High Temperature Heat Damage Grade Index of Tea Plants and Its Distribution Characteristics in Southern Yangtze River and South China
-
摘要: 利用1961—2022年江南和华南茶区510个气象站的日最高气温数据和历史茶树高温热害灾情数据, 采用灾情反演和K-Means聚类分析方法, 构建并验证江南和华南茶区茶树高温热害等级指标, 分析茶树高温热害时空分布特征。结果表明: 江南和华南茶区茶树轻度、中度、重度高温热害指标为连续14 d日最高气温的滑动平均值T14≥34.5 ℃的持续日数分别为1~17 d、18~38 d和超过38 d, 验证样本完全符合的准确率为73.9%, 基本符合的准确率为91.3%; 江南和华南茶区茶树高温热害总次数呈波动变化, 分别在1999年和1997年达到最低值, 并在2021年达到最高值; 华南茶区相对于江南茶区高温热害次数更多, 尤其是轻度茶树高温热害, 且近62年华南茶区茶树高温热害次数增加趋势显著。Abstract: With the trend of global climate change, it is important to study the high temperature heat damage of tea plants and analyze the spatial and temporal distribution characteristics to warn damage early and reduce production losses. An index is established based on daily maximum air temperature and historical heat damage disaster records at 510 meteorological stations over tea regions in Southern Yangtze River and South China from 1961 to 2022, to determine and verify the extent of high temperature heat damage, using methods of disaster inversion and K-means clustering analysis method. The spatial and temporal distribution characteristics of high temperature heat damage are analyzed. The total days with moving average of 14-consecutive-day maximum temperature above 34.5 ℃ are statistically analyzed, and for mild, moderate and severe high temperature heat damage, the value is in the range of 1-17 d, 18-38 d and above 38 d, respectively. The accuracy rate of complete compliance with the validation sample is 73.9%, and the accuracy rate of basic compliance is 91.3%. The total number of heat damage on tea plants in Southern Yangtze River and South China shows fluctuating changes from 1961 to 2022. The total number of heat damage on tea plants in tea regions of Southern Yangtze River and South China is the lowest in 1999 and 1997, respectively, while numbers are the highest in 2021 for both tea regions. Compared to tea regions of Southern Yangtze River, there are more high temperature heat damages in South China, especially mild high temperature heat damages. Moreover, the number of high temperature heat damage on tea plants in South China shows a significant increasing trend in the past 62 years, but the trend of changes in the number of high temperature heat damage on tea plants in most tea regions of Southern Yangtze River is not significant.
-
表 1 茶树高温热害灾情描述分级[36]
Table 1 Description and classification of high temperature heat damage of tea plants(from Reference [36])
等级 灾情描述 轻度 部分受灾、受损, 受害茶树仅部分叶片出现变色、枯焦,茶枝上部芽叶仍呈现绿色 中度 成灾、部分绝收,受害茶树多数叶片变色、枯焦或脱落,但茶枝顶端叶片或茶芽虽变色但尚未完全枯死 重度 大量减产、绝收,受害茶树叶片变色、枯焦脱落,且蓬面枝条已出现干枯甚至整株死亡 表 2 茶树高温热害等级指标验证样本的数量及验证结果
Table 2 Number of validation samples and verification results of grade index of high temperature heat damage of tea plants
灾情等级 验证结果 样本量 完全符合 基本符合 与实际灾情不符 轻度 5 0 0 5 中度 3 1 1 5 重度 9 3 1 13 样本量 17 4 2 23 -
[1] 李倬, 贺龄萱.茶与气象.北京: 气象出版社, 2005.Li Z, He L X. Tea and Meteorology. Beijing: China Meteorological Press, 2005. [2] 王培娟, 唐俊贤, 金志凤, 等. 中国茶树春霜冻害研究进展. 应用气象学报, 2021, 32(2): 129-145. doi: 10.11898/1001-7313.20210201Wang P J, Tang J X, Jin Z F, et al. Review on spring frost disaster for tea plant in China. J Appl Meteor Sci, 2021, 32(2): 129-145. doi: 10.11898/1001-7313.20210201 [3] 梅宇, 梁晓. 2021年中国茶叶生产与内销形势分析. 中国茶叶, 2022, 44(4): 17-22.Mei Y, Liang X. Analysis of China's tea production and domestic sales in 2021. China Tea, 2022, 44(4): 17-22. [4] IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group Ⅰ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021: 3-32. [5] 齐道日娜, 何立富. 2022年我国夏季极端高温阶段性特征及成因. 应用气象学报, 2023, 34(4): 385-399. doi: 10.11898/1001-7313.20230401Chyi D, He L F. Stage characteristics and mechanisms of extreme high temperature in China in summer of 2022. J Appl Meteor Sci, 2023, 34(4): 385-399. doi: 10.11898/1001-7313.20230401 [6] 金志凤, 姚益平. 江南茶叶生产气象保障关键技术研究. 北京: 气象出版社, 2017.Jin Z F, Yao Y P. Research on Key Technique of Meteorological Support for the Tea Production in Regions South of the Yangtze River. Beijing: China Meteorological Press, 2017. [7] 陆健, 刘国华. 茶叶热害机理探讨. 广东茶业, 1992(3): 33-36.Lu J, Liu G H. Discussion on the mechanism of tea heat damage. Guangdong Tea Industry, 1992(3): 33-36. [8] 霍治国, 张海燕, 李春晖, 等. 中国玉米高温热害研究进展. 应用气象学报, 2023, 34(1): 1-14. doi: 10.11898/1001-7313.20230101Huo Z G, Zhang H Y, Li C H, et al. Review on high temperature heat damage of maize in China. J Appl Meteor Sci, 2023, 34(1): 1-14. doi: 10.11898/1001-7313.20230101 [9] 韩冬, 杨菲, 杨再强, 等. 高温对茶树叶片光合及抗逆特性的影响和恢复. 中国农业气象, 2016, 37(3): 297-306.Han D, Yang F, Yang Z Q, et al. Effects of high temperature stress and recovery on photosynthesis and stress tolerance of tea leaves. Chinese J Agrometeor, 2016, 37(3): 297-306. [10] 陈家金, 黄川容, 孙朝锋, 等. 福建省茶叶气象灾害致灾危险性区划与评估. 自然灾害学报, 2018, 27(1): 198-207.Chen J J, Huang C R, Sun C F, et al. Disaster-causing hazard division and evaluation of meteorological disasters for tea in Fujian Province. J Nat Disasters, 2018, 27(1): 198-207. [11] 杨菲, 王学林, 杨再强, 等. 江南地区茶树高温热害时空分布特征及风险区划. 自然灾害学报, 2015, 24(3): 216-224.Yang F, Wang X L, Yang Z Q, et al. Spatiotemporal pattern and risk zoning of tea heat injury in south region of the Yangtze River. J Nat Disasters, 2015, 24(3): 216-224. [12] 陶瑶, 陈娇娇, 余焰文, 等. 气候变化背景下婺源绿茶农业气象灾害的演变特征. 江西农业学报, 2022, 34(4): 186-191.Tao Y, Chen J J, Yu Y W, et al. Evolution characteristics of agro-meteorological disasters of Wuyuan green tea under background of climate change. Acta Agric Jiangxi, 2022, 34(4): 186-191. [13] 汪建军, 杨爱萍, 张坤, 等. 气候变化对江西茶树高温热害的影响. 江西农业学报, 2020, 32(11): 94-98.Wang J J, Yang A P, Zhang K, et al. Effects of climate change on tea heat injury in Jiangxi Province. Acta Agric Jiangxi, 2020, 32(11): 94-98. [14] 万璐, 陈惠, 陈惠玲, 等. 福建省茶树高温热害致灾危险性区域划分. 中国农业气象, 2023, 44(3): 219-227.Wan L, Chen H, Chen H L, et al. Distribution of disaster risk about high temperature on tea plants in Fujian Province. Chinese J Agrometeor, 2023, 44(3): 219-227. [15] 中华人民共和国农业农村部. 茶树高温热害等级(NY/T 3419—2019). 北京: 中国农业出版社, 2019.Ministry of Agriculture and Rural Affairs of the People's Republic of China. Grade of Heat Injury for Tea Plant[Camellia sinensis(L.)O. Kuntze](NY/T 3419-2019). Beijing: China Agriculture Press, 2019. [16] 陈思宁, 申双和, 刘敏, 等. 湖北省茶树气象灾害模糊综合评价及区划. 农业工程学报, 2010, 26(12): 298-303.Chen S N, Shen S H, Liu M, et al. Fuzzy synthetical evaluation of meteorological disasters to Camellia Sinensis(L. O. Ktze) and its regionalization in Hubei Province. Trans Chin Soc Agric Eng, 2010, 26(12): 298-303. [17] 金志凤, 胡波, 严甲真, 等. 浙江省茶叶农业气象灾害风险评价. 生态学杂志, 2014, 33(3): 771-777.Jin Z F, Hu B, Yan J Z, et al. Agro-meteorological disaster risk evaluation of tea planting in Zhejiang Province. Chinese J Ecol, 2014, 33(3): 771-777. [18] 李柏贞, 孔萍. 江西省茶叶气象灾害风险评价. 能源研究与管理, 2020(1): 63-68.Li B Z, Kong P. Meteorological disaster risk evaluation of tea in Jiangxi Province. Energy Res Manag, 2020(1): 63-68. [19] 姜燕敏, 李松平, 马军辉, 等. 浙南茶树高温热害日数的气候变化特征. 中国农学通报, 2019, 35(19): 102-106.Jiang Y M, Li S P, Ma J H, et al. Heat injury days of tea in southern Zhejiang: Climate change characteristics. Chinese Agric Sci Bull, 2019, 35(19): 102-106. [20] 季丹丹, 胡燕华, 包君俏, 等. 柯桥区茶叶气候风险区划. 农学学报, 2020, 10(4): 83-88.Ji D D, Hu Y H, Bao J Q, et al. Climate risk zoning of tea in Keqiao district. J Agric, 2020, 10(4): 83-88. [21] 周立永, 张光国, 廖胜才, 等. 茶树高温干旱防御及灾后恢复措施——以2022年秭归县茶树高温干旱受灾调研为例. 中国茶叶, 2023, 45(3): 53-56.Zhou L Y, Zhang G G, Liao S C, et al. Prevention and post-disaster recovery measures for high temperature and drought of tea plants—A case study of high temperature and drought disaster in tea gardens of Zigui County in 2022. China Tea, 2023, 45(3): 53-56. [22] 周姣, 聂祥, 李刚, 等. 毕节市七星关区引种安吉白茶的气候适应性分析. 南方农业, 2023, 17(7): 104-108.Zhou J, Nie X, Li G, et al. Climate adaptability analysis of introducing Anji white tea in Qixingguan District, Bijie City. South China Agricaulture, 2023, 17(7): 104-108. [23] 郭水连, 吴春燕, 郭卫平. 江西宜春引种安吉白茶的气候适应性分析. 茶叶科学技术, 2010, 51(3): 34-37.Guo S L, Wu C Y, Guo W P. Analysis on climate adaptability of Anji white tea introduced from Yichun, Jiangxi Province. Tea Sci Technol, 2010, 51(3): 34-37. [24] 娄伟平, 肖强, 孙科, 等. 浙江省茶树高温热害风险区划. 茶叶科学, 2018, 38(5): 480-486.Lou W P, Xiao Q, Sun K, et al. Heat stress risk regionalization of tea plant in Zhejiang Province. J Tea Sci, 2018, 38(5): 480-486. [25] 唐俊贤, 王培娟, 俄有浩, 等. 中国大陆茶树种植气候适宜性区划. 应用气象学报, 2021, 32(4): 397-407. doi: 10.11898/1001-7313.20210402Tang J X, Wang P J, E Y H, et al. Climatic suitability zoning of tea planting in China's mainland. J Appl Meteor Sci, 2021, 32(4): 397-407. doi: 10.11898/1001-7313.20210402 [26] 方宇凌, 简茂球. 2003年夏季华南持续高温天气过程及热力诊断. 热带海洋学报, 2011, 30(3): 30-37.Fang Y L, Jian M Q. Diagnosis study of persistent heat waves in South China during summer 2003. J Trop Oceanogr, 2011, 30(3): 30-37. [27] 彭京备, 孙淑清, 林大伟. 2022年8月长江流域持续性极端高温事件成因. 应用气象学报, 2023, 34(5): 527-539. doi: 10.11898/1001-7313.20230502Peng J B, Sun S Q, Lin D W. The extreme hot event along the Yangtze Basins in August 2022. J Appl Meteor Sci, 2023, 34(5): 527-539. doi: 10.11898/1001-7313.20230502 [28] 罗列万. 2013年浙江省夏季茶园高温干旱受灾情况调查评估. 中国茶叶, 2013, 35(9): 17.Luo L W. Investigation and evaluation of summer tea garden disaster caused by high temperature and drought in Zhejiang Province in 2013. China Tea, 2013, 35(9): 17. [29] 刘海清. 2013年湘潭市茶园旱热害情况及预防对策. 茶叶通讯, 2013, 40(4): 50.Liu H Q. Drought and heat damage of tea gardens in Xiangtan city in 2013 and its preventive countermeasures. Tea Commun, 2013, 40(4): 50. [30] 李素芹, 刘启梅, 曹绪勇, 等. 宜都市茶叶高温热害现象调查与思考. 基层农技推广, 2017, 5(11): 97-98.Li S Q, Liu Q M, Cao X Y, et al. Investigation and thinking on the phenomenon of high temperature heat damage of tea in Yidu city. Prim Agric Technol Ext, 2017, 5(11): 97-98. [31] 李翔翔, 黄淑娥, 谢远玉, 等. 果实膨大期高温对赣南脐橙品质影响的评估指数构建. 生态学杂志, 2022, 41(12): 2489-2496.Li X X, Huang S E, Xie Y Y, et al. Construction of evaluation index for the effects of high temperature during fruit expansion period on the quality of Newhall navel orange in southern Jiangxi Province. Chin J Ecol, 2022, 41(12): 2489-2496. [32] 唐余学, 郭建平. 我国东北地区玉米冷寒风险评估. 应用气象学报, 2016, 27(3): 352-360. doi: 10.11898/1001-7313.20160310Tang Y X, Guo J P. Risk assessment of maize chilling injury in Northeast China. J Appl Meteor Sci, 2016, 27(3): 352-360. doi: 10.11898/1001-7313.20160310 [33] 周明珠, 徐晶. 西北太平洋热带气旋强度和尺度协同变化特征. 应用气象学报, 2023, 34(4): 463-474. doi: 10.11898/1001-7313.20230407Zhou M Z, Xu J. Covariation relationship between tropical cyclone intensity and size change over the Northwest Pacific. J Appl Meteor Sci, 2023, 34(4): 463-474. doi: 10.11898/1001-7313.20230407 [34] 柏秦凤, 王景红, 李化龙, 等. 美味系猕猴桃越冬冻害指标. 应用气象学报, 2021, 32(4): 504-512. doi: 10.11898/1001-7313.20210411Bai Q F, Wang J H, Li H L, et al. Freezing injury indicator of tasty kiwifruit during overwintering period. J Appl Meteor Sci, 2021, 32(4): 504-512. doi: 10.11898/1001-7313.20210411 [35] 杨凯, 陈彬彬, 陈惠, 等. 福建省台湾青枣寒害综合气候指标与等级划分. 应用气象学报, 2020, 31(4): 427-434. doi: 10.11898/1001-7313.20200405Yang K, Chen B B, Chen H, et al. Comprehensive climatic index and grade classification of cold damage for Taiwan green jujube in Fujian. J Appl Meteor Sci, 2020, 31(4): 427-434. doi: 10.11898/1001-7313.20200405 [36] 肖强, 韩文炎. 茶树热旱害症状及分级方法. 中国茶叶, 2013, 35(9): 21.Xiao Q, Han W Y. Symptoms and grading methods of heat and drought damage in tea trees. China Tea, 2013, 35(9): 21. [37] 毛红丹, 霍治国, 张蕾, 等. 环渤海葡萄涝渍指标构建及风险评估. 应用气象学报, 2022, 33(1): 92-103. doi: 10.11898/1001-7313.20220108Mao H D, Huo Z G, Zhang L, et al. Indicator construction and risk assessment of grape waterlogging in the Bohai Rim. J Appl Meteor Sci, 2022, 33(1): 92-103. doi: 10.11898/1001-7313.20220108 [38] 张曦, 黎鑫. 湖南省夏季高温热浪时空分布特征及其成因. 气候与环境研究, 2017, 22(6): 747-756.Zhang X, Li X. Spatial-temporal characteristics and causes of summer heat waves in Hunan Province. Climate Environ Res, 2017, 22(6): 747-756. [39] 张嘉仪, 钱诚. 1960—2018年中国高温热浪的线性趋势分析方法与变化趋势. 气候与环境研究, 2020, 25(3): 225-239.Zhang J Y, Qian C. Linear trends in occurrence of high temperature and heat waves in China for the 1960-2018 period: Method and analysis results. Climate Environ Res, 2020, 25(3): 225-239. [40] 陈颖, 张灵, 千怀遂. 华南地区近53a极端高温日数的变化特征及其区域差异. 热带地理, 2016, 36(4): 692-699.Chen Y, Zhang L, Qian H S. Variation characteristics and spatial differences of extremely high temperature days over South China during the recent 53 years. Trop Geogr, 2016, 36(4): 692-699. [41] 杨涵洧, 马悦, 史军. 全球变暖背景下长江三角洲夏季高温时空演变研究. 长江流域资源与环境, 2018, 27(7): 1544-1553.Yang H W, Ma Y, Shi J. Spatial and temporal characteristics of summertime high temperature in Yangtze River Delta under the background of global warming. Resour Environ Yangtze Basin, 2018, 27(7): 1544-1553. [42] 贾子康, 郑志海, 封国林. 中国南方地区盛夏高温类型及其对应的大尺度环流和海温异常. 气象学报, 2020, 78(6): 928-944.Jia Z K, Zheng Z H, Feng G L. Midsummer high temperature types in southern China and corresponding large-scale circulation and sea surface temperature anomalies. Acta Meteor Sinica, 2020, 78(6): 928-944. [43] 林爱兰, 谷德军, 彭冬冬, 等. 近60年我国东部区域性持续高温过程变化特征. 应用气象学报, 2021, 32(3): 302-314. doi: 10.11898/1001-7313.20210304Lin A L, Gu D J, Peng D D, et al. Climatic characteristics of regional persistent heat event in the eastern China during recent 60 years. J Appl Meteor Sci, 2021, 32(3): 302-314. doi: 10.11898/1001-7313.20210304 [44] 贾佳, 胡泽勇. 中国不同等级高温热浪的时空分布特征及趋势. 地球科学进展, 2017, 32(5): 546-559.Jia J, Hu Z Y. Spatial and temporal features and trend of different level heat waves over China. Adv Earth Sci, 2017, 32(5): 546-559. [45] Shi Z T, Jia G S, Zhou Y Y, et al. Amplified intensity and duration of heatwaves by concurrent droughts in China. Atmos Res, 2021, 261: 105743. [46] 黎健龙, 李家贤, 唐劲驰, 等. 热旱对茶树产量的影响及防灾措施浅析. 茶叶科学技术, 2007, 48(4): 9-10.Li J L, Li J X, Tang J C, et al. Influence of heat and drought on tea yield and analysis of disaster prevention measures. Tea Sci Technol, 2007, 48(4): 9-10. [47] 吴灰全, 万瀚仁, 周萌. 武夷山茶叶生产的气候条件分析. 农业与技术, 2014, 34(12): 122.Wu H Q, Wan H R, Zhou M. Analysis on climatic conditions of tea production in Wuyishan. Agric Technol, 2014, 34(12): 122.