留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2020年雾灵山人工低频强声波增雨和消雾试验

孙跃 肖辉 冯强 张云 舒未希 付丹红 杨慧玲

孙跃, 肖辉, 冯强, 等. 2020年雾灵山人工低频强声波增雨和消雾试验. 应用气象学报, 2024, 35(1): 90-102. DOI:  10.11898/1001-7313.20240108..
引用本文: 孙跃, 肖辉, 冯强, 等. 2020年雾灵山人工低频强声波增雨和消雾试验. 应用气象学报, 2024, 35(1): 90-102. DOI:  10.11898/1001-7313.20240108.
Sun Yue, Xiao Hui, Feng Qiang, et al. Rainfall Enhancement and Fog Dissipation Experiments in Wuling Mountain in 2020 using artificial strong sound wave. J Appl Meteor Sci, 2024, 35(1): 90-102. DOI:  10.11898/1001-7313.20240108.
Citation: Sun Yue, Xiao Hui, Feng Qiang, et al. Rainfall Enhancement and Fog Dissipation Experiments in Wuling Mountain in 2020 using artificial strong sound wave. J Appl Meteor Sci, 2024, 35(1): 90-102. DOI:  10.11898/1001-7313.20240108.

2020年雾灵山人工低频强声波增雨和消雾试验

DOI: 10.11898/1001-7313.20240108
资助项目: 

国家重点研发计划 2019YFC1510304

详细信息
    通信作者:

    肖辉, 邮箱:hxiao@mail.iap.ac.cn

Rainfall Enhancement and Fog Dissipation Experiments in Wuling Mountain in 2020 Using Artificial Strong Sound Wave

  • 摘要: 为了研究人工低频强声波增雨和消雾作业手段的效果, 使用最大声压级为155 dB的电声低频强声波装置原型机, 于2020年8—9月在河北省雾灵山开展增雨和消雾外场作业观测试验。具有明显消雾效果的两个典型个例显示:作业开始后2~3 min内尺度小于10 μm的雾滴减少, 尺度大于10 μm的雾滴增多;随后大部分尺度的雾滴明显减少, 10 min内能见度可从小于100 m回升至最高1000 m。在风速、风向与消雾效果的关系方面, 消雾效果明显的个例均发生在平均风速小于1.5 m·s-1且风向可使雾能够途经声波装置影响范围近侧的条件下, 而平均风速大于2 m·s-1的个例能见度几乎未出现趋势性变化。在一次地面平均风速为1.4 m·s-1的对流云增雨作业中观测到符合试验预期的结果, 开始作业后的3 min内地面雨强从0.3 mm·h-1迅速增至7 mm·h-1以上, 并观测到出现迅速但维持时间较短的大雨滴。其他增雨个例在作业时段的平均风速均超过3 m·s-1, 可能受风速偏大和观测点单一的影响, 未能观测到明确且一致的增雨证据。
  • 图  1  雾灵山顶临时试验场的位置

    (方框,填色为海拔高度) (a)与仪器分布(A为架设在地面平台上的人工强声波装置,B为架设在屋顶的激光雨滴谱仪和自动气象站,C为雾滴谱仪和能见度仪观测点;蓝色箭头为消雾试验时云雾从南坡爬上山顶的方向示意,红色箭头为低频强声波装置消雾发射时的声波朝向) (b)

    Fig. 1  Location of temporary experiment site on the top of Wuling Mountain

    (the box, the shaded denotes altitude) (a) and placement of observation instruments (A denotes the placement of artificial strong sound wave device on the ground platform, B denotes the placement of laser disdrometer and automatic weather station on the roof, C denotes the placement of fog droplet spectrometer and visibility meter; the blue arrow denotes the fog moving direction, the red arrow denotes the direction of artificial sound wave for fog dissipation) (b)

    图  1  雾灵山顶临时试验场的位置

    (方框,填色为海拔高度) (a)与仪器分布(A为架设在地面平台上的人工强声波装置,B为架设在屋顶的激光雨滴谱仪和自动气象站,C为雾滴谱仪和能见度仪观测点;蓝色箭头为消雾试验时云雾从南坡爬上山顶的方向示意,红色箭头为低频强声波装置消雾发射时的声波朝向) (b)

    Fig. 1  Location of temporary experiment site on the top of Wuling Mountain

    (the box, the shaded denotes altitude) (a) and placement of observation instruments (A denotes the placement of artificial strong sound wave device on the ground platform, B denotes the placement of laser disdrometer and automatic weather station on the roof, C denotes the placement of fog droplet spectrometer and visibility meter; the blue arrow denotes the fog moving direction, the red arrow denotes the direction of artificial sound wave for fog dissipation) (b)

    图  2  声压级随频率和距离的变化

    Fig. 2  Sound pressure level varying with frequency and distance

    图  2  声压级随频率和距离的变化

    Fig. 2  Sound pressure level varying with frequency and distance

    图  3  人工强声波装置的声压级方向图

    Fig. 3  Directional images of sound pressure level of artificial strong sound wave device

    图  3  人工强声波装置的声压级方向图

    Fig. 3  Directional images of sound pressure level of artificial strong sound wave device

    图  4  2020年8月23日消雾试验的能见度和雾滴谱参数

    (有序号阴影区代表开机作业的顺序时段)

    Fig. 4  Visibility and fog size distribution parameters during fog dissipation experiments on 23 Aug 2020

    (the numbered shaded area denotes sequential operation period)

    图  4  2020年8月23日消雾试验的能见度和雾滴谱参数

    (有序号阴影区代表开机作业的顺序时段)

    Fig. 4  Visibility and fog size distribution parameters during fog dissipation experiments on 23 Aug 2020

    (the numbered shaded area denotes sequential operation period)

    图  5  2020年8月23日4次消雾作业前后的雾滴谱

    Fig. 5  Fog droplet size distribution during four fog dissipation operation periods on 23 Aug 2020

    图  5  2020年8月23日4次消雾作业前后的雾滴谱

    Fig. 5  Fog droplet size distribution during four fog dissipation operation periods on 23 Aug 2020

    图  6  2020年8月23日消雾作时雾灵山周边地区ERA5地面风

    (△为雾灵山,蓝色矢量为18:00的风,红色矢量为19:00的风)

    Fig. 6  ERA5 surface wind in the surrounding area of Wuling Mountain during fog dissipation operations on 23 Aug 2020

    (△ denotes Wuling Mountain, the blue vector denotes wind at 1800 BT, the red vector denotes wind at 1900 BT)

    图  6  2020年8月23日消雾作时雾灵山周边地区ERA5地面风

    (△为雾灵山,蓝色矢量为18:00的风,红色矢量为19:00的风)

    Fig. 6  ERA5 surface wind in the surrounding area of Wuling Mountain during fog dissipation operations on 23 Aug 2020

    (△ denotes Wuling Mountain, the blue vector denotes wind at 1800 BT, the red vector denotes wind at 1900 BT)

    图  7  2020年消雾试验的能见度变化个例

    (有序号的阴影区代表开机作业的顺序时段)

    Fig. 7  Examples of visibility changes during fog dissipation experiments in 2020

    (the numbered shaded area denotes sequential operation period)

    图  7  2020年消雾试验的能见度变化个例

    (有序号的阴影区代表开机作业的顺序时段)

    Fig. 7  Examples of visibility changes during fog dissipation experiments in 2020

    (the numbered shaded area denotes sequential operation period)

    图  8  2020年8月27日—9月10日21次消雾作业时段内自动气象站风速和能见度变化速度的关系

    Fig. 8  Relationship between wind speed of automatic weather station and visibility change for 21 fog dissipation operations from 27 Aug to 10 Sep in 2020

    图  8  2020年8月27日—9月10日21次消雾作业时段内自动气象站风速和能见度变化速度的关系

    Fig. 8  Relationship between wind speed of automatic weather station and visibility change for 21 fog dissipation operations from 27 Aug to 10 Sep in 2020

    图  9  2020年9月7日增雨试验的雨强和第1次作业前后的雨滴谱

    (带序号阴影区代表开机作业的顺序时段)

    Fig. 9  Rainfall intensity and raindrop size distribution before and after the first operations during rainfall enhancement experiments on 7 Sep 2020

    (the numbered shaded area denotes sequential operation period)

    图  9  2020年9月7日增雨试验的雨强和第1次作业前后的雨滴谱

    (带序号阴影区代表开机作业的顺序时段)

    Fig. 9  Rainfall intensity and raindrop size distribution before and after the first operations during rainfall enhancement experiments on 7 Sep 2020

    (the numbered shaded area denotes sequential operation period)

    图  10  2020年9月10—11日增雨试验的雨强

    (具有序号的阴影区代表开机作业的顺序时段)

    Fig. 10  Rainfall intensity during rainfall enhancement experiments from 10 to 11 in Sep 2020

    (the numbered shaded area denotes sequential operation period)

    图  10  2020年9月10—11日增雨试验的雨强

    (具有序号的阴影区代表开机作业的顺序时段)

    Fig. 10  Rainfall intensity during rainfall enhancement experiments from 10 to 11 in Sep 2020

    (the numbered shaded area denotes sequential operation period)

    表  1  2020年增雨试验的风速和云信息

    Table  1  Information of wind and cloud during rainfall enhancement experiments in 2020

    试验时段 开机次数 平均风速/(m·s-1) 云类型
    09-07T15:38—16:00 4 1.4 对流云
    09-10T06:54—07:20 3 3.1 层状云
    09-10T08:46—10:11 9 3.3 层状云
    09-11T11:23—12:03 3 3.0 层状云
    09-11T16:53—17:33 3 3.6 层状云
    下载: 导出CSV

    表  1  2020年增雨试验的风速和云信息

    Table  1  Information of wind and cloud during rainfall enhancement experiments in 2020

    试验时段 开机次数 平均风速/(m·s-1) 云类型
    09-07T15:38—16:00 4 1.4 对流云
    09-10T06:54—07:20 3 3.1 层状云
    09-10T08:46—10:11 9 3.3 层状云
    09-11T11:23—12:03 3 3.0 层状云
    09-11T16:53—17:33 3 3.6 层状云
    下载: 导出CSV
  • [1] 肖辉, 舒未希, 付丹红, 等.声波对气溶胶和云雾粒子聚并影响研究进展.应用气象学报, 2021, 32(3):257-271. doi:  10.11898/1001-7313.20210301

    Xiao H, Shu W X, Fu D H, et al. A review on the effect of sound waves upon the coalescence of aerosol and cloud and fog particles. J Appl Meteor Sci, 2021, 32(3): 257-271. doi:  10.11898/1001-7313.20210301
    [2] Mednikov E P, Larrick C V. Acoustic Coagulation and Precipitation of Aerosols. New York: Consultants Bureau, 1965: 1-180.
    [3] 吴学利. 悬浮细颗粒声波团聚的理论与实验研究. 长沙: 国防科学技术大学研究生院, 2014.

    Wu X L. The Theoretical and Experimental Study on Acoustic Agglomerattion of Fine Particles. Changsha: Graduate School of National University of Defense Technology, 2014.
    [4] Dianov D B, Podolskii A A, Turubarov V I. Calculation of the hydrodynamic interaction of aerosol particles in a sound field under Oseen flow conditions. Sov Phys Acoust, 1968, 13(3): 314-319.
    [5] Zhou D, Luo Z Y, Fang M X, et al. Numerical calculation of particle movement in sound wave fields and experimental verification through high-speed photography. Appl Energy, 2017, 185: 2245-2250. doi:  10.1016/j.apenergy.2016.02.006
    [6] 许焕斌. 中国的防雹实践和理论提炼. 北京: 气象出版社, 2021.

    Xu H B. Practice and Theory Hail Suppression in China. Beijing: China Meteorological Press, 2021.
    [7] Volk M, Moroz W J. Sonic agglomeration of aerosol particles. Water Air Soil Pollut, 1976, 5(3): 319-334. doi:  10.1007/BF00158347
    [8] Rajendran N, Wegrzyn J, Cheng M T, et al. Acoustic precipitation of aerosol under standing-wave condition. J Aerosol Sci, 1979, 10(3): 329-338. doi:  10.1016/0021-8502(79)90048-X
    [9] Chou K H, Lee P S, Wegrzyn J, et al. Aerosol deposition in acoustically induced turbulent flow. Atmos Environ, 1967, 1982, 16(6): 1513-1522.
    [10] Tiwary R, Reethof G. Hydrodynamic interaction of spherical aerosol particles in a high intensity acoustic field. J Sound Vib, 1986, 108(1): 33-49. doi:  10.1016/S0022-460X(86)80309-1
    [11] Hoffmann T L, Koopmann G H. Visualization of acoustic particle interaction and agglomeration: Theory evaluation. J Acoust Soc Am, 1997, 101(6): 3421-3429. doi:  10.1121/1.418352
    [12] Riera-Franco de Sarabia E, Gallego-Juárez J A, Acosta-Aparicio V M, et al. Acoustic agglomeration of submicron particles in diesel exhausts: First results of the influence of humidity at two acoustic frequencies. J Aerosol Sci, 2000, 31: 827-828. doi:  10.1016/S0021-8502(00)90837-1
    [13] Liu J Z, Zhang G X, Zhou J H, et al. Experimental study of acoustic agglomeration of coal-fired fly ash particles at low frequencies. Powder Technol, 2009, 193(1): 20-25. doi:  10.1016/j.powtec.2009.02.002
    [14] Hoffmann T L, Koopmann G H. A new technique for visualization of acoustic particle agglomeration. Rev Sci Instrum, 1994, 65(5): 1527-1536. doi:  10.1063/1.1144887
    [15] Hoffmann T L. An extended kernel for acoustic agglomeration simulation based on the acoustic wake effect. J Aerosol Sci, 1997, 28(6): 919-936. doi:  10.1016/S0021-8502(96)00489-2
    [16] González I, Hoffmann T L, Gallego-Juárez J A. Theory and calculation of sound induced particle interactions of viscous origin. Acustica, 2000, 86(5): 784-797.
    [17] González I, Elvira L, Hoffmann T L, et al. Numerical study of the hydrodynamic interaction between aerosol particles due to the acoustic wake effect. Acta Acust U Acust, 2001, 87(4): 454-460.
    [18] Zhang G X, Zhang L L, Wang J Q, et al. A new model for the acoustic wake effect in aerosol acoustic agglomeration processes. Appl Math Model, 2018, 61: 124-140. doi:  10.1016/j.apm.2018.03.027
    [19] Zhang G X, Wang J Q, Chi Z H, et al. Acoustic agglomeration with addition of sprayed liquid droplets: Three-dimensional discrete element modeling and experimental verification. Chem Eng Sci, 2018, 187: 342-353. doi:  10.1016/j.ces.2018.05.012
    [20] Zhang G X, Zhang L L, Wang J Q, et al. A new multiple-time-step three-dimensional discrete element modeling of aerosol acoustic agglomeration. Powder Technol, 2018, 323: 393-402. doi:  10.1016/j.powtec.2017.10.036
    [21] Zhang G X, Ma Z F, Shen J, et al. Experimental study on eliminating fire smokes using acoustic agglomeration technology. J Hazard Mater, 2020, 382: 121089. doi:  10.1016/j.jhazmat.2019.121089
    [22] 魏荣爵, 章肖融, 王耀俊. 气悬微粒在声场中所受的作用力对凝聚的贡献. 南京大学学报(自然科学版), 1964, 8(2): 249-265.

    Wei R J, Zhang X R, Wang Y J. Aerosol agglomeration due to forces in sound field. J Nanjing Univ(Nat Sci Ed), 1964, 8(2): 249-265.
    [23] 章肖融, 干昌明, 魏荣爵. 声波对水雾消散作用的初步实验研究. 南京大学学报(自然科学版), 1963, 7(5): 21-28.

    Zhang X R, Gan C M, Wei R J. Sonic dissipation of water fog-A preliminary experimental study. J Nanjing Univ(Nat Sci Ed), 1963, 7(5): 21-28.
    [24] 顾震潮. 云雾降水物理基础. 北京: 科学出版社, 1980.

    Gu Z C. Physical Basis of Cloud Precipitation. Beijing: Science Press, 1980.
    [25] 侯双全, 吴嘉, 席葆树. 低频声波对水雾消散作用的实验研究. 流体力学实验与测量, 2002, 16(4): 52-56. doi:  10.3969/j.issn.1672-9897.2002.04.010

    Hou S Q, Wu J, Xi B S. Experiments on acoustic dissipation of water fog at low frequency. Exp Meas Fluid Mech, 2002, 16(4): 52-56. doi:  10.3969/j.issn.1672-9897.2002.04.010
    [26] Shi Y, Wei J H, Li Q, et al. Investigation of vertical microphysical characteristics of precipitation under the action of low-frequency acoustic waves. Atmos Res, 2021, 249: 105283. doi:  10.1016/j.atmosres.2020.105283
    [27] 王庆, 李季, 樊明月, 等. 济南一次平流辐射雾的微物理结构及演变特征. 气象, 2019, 45(9): 1299-1309.

    Wang Q, Li J, Fan M Y, et al. Microphysical structure and evolution characteristics of an advection-radiation fog event in Jinan. Meteor Mon, 2019, 45(9): 1299-1309.
    [28] 王俊, 王文青, 王洪, 等. 山东北部一次夏末雹暴地面降水粒子谱特征. 应用气象学报, 2021, 32(3): 370-384. doi:  10.11898/1001-7313.20210309

    Wang J, Wang W Q, Wang H, et al. Hydrometeor particle characteristics during a late summer hailstorm in northern Shandong. J Appl Meteor Sci, 2021, 32(3): 370-384. doi:  10.11898/1001-7313.20210309
    [29] 黄泽文, 彭思越, 张浩然, 等. 福建安溪雨滴谱特征. 应用气象学报, 2022, 33(2): 205-217. doi:  10.11898/1001-7313.20220207

    Huang Z W, Peng S Y, Zhang H R, et al. Characteristics of raindrop size distribution at Anxi of Fujian. J Appl Meteor Sci, 2022, 33(2): 205-217. doi:  10.11898/1001-7313.20220207
    [30] 胡淑萍, 林文, 林长城, 等. 2014—2022年古田人工增雨随机试验物理检验. 应用气象学报, 2023, 34(6): 706-716. doi:  10.11898/1001-7313.20230606

    Hu S P, Lin W, Lin C C, et al. Physical inspection of randomized trial for the artificial rain enhancement experiment at Gutian from 2014 to 2022. J Appl Meteor Sci, 2023, 34(6): 706-716. doi:  10.11898/1001-7313.20230606
    [31] 葛黎黎, 吕国真, 赵桂香, 等. 太原地区雨滴谱季节分布特征. 应用气象学报, 2023, 34(4): 489-502. doi:  10.11898/1001-7313.20230409

    Ge L L, Lü G Z, Zhao G X, et al. Seasonal distribution characteristics of raindrop spectrum in Taiyuan. J Appl Meteor Sci, 2023, 34(4): 489-502. doi:  10.11898/1001-7313.20230409
    [32] 孙钦宏, 马洪波, 齐彦斌, 等. 2021年夏季长白山麓雨滴谱分布特征. 应用气象学报, 2023, 34(3): 336-347. doi:  10.11898/1001-7313.20230307

    Sun Q H, Ma H B, Qi Y B, et al. Distribution characteristics of raindrop spectrum at Changbai Mountain foothills in summer of 2021. J Appl Meteor Sci, 2023, 34(3): 336-347. doi:  10.11898/1001-7313.20230307
    [33] 王俊, 郑丽娜, 王洪, 等. 山东6次台风暴雨雨滴谱统计特征及区域差异. 应用气象学报, 2023, 34(4): 475-488. doi:  10.11898/1001-7313.20230408

    Wang J, Zheng L N, Wang H, et al. Statistical characteristics and regional differences of raindrop size distribution during 6 typhoon rainstorms in Shandong. J Appl Meteor Sci, 2023, 34(4): 475-488. doi:  10.11898/1001-7313.20230408
    [34] Luo L, Xiao H, Yang H L, et al. Raindrop size distribution and microphysical characteristics of a great rainstorm in 2016 in Beijing, China. Atmos Res, 2020, 239: 104895. doi:  10.1016/j.atmosres.2020.104895
    [35] 王俊, 姚展予, 侯淑梅, 等. 山东夏季两次极端雨强暴雨的滴谱特征研究. 大气科学, 2023, 47(2): 311-326.

    Wang J, Yao Z Y, Hou S M, et al. The characteristics of raindrop size distribution in two rainstorms with extreme rainfall rates in summer in Shandong Province. Chinese J Atmos Sci, 2023, 47(2): 311-326.
    [36] Ding J F, Tian W S, Xiao H, et al. Raindrop size distribution and microphysical features of the extremely severe rainstorm on 20 July 2021 in Zhengzhou, China. Atmos Res, 2023, 289: 106739.
    [37] 宋灿, 周毓荃, 吴志会. 雨滴谱垂直演变特征的微雨雷达观测研究. 应用气象学报, 2019, 30(4): 479-490. doi:  10.11898/1001-7313.20190408

    Song C, Zhou Y Q, Wu Z H. Vertical profiles of raindrop size distribution observed by micro rain radar. J Appl Meteor Sci, 2019, 30(4): 479-490. doi:  10.11898/1001-7313.20190408
    [38] 常祎, 郭学良, 唐洁, 等. 青藏高原夏季对流云微物理特征和降水形成机制. 应用气象学报, 2021, 32(6): 720-734. doi:  10.11898/1001-7313.20210607

    Chang Y, Guo X L, Tang J, et al. Microphysical characteristics and precipitation formation mechanisms of convective clouds over the Tibetan Plateau in summer. J Appl Meteor Sci, 2021, 32(6): 720-734. doi:  10.11898/1001-7313.20210607
  • 加载中
图(20) / 表(2)
计量
  • 摘要浏览量:  396
  • HTML全文浏览量:  98
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-24
  • 修回日期:  2023-12-07
  • 刊出日期:  2024-01-31

目录

    /

    返回文章
    返回