Comprehensive Evaluation of Rainfall Enhancement of Gas Cannon in Anhui Province
-
摘要: 选取2021—2023年安徽省81次燃气炮作业的双偏振天气雷达、雨量计等多源观测数据, 综合评估燃气炮作业增雨效果并分析可能机理。结果显示:在降水开始前作业个例增雨效果较好, 并伴有水平反射率因子ZH、差分反射率ZDR的增加和共极化相关系数ρhv的减少;降水开始后作业增雨效果欠佳。使用携带暖云催化剂的燃气炮作业后云体变化主要在零度层以下, 且维持时间较短;使用携带冷云催化剂的燃气炮作业后暖云区和冷云区均有明显变化, 且作业影响持续时间更长。燃气炮作业过程中雷达速度谱宽增大, 可能是作业引起气流涡旋的增加所导致。统计结果显示:增雨的显著性与作业时长呈负相关, 作业时长与ZDR增量呈负相关, 过量播撒会导致减雨;增雨的显著性与作业前影响区雨量呈负相关;增雨量与ZH、中低层风速、风切变呈正相关, 与高层风速呈负相关。Abstract: Gas cannon is a new type of equipment used for rainfall enhancement operating which comprehensively utilizes the influence of shock waves, sound waves, and catalysts to interfere with and catalyze local weather. At present, the use of gas cannons to conduct artificial weather operations in China is still in the experimental stage. Based on multi-source observations from dual-polarization weather radar, rain gauges and other equipment, the rainfall enhancement effect and the possible physical mechanism are comprehensively analyzed for 81 gas cannon operation cases in Anhui Province from 2021 to 2023. Observations of typical cases show that the effect of rainfall enhancement is better when the gas cannon is operated prior to the onset of rainfall, accompanied by an increase in the horizontal reflectivity factor ZH and the differential reflectivity ZDR, and the decrease in the co-polarization correlation coefficient ρhv. However, the effectiveness is poor when the operation is after the start of rainfall. It is observed that the cloud undergoes significant changes primarily in the sub-zero layer following the use of warm cloud catalyst, and the cloud changes rapidly but effects are short-lived. On the other hand, when a cold cloud catalyst is used, the cloud undergoes obvious changes in both the warm cloud region and the cold cloud region with a greater effecting range and longer duration of effects. This may be attributed to the impact of the cold cloud catalyst on the ice phase microphysical processes within the cloud. The increase in radar velocity spectrum width (SW) during the operation of a gas cannon may be caused by the increase in air vortex. Statistical results of hourly rainfall enhancement show that the number of cases of significant rainfall enhancement from the gas cannon is slightly higher than that of significant rainfall reduction. Among the three different types of operation timing, the rainfall enhancement effect is best for Type 2 (rainfall operation at the beginning). The significance of rainfall enhancement is negatively correlated with the duration of the operation, while the duration of the operation is negatively correlated with the increment of ZDR. Excessive sowing can lead to a reduction in rainfall. The significance of rainfall enhancement is negatively correlated with the amount of rainfall in the affected area prior to the operation. After the beginning of rainfall, the operational effectiveness of the gas cannon is poor. The rainfall enhancement is positively correlated with ZH, as well as with middle and low-level wind speed and wind shear. However, the enhancement of rainfall is negatively correlated with high-level wind speed. The high wind speed in the middle and high levels is not conducive to enhancing the rainfall through gas cannon operation. These results provide physical evidence for the effect of a gas cannon on cloud microphysical structure and rainfall.
-
图 3 燃气炮(位于图中倒三角符号位置) 作业前后典型个例观测小时降水量
(填色圆圈为台站观测的小时累积降水量,填色场为距离平方反比插值结果;风羽为700 hPa风场)
Fig. 3 Observated hourly rainfall of typical cases before and after operation of the gas cannon (the inverted triangle)
(colored circles denote the hourly rainfall at stations, the shaded denotes the interpolated hourly rainfall by inverted square of distance method, the barb denotes the wind at 700 hPa)
图 4 个例1 (作业时段为2022年6月23日11:10—11:20) 作业前后双偏振雷达参量
(垂直剖面为沿700 hPa水平风方向、过作业站点的上游50 km—下游100 km的插值剖面, 下同)
Fig. 4 Dual-polarization radar parameters before and after operation of Case 1 (the operation period is from 1110 BT to 1120 BT on 23 Jun 2022)
(the vertical profile is the interpolation profile from 50 km upstream to 100 km downstream of the operation station along the horizontal wind direction at 700 hPa,similarly hereinafter)
表 1 雷达回波和降水量的相关性
Table 1 Correlation between radar parameters and rainfall
变量 Δ2(ZH) S(ΔZH) Δ2(ZDR) S(ΔZDR) S(ΔR) 0.371*** 0.421*** 0.185 0.187 Δ2(R) 0.426*** 0.390*** 0.001 -0.017 作业时长 0.033 0.129 -0.206* -0.066 注:*、**和***分别代表相关系数对应的显著性水平为0.1、0.05和0.01。 表 2 自动雨量站统计量和风速、风切变的相关性
Table 2 Correlation between wind speed,windshear and rainfall of automatic rainfall stations
变量 S(ΔR) Δ2(R) v500/(m·s-1) 0.147 -0.203* v700/(m·s-1) 0.201* 0.045 v850/(m·s-1) 0.191* 0.034 v925/(m·s-1) 0.261** 0.024 s500_700/(m·s-1) 0.119 -0.131 s700_850/(m·s-1) 0.210* -0.010 s850_925/(m·s-1) 0.344*** 0.198* 注:*、**和***分别代表相关系数对应的显著性水平为0.1、0.05和0.01。 -
[1] 雷恒池, 洪延超, 赵震, 等.近年来云降水物理和人工影响天气研究进展.大气科学, 2008, 32(4):967-974. doi: 10.3878/j.issn.1006-9895.2008.04.21Lei H C, Hong Y C, Zhao Z, et al. Advances in cloud and precipitation physics and weather modification in recent years. Chinese J Atmos Sci, 2008, 32(4): 967-974. doi: 10.3878/j.issn.1006-9895.2008.04.21 [2] Guo X L, Zheng G G. Advances in weather modification from 1997 to 2007 in China. Adv Atmos Sci, 2009, 26(2): 240-252. doi: 10.1007/s00376-009-0240-8 [3] 许焕斌. 中国的防雹实践和理论提炼. 北京: 气象出版社, 2021.Xu H B. Practice and Theory Hail Suppression in China. Beijing: China Meteorological Press, 2021. [4] 张小培, 樊志超. 基于SCA-LEC模型的人工影响天气地面作业安全风险评估方法. 干旱气象, 2020, 38(6): 1037-1042.Zhang X P, Fan Z C. Research on safety risk assessment method of ground weather modification operation based on SCA-LEC model. J Arid Meteor, 2020, 38(6): 1037-1042. [5] 吴宇鹏. 气象燃气炮工作机理研究. 南京: 南京理工大学, 2018.Wu Y P. Research on the Working Mechanism of Meteorological Gas. Nanjing: Nanjing University of Science and Technology, 2018. [6] 郭学良, 方春刚, 卢广献, 等. 2008—2018年我国人工影响天气技术及应用进展. 应用气象学报, 2019, 30(6): 641-650. doi: 10.11898/1001-7313.20190601Guo X L, Fang C G, Lu G X, et al. Progresses of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. doi: 10.11898/1001-7313.20190601 [7] Wu B, Wang D D, Li Y F, et al. A comprehensive observational analysis for the effects of gas cannons on clouds and precipitation. J Trop Meteor, 2022, 28(2): 237-251. doi: 10.46267/j.1006-8775.2022.018 [8] 肖辉, 舒未希, 付丹红, 等. 声波对气溶胶和云雾粒子聚并影响研究进展. 应用气象学报, 2021, 32(3): 257-271. doi: 10.11898/1001-7313.20210301Xiao H, Shu W X, Fu D H, et al. A review on the effect of sound waves upon the coalescence of aerosol and cloud and fog particles. J Appl Meteor Sci, 2021, 32(3): 257-271. doi: 10.11898/1001-7313.20210301 [9] 许焕斌. 人工影响天气动力学研究. 北京: 气象出版社, 2014.Xu H B. Studies of Dynamics in Weather Modification. Beijing: China Meteorological Press, 2014. [10] 毛节泰, 郑国光. 对人工影响天气若干问题的探讨. 应用气象学报, 2006, 17(5): 643-646. doi: 10.3969/j.issn.1001-7313.2006.05.015Mao J T, Zheng G G. Discussions on some weather modification issues. J Appl Meteor Sci, 2006, 17(5): 643-646. doi: 10.3969/j.issn.1001-7313.2006.05.015 [11] 李大山, 章澄昌, 许焕斌, 等. 人工影响天气现状与展望. 北京: 气象出版社, 2002.Li D S, Zhang C C, Xu H B, et al. Current Situation and Prospects of Artificial Weather Modification: Beijing: China Meteorological Press, 2002. [12] 王婉, 姚展予. 2006年北京市人工增雨作业效果统计分析. 高原气象, 2009, 28(1): 195-202.Wang W, Yao Z Y. Statistical estimation of artificial precipitation enhancement effectiveness in Beijing in 2006. Plateau Meteor, 2009, 28(1): 195-202. [13] 姚展予. 中国气象科学研究院人工影响天气研究进展回顾. 应用气象学报, 2006, 17(6): 786-795. doi: 10.3969/j.issn.1001-7313.2006.06.016Yao Z Y. Review of weather modification research in Chinese Academy of Meteorological Sciences. J Appl Meteor Sci, 2006, 17(6): 786-795. doi: 10.3969/j.issn.1001-7313.2006.06.016 [14] 孙海燕, 肖辉, 王振会, 等. 对流性云火箭增雨试验效果的数值模式评估. 南京气象学院学报, 2005, 28(2): 172-179. doi: 10.3969/j.issn.1674-7097.2005.02.004Sun H Y, Xiao H, Wang Z H, et al. Modeling evaluations on effects for convectional cloud seeding with AgI-loading rocket to enhance precipitation. J Nanjing Inst Meteor, 2005, 28(2): 172-179. doi: 10.3969/j.issn.1674-7097.2005.02.004 [15] 肖辉, 姚展予. 人工影响天气效果检验技术//郭学良. 大气物理与人工影响天气. 北京: 气象出版社, 2010: 602-626.Xiao H, Yao Z Y. Test Technology of Weather Modification Effect//Guo Xueliang. Atmospheric Physics and Weather Modification. Beijing: China Meteorological Press, 2010: 602-626. [16] 房彬, 肖辉, 王振会, 等. 聚类分析在人工增雨效果检验中的应用. 南京气象学院学报, 2005, 28(6): 739-745. doi: 10.3969/j.issn.1674-7097.2005.06.003Fang B, Xiao H, Wang Z H, et al. Application of cluster analysis to the statistical assessment of the effect of artifical rain enhancement. J Nanjing Institute Meteor, 2005, 28(6): 739-745. doi: 10.3969/j.issn.1674-7097.2005.06.003 [17] 贾烁, 姚展予. 江淮对流云人工增雨作业效果检验个例分析. 气象, 2016, 42(2): 238-245.Jia S, Yao Z Y. Case study on the convective clouds seeding effects in Yangtze-Huaihe Region. Meteor Mon, 2016, 42(2): 238-245. [18] 胡淑萍, 林文, 林长城, 等. 2014—2022年古田人工增雨随机试验物理检验. 应用气象学报, 2023, 34(6): 706-716. doi: 10.11898/1001-7313.20230606Hu S P, Lin W, Lin C C, et al. Physical inspection of randomized trial for the artificial rain enhancement experiment at Gutian from 2014 to 2022. J Appl Meteor Sci, 2023, 34(6): 706-716. doi: 10.11898/1001-7313.20230606 [19] Flossmann A I, Manton M, Abshaev A, et al. Review of advances in precipitation enhancement research. Bull Am Meteor Soc, 2019, 100(8): 1465-1480. doi: 10.1175/BAMS-D-18-0160.1 [20] 陈冰, 张深寿, 冯晋勤, 等. 新一代天气雷达在人工增雨中应用的初步研究. 应用气象学报, 2003, 14(增刊Ⅰ): 187-192.Chen B, Zhang S S, Feng J Q, et al. Primary study of application of new Doppler weather radar to artificial precipitation. J Appl Meteor Sci, 2003, 14(Suppl Ⅰ): 187-192. [21] 汪玲, 刘黎平. 人工增雨催化区跟踪方法与效果评估指标研究. 气象, 2015, 41(1): 84-91.Wang L, Liu L P. Algorithm and assessment of tracking seeding coverage in artificial precipitation enhancement. Meteor Mon, 2015, 41(1): 84-91. [22] 李哲, 吴翀, 刘黎平, 等. 双偏振相控阵雷达误差评估与相态识别方法. 应用气象学报, 2022, 33(1): 16-28. doi: 10.11898/1001-7313.20220102Li Z, Wu C, Liu L P, et al. Error evaluation and hydrometeor classification method of dual polarization phased array radar. J Appl Meteor Sci, 2022, 33(1): 16-28. doi: 10.11898/1001-7313.20220102 [23] 冯亮, 肖辉, 孙跃. X波段双偏振雷达水凝物粒子相态识别应用研究. 气候与环境研究, 2018, 23(3): 366-386.Feng L, Xiao H, Sun Y. A study on hydrometeor classification and application based on X-band dual-polarization radar measurements. Climatic Environ Res, 2018, 23(3): 366-386. [24] 孙跃, 任刚, 孙鸿娉, 等. 一次高炮防雹的相控阵双偏振雷达观测特征. 应用气象学报, 2023, 34(1): 65-77. doi: 10.11898/1001-7313.20230106Sun Y, Ren G, Sun H P, et al. Features of phased-array dual polarization radar observation during an anti-aircraft gun hail suppression operation. J Appl Meteor Sci, 2023, 34(1): 65-77. doi: 10.11898/1001-7313.20230106 [25] Sun Y, Xiao H, Tian Y, et al. A nonlinear grid transformation method for extrapolating and predicting the convective echo of weather radar. Remote Sens, 2023, 15(5). DOI: 10.3390/rs15051406. [26] Sun Y, Xiao H, Yang H L, et al. A uniformity index for precipitation particle axis ratios derived from radar polarimetric parameters for the identification and analysis of raindrop areas. Remote Sens, 2023, 15(2). DOI: 10.3390/rs15020534. [27] 刘黎平, 胡志群, 吴翀. 双线偏振雷达和相控阵天气雷达技术的发展和应用. 气象科技进展, 2016, 6(3): 28-33.Liu L P, Hu Z Q, Wu C. Development and application of dual linear polarization radar and phased-array radar. Adv Meteor Sci Tech, 2016, 6(3): 28-33. [28] 倪思聪. 南京青奥会开闭幕式人工减雨作业效果的回波分析. 南京: 南京信息工程大学, 2017.Ni S C. Echo Analysis of Dual Polarization Radar for Artificial Precipitation Reduction in Nanjing Youth Olympic Games Opening and Closing Ceremonies. Nanjing: Nanjing University of Information Science & Technology, 2017. [29] 马舒庆, 陈洪滨, 王国荣, 等. 阵列天气雷达设计与初步实现. 应用气象学报, 2019, 30(1): 1-12. doi: 10.11898/1001-7313.20190101Ma S Q, Chen H B, Wang G R, et al. Design and initial implementation of array weather radar. J Appl Meteor Sci, 2019, 30(1): 1-12. doi: 10.11898/1001-7313.20190101 [30] Wu C, Liu L P. Comparison of the observation capability of an X-band phased-array radar with an X-band Doppler radar and S-band operational radar. Adv Atmos Sci, 2014, 31(4): 814-824. doi: 10.1007/s00376-013-3072-5 [31] 吴翀, 刘黎平, 汪旭东, 等. 相控阵雷达扫描方式对回波强度测量的影响. 应用气象学报, 2014, 25(4): 406-414. http://qikan.camscma.cn/article/id/20140403Wu C, Liu L P, Wang X D, et al. The measurement influence of reflectivity factor caused by scanning mode from phased array radar. J Appl Meteor Sci, 2014, 25(4): 406-414. http://qikan.camscma.cn/article/id/20140403 [32] 董亚宁, 刘福新, 孙鸿娉, 等. 一次高炮防雹动力效应的相控阵雷达观测分析. 气象, 2023, 49(8): 995-1004.Dong Y N, Liu F X, Sun H P, et al. A study on dynamic effect of hail suppression by anti-hail gun with phased array radar. Meteor Mon, 2023, 49(8): 995-1004. [33] 孙跃, 肖辉, 周筠珺, 等. 基于VB+MO的一种在飞机增雨效果统计评估中不规则影响区计算的适用方法. 气象, 2015, 41(1): 76-83.Sun Y, Xiao H, Zhou Y J, et al. Method of calculating the irregular influence area in statistical assessment on the effect of aircraft rain enhancement based on VB and MO techniques. Meteor Mon, 2015, 41(1): 76-83. [34] 刁秀广, 李芳, 万夫敬. 两次强冰雹超级单体风暴双偏振特征对比. 应用气象学报, 2022, 33(4): 414-428. doi: 10.11898/1001-7313.20220403Diao X G, Li F, Wan F J. Comparative analysis on dual polarization features of two severe hail supercells. J Appl Meteor Sci, 2022, 33(4): 414-428. doi: 10.11898/1001-7313.20220403 [35] 张曦, 黄兴友, 刘新安, 等. 北京大兴国际机场相控阵雷达强对流天气监测. 应用气象学报, 2022, 33(2): 192-204. doi: 10.11898/1001-7313.20220206Zhang X, Huang X Y, Liu X A, et al. The hazardous convective storm monitoring of phased-array antenna radar at Daxing International Airport of Beijing. J Appl Meteor Sci, 2022, 33(2): 192-204. doi: 10.11898/1001-7313.20220206