态和强度预报等对预报业务有较高参考价值。
  • 图  1  2023年7月29日—8月1日累积降水量实况(单位:mm)

    Fig. 1  Observed accumulated rainfall from 29 Jul to 1 Aug in 2023(unit:mm)

    图  2  2023年7月29日—8月1日500 hPa高度场(等值线,单位:dagpm)、850 hPa风场(风羽)和风速(填色)

    Fig. 2  500 hPa height(the red contour, unit:dagpm), wind vector(the barb) and wind velocity(the shaded) at 850 hPa from 29 Jul to 1 Aug in 2023

    图  3  EC-EPS对2023年7月29日08:00—8月2日08:00累积降水量不低于100 mm的概率预报检验(· 代表实况累积降水量不低于100 mm的格点)

    Fig. 3  Probability prediction verification of accumulated rainfall no less than 100 mm in EC-EPS from 0800 BT 29 Jul to 0800 BT 2 Aug in 2023(· denotes grid point with observed accumulated rainfall no less than 100 mm)

    图  4  2023年7月29日08:00—8月2日08:00预报的累积降水量(右上角数值为模式预报最大降水量)

    Fig. 4  Predicted accumulated rainfall from 0800 BT 29 Jul to 0800 BT 2 Aug in 2023(the number in the upper right corner denotes the maximum predicted rainfall)

    图  5  模式提前36 h预报的2023年7月29—31日的日降水量

    Fig. 5  Predicted daily rainfall for 36 h forecast by models from 29 Jul to 31 Jul in 2023

    图  6  模式36 h时效预报的2023年7月29—31日日降水量不低于50 mm降水个体经向和纬向位移偏差

    Fig. 6  Meridional and zonal displacement deviations of daily rainfall no less than 50 mm for 36 h forecast by models from 29 Jul to 31 Jul in 2023

    图  7  2023年7月29—31日关键区(35°~41°N,113°~118°E)36 h时效的日降水量预报检验

    Fig. 7  Verification of daily rainfall for 36 h forecast in key region(35°-41°N,113°-118°E) from 29 to 31 in Jul 2023

    图  8  2023年7月29—31日20:00平均500 hPa位势高度预报场(蓝色等值线,单位:dagpm)

    (红色等值线为588 dagpm等值线实况)

    Fig. 8  Mean of predicted 500 hPa height at 2000 BT from 29 Jul to 31 Jul in 2023(the blue contour, unit:dagpm)

    (the red contour denotes observed 588 dagpm)

    图  9  EC-HR 2023年7月29日20:00起报的30日20:00 850 hPa和925 hPa风场预报场(蓝色风羽)与分析场(黑色风羽)对比(阴影为地形高度)

    Fig. 9  Comparison of 850 hPa, 925 hPa predicted wind(the blue barb)at 2000 BT 30 Jul 2023 initiated at 2000 BT 29 Jul 2023 and analysis field(the black barb)(the shaded denotes elevation)

  • [1] 李喆, 陈炯, 马占山, 等. CMA-GFS云预报的偏差分布特征. 应用气象学报, 2022, 33(5):527-540. doi:  10.11898/1001-7313.20220502

    Li Z, Chen J, Ma Z S, et al. Deviation distribution features of CMA-GFS cloud prediction. J Appl Meteor Sci, 2022, 33(5): 527-540. doi:  10.11898/1001-7313.20220502
    [2] 皇甫雪官. 国家气象中心集合数值预报检验评价. 应用气象学报, 2002, 13(1): 29-36. http://qikan.camscma.cn/article/id/20020103

    Huangfu X G. The verification for ensemble prediction system of National Meteorological Center. J Appl Meteor Sci, 2002, 13(1): 29-36. http://qikan.camscma.cn/article/id/20020103
    [3] 王雨, 公颖, 陈法敬, 等. 区域业务模式6 h降水预报检验方案比较. 应用气象学报, 2013, 24(2): 171-178. http://qikan.camscma.cn/article/id/20130205

    Wang Y, Gong Y, Chen F J, et al. Comparison of two verification methods for 6 h precipitation forecasts of regional models. J Appl Meteor Sci, 2013, 24(2): 171-178. http://qikan.camscma.cn/article/id/20130205
    [4] 刘郁珏, 黄倩倩, 张涵斌, 等. 基于大涡模拟的冬奥赛区风环境精细化评估. 应用气象学报, 2022, 33(2): 129-141. doi:  10.11898/1001-7313.20220201

    Liu Y J, Huang Q Q, Zhang H B, et al. Refined assessment of wind environment over Winter Olympic competition zone based on large eddy simulation. J Appl Meteor Sci, 2022, 33(2): 129-141. doi:  10.11898/1001-7313.20220201
    [5] 张舒婷, 仲跻芹, 卢冰, 等. CMA-BJ V2. 0系统华北地区降水预报性能评估. 应用气象学报, 2023, 34(2): 129-141. doi:  10.11898/1001-7313.20230201

    Zhang S T, Zhong J Q, Lu B, et al. Performance evaluation of CMA-BJ V2. 0 system for precipitation forecast in North China. J Appl Meteor Sci, 2023, 34(2): 129-141. doi:  10.11898/1001-7313.20230201
    [6] 李俊, 杜钧, 许建玉, 等. 一次特大暴雨过程高分辨率集合预报试验的检验和评估. 暴雨灾害, 2020, 39(2): 176-184.

    Li J, Du J, Xu J Y, et al. The assessment and verification of high-resolution ensemble forecast for a heavy rainstorm. Torrential Rain Disasters, 2020, 39(2): 176-184.
    [7] 潘留杰, 薛春芳, 张宏芳, 等. 两个集合预报系统对秦岭及周边降水预报性能对比. 应用气象学报, 2016, 27(6): 676-687. doi:  10.11898/1001-7313.20160604

    Pan L J, Xue C F, Zhang H F, et al. Comparative analysis on precipitation forecasting capabilities of two ensemble prediction systems around Qinling Area. J Appl Meteor Sci, 2016, 27(6): 676-687. doi:  10.11898/1001-7313.20160604
    [8] 黄丽萍, 邓莲堂, 王瑞春, 等. CMA-MESO关键技术集成及应用. 应用气象学报, 2022, 33(6): 641-654. doi:  10.11898/1001-7313.20220601

    Huang L P, Deng L T, Wang R C, et al. Key technologies of CMA-MESO and application to operational forecast. J Appl Meteor Sci, 2022, 33(6): 641-654. doi:  10.11898/1001-7313.20220601
    [9] Moore P G. Statistical theory and methodology in science and engineering. J R Stat Soc Ser A Stat Soc, 1961, 124(4): 573-574. doi:  10.2307/2342937
    [10] 张寅, 罗亚丽, 管兆勇. NCEP全球预报系统在ARM SGP站点预报大气温度、湿度和云量的检验. 大气科学, 2012, 36(1): 170-184.

    Zhang Y, Luo Y L, Guan Z Y. Temperature, relative humidity, and cloud fraction predicted by the NCEP global forecast system at the ARM SGP site during 2001-2008:Comparison with ARM observations. Chinese J Atmos Sci, 2012, 36(1): 170-184.
    [11] 潘留杰, 张宏芳, 朱伟军, 等. ECMWF模式对东北半球气象要素场预报能力的检验. 气候与环境研究, 2013, 18(1): 111-123.

    Pan L J, Zhang H F, Zhu W J, et al. Forecast performance verification of the ECMWF model over the Northeast Hemisphere. Clim Environ Res, 2013, 18(1): 111-123.
    [12] 戴建华, 茅懋, 邵玲玲, 等. 强对流天气预报检验新方法在上海的应用尝试. 气象科技进展, 2013, 3(3): 40-45.

    Dai J H, Mao M, Shao L L, et al. Applications of a new verification method for severe convection forecasting and nowcasting in Shanghai. Adv Meteor Sci Tech, 2013, 3(3): 40-45.
    [13] Hoffman R N, Liu Z, Louis J F, et al. Distortion representation of forecast errors. Mon Wea Rev, 1995, 123(9): 2758-2770. doi:  10.1175/1520-0493(1995)123<2758:DROFE>2.0.CO;2
    [14] 潘留杰, 张宏芳, 王建鹏. 数值天气预报检验方法研究进展. 地球科学进展, 2014, 29(3): 327-335.

    Pan L J, Zhang H F, Wang J P. Progress on verification methods of numerical weather prediction. Adv Earth Sci, 2014, 29(3): 327-335.
    [15] 曲巧娜, 盛春岩, 范苏丹, 等. 基于目标对象检验法的多种模式强降水能力的比较. 气象, 2019, 45(7): 908-919.

    Qu Q N, Sheng C Y, Fan S D, et al. Comparison of the multi-model forecasts for severe precipitation based on the object verification. Meteor Mon, 2019, 45(7): 908-919.
    [16] 尤凤春, 王国荣, 郭锐, 等. MODE方法在降水预报检验中的应用分析. 气象, 2011, 37(12): 1498-1503.

    You F C, Wang G R, Guo R, et al. The application analysis of MODE method to the rainfall forecast test. Meteor Mon, 2011, 37(12): 1498-1503.
    [17] 张博, 赵滨, 牛若芸, 等. 全球模式对华北区域性强降水中期预报能力检验. 暴雨灾害, 2017, 36(2): 118-124.

    Zhang B, Zhao B, Niu R Y, et al. The performance verification of several numerical models in middle range forecasting of regional heavy rainfall in North China. Torrential Rain Disasters, 2017, 36(2): 118-124.
    [18] 苏翔, 康志明, 庄潇然, 等. 2020年梅雨期暴雨雨带预报不确定性分析. 气象, 2021, 47(11): 1336-1346.

    Su X, Kang Z M, Zhuang X R, et al. Uncertainty analysis of heavy rain belt forecast during the 2020 Meiyu period. Meteor Mon, 2021, 47(11): 1336-1346.
    [19] 董立清. 1991年江淮暴雨的定量预报检验. 应用气象学报, 1993, 4(3): 333-340. http://qikan.camscma.cn/article/id/19930357

    Dong L Q. Verification of quantitative forecasts for storm rainfall during the period of Changjiang-Huaihe Mei-yu in 1991. J Appl Meteor Sci, 1993, 4(3): 333-340. http://qikan.camscma.cn/article/id/19930357
    [20] Ebert E E, McBride J L. Verification of precipitation in weather systems: Determination of systematic errors. J Hydrol, 2000, 239(1/2/3/4): 179-202.
    [21] 符娇兰, 代刊. 基于CRA空间检验技术的西南地区东部强降水EC模式预报误差分析. 气象, 2016, 42(12): 1456-1464.

    Fu J L, Dai K. The ECMWF model precipitation systematic error in the east of southwest China based on the contiguous rain area method for spatial forecast verification. Meteor Mon, 2016, 42(12): 1456-1464.
    [22] 常煜, 温建伟, 杨雪峰, 等. 基于CMA-TYM和SCMOC的嫩江流域暴雨检验. 应用气象学报, 2023, 34(2): 154-165. doi:  10.11898/1001-7313.20230203

    Chang Y, Wen J W, Yang X F, et al. Verification of rainstorm based on numerical model about CMA-TYM and SCMOC in Nenjiang Basin. J Appl Meteor Sci, 2023, 34(2): 154-165. doi:  10.11898/1001-7313.20230203
    [23] 王新敏, 栗晗. 多数值模式对台风暴雨过程预报的空间检验评估. 气象, 2020, 46(6): 753-764.

    Wang X M, Li H. Spatial verification evaluation of typhoon rainstorm by multiple numerical models. Meteor Mon, 2020, 46(6): 753-764.
    [24] 齐道日娜, 何立富, 王秀明, 等. "7·20"河南极端暴雨精细观测及热动力成因. 应用气象学报, 2022, 33(1): 1-15. doi:  10.11898/1001-7313.20220101

    Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi:  10.11898/1001-7313.20220101
    [25] 李泽椿, 谌芸, 王新敏, 等. 从"75·8"到"21·7"的思考. 气象与环境科学, 2022, 45(2): 1-13.

    Li Z C, Chen Y, Wang X M, et al. Thinking of extreme rainstorms from the August 1975 event to the July 2021 event. Meteor Environ Sci, 2022, 45(2): 1-13.
    [26] 栗晗, 王新敏, 朱枫. "21·7"河南极端暴雨多模式预报性能综合评估. 大气科学学报, 2022, 45(4): 573-590.

    Li H, Wang X M, Zhu F. Comprehensive evaluations of multi-model forecast performance for "21·7" Henan extreme rainstorm. Trans Atmos Sci, 2022, 45(4): 573-590.
    [27] 蔡芗宁, 宗志平, 马杰, 等. 2020年梅雨特征分析及模式中期预报性能检验. 暴雨灾害, 2020, 39(6): 629-636.

    Cai X N, Zong Z P, Ma J, et al. Analysis of Meiyu characteristics and performance verification of the medium-range forecasting models in 2020. Torrential Rain Disasters, 2020, 39(6): 629-636.
    [28] 陆琛莉, 李海军, 宋刘明, 等. 一次"梅中返春"稳定性持续暴雨过程的预报失误分析. 气象, 2018, 44(1): 132-141.

    Lu C L, Li H J, Song L M, et al. Analysis of forecast error in a continuous heavy rain event during the spring-like plum rain season. Meteor Mon, 2018, 44(1): 132-141.
    [29] 符娇兰, 陈双, 沈晓琳, 等. 两次华北冷涡降水成因及预报偏差对比分析. 气象, 2019, 45(5): 606-620.

    Fu J L, Chen S, Shen X L, et al. Comparative study of the cause of rainfall and its forecast biases of two cold vortex rainfall events in North China. Meteor Mon, 2019, 45(5): 606-620.
    [30] 霍振华, 李晓莉, 陈静, 等. 基于背景场奇异向量的CMA全球集合预报试验. 应用气象学报, 2022, 33(6): 655-667. doi:  10.11898/1001-7313.20220602

    Huo Z H, Li X L, Chen J, et al. CMA global ensemble prediction using singular vectors from background field. J Appl Meteor Sci, 2022, 33(6): 655-667. doi:  10.11898/1001-7313.20220602
    [31] 曹越, 赵琳娜, 巩远发, 等. ECMWF高分辨率模式降水预报能力评估与误差分析. 暴雨灾害, 2019, 38(3): 249-258.

    Cao Y, Zhao L N, Gong Y F, et al. Evaluation and error analysis of precipitation forecast capability of the ECMWF high-resolution model. Torrential Rain Disasters, 2019, 38(3): 249-258.
    [32] 张芳华, 杨舒楠, 胡艺, 等. "23·7"华北特大暴雨过程持续性极端强降水的水汽特征. 气象, 2023, 49(12): 1421-1434.

    Zhang F H, Yang S N, Hu Y, et al, Water vapor characteristics of "23·7" torrential rainstorm event in North China. Meteor Mon, 2023, 49(12): 1421-1434.
    [33] 杨舒楠, 张芳华, 胡艺, 等. "23·7"华北特大暴雨过程的基本特征与成因初探. 暴雨灾害, 2023, 42(5): 508-520.

    Yang S N, Zhang F H, Hu Y, et al. Analysis on the characteristics and causes of the "23·7" torrential rainfall event in North China. Torrential Rain and Disaster, 2023, 42(5): 508-520.
  • 加载中
图(9)
计量
  • 摘要浏览量:  854
  • HTML全文浏览量:  281
  • PDF下载量:  252
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-13
  • 修回日期:  2023-12-13
  • 刊出日期:  2024-01-31

目录

    /

    返回文章
    返回