留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于尺度分析的CMA-GFS全球能量评估

葛恩博 赵滨

葛恩博, 赵滨. 基于尺度分析的CMA-GFS全球能量评估. 应用气象学报, 2024, 35(2): 156-167. DOI:  10.11898/1001-7313.20240203..
引用本文: 葛恩博, 赵滨. 基于尺度分析的CMA-GFS全球能量评估. 应用气象学报, 2024, 35(2): 156-167. DOI:  10.11898/1001-7313.20240203.
Ge Enbo, Zhao Bin. Evaluation of global energy cycle for CMA-GFS based on scale analysis. J Appl Meteor Sci, 2024, 35(2): 156-167. DOI:  10.11898/1001-7313.20240203.
Citation: Ge Enbo, Zhao Bin. Evaluation of global energy cycle for CMA-GFS based on scale analysis. J Appl Meteor Sci, 2024, 35(2): 156-167. DOI:  10.11898/1001-7313.20240203.

基于尺度分析的CMA-GFS全球能量评估

DOI: 10.11898/1001-7313.20240203
资助项目: 

国家自然科学基金气象联合基金项目 U2242213

西藏自治区科技计划项目 XZ202201ZY0008G

详细信息
    通信作者:

    赵滨,邮箱: zhaob@cma.gov.cn

Evaluation of Global Energy Cycle for CMA-GFS Based on Scale Analysis

  • 摘要: 全球模式能量循环和能量转换规律可准确反映模式动力和物理过程相互作用的物理机制, 是诊断大气环流特征的重要方法。基于混合时空域能量循环框架, 采用尺度分析方法, 利用2022年中国气象局全球数值预报系统(CMA Global Forecast System, CMA-GFS)全球预报产品及欧洲中期天气预报中心第5代再分析资料(ECMWF reanalysis version 5, ERA5), 考察CMA-GFS不同尺度下的能量蓄能及转换特征, 以此诊断模式的误差来源。结果表明:CMA-GFS可有效预报大气能量循环基本特征, 但其对斜压性的高估导致平均环流有效位能偏强, 且具有随预报时效逐渐增长的趋势。定常和瞬变涡动能量分别受行星尺度和天气及以下尺度分量主导。涡动有效位能误差由模式斜压性决定, 其中CMA-GFS的定常涡动有效位能偏高而瞬变涡动有效位能偏低。定常和瞬变涡动动能均存在系统性低估, 负误差主要集中在副热带急流和极夜急流中心附近, 偏强的正压输送使更多能量向平均环流转换, 涡动能量偏弱。CMA-GFS的4种涡动能量在冬季预报偏低, 而在夏季偏高或略偏低, 严重削弱了季节变化影响。
  • 图  1  2022年7月ERA5和CMA-GFS混合时空域能量循环全球积分值随预报时效变化

    Fig. 1  Variation of globally integrated values of mixed space-time domain energy cycle for ERA5 and CMA-GFS with lead time in Jul 2022

    图  2  2022年7月CMA-GFS纬向平均温度误差分布

    Fig. 2  Distribution of zonal mean temperature error of CMA-GFS in Jul 2022

    图  3  2022年7月ERA5和CMA-GFS不同尺度定常涡动有效位能的纬度-气压分布

    Fig. 3  Latitude-pressure distribution of stationary eddy component of available potential energy of different scale components for ERA5 and CMA-GFS in Jul 2022

    图  4  2022年7月ERA5和CMA-GFS中静力稳定度、定常温度涡动和瞬变温度涡动的全球积分值随预报时效变化

    Fig. 4  Variation of globally integrated values of static stability, stationary temperature eddies and transient temperature eddies for ERA5 and CMA-GFS in Jul 2022

    图  5  2022年7月ERA5和CMA-GFS不同尺度瞬变涡动有效位能的纬度-气压分布

    Fig. 5  Latitude-pressure distribution of transient eddy component of available potential energy of different scale components for ERA5 and CMA-GFS in Jul 2022

    图  6  2022年7月ERA5和CMA-GFS不同尺度定常涡动动能的纬度-气压分布

    Fig. 6  Latitude-pressure distribution of the stationary eddy component of kinetic energy of different scale components for ERA5 and CMA-GFS in Jul 2022

    图  7  2022年7月ERA5和CMA-GFS不同尺度分量瞬变涡动动能的纬度-气压分布

    Fig. 7  Latitude-pressure distribution of transient eddy component of kinetic energy of different scale components for ERA5 and CMA-GFS in Jul 2022

    图  8  2022年ERA5和CMA-GFS不同能量逐月变化

    Fig. 8  Energy variation for ERA5 and CMA-GFS in 2022

  • [1] 张萌, 于海鹏, 黄建平, 等.GRAPES_GFS 2.0模式非系统误差评估.应用气象学报, 2019, 30(3):332-344. doi:  10.11898/1001-7313.20190307

    Zhang M, Yu H P, Huang J P, et al. Assessment on unsystematic errors of GRAPES_GFS 2.0. J Appl Meteor Sci, 2019, 30(3): 332-344. doi:  10.11898/1001-7313.20190307
    [2] 张萌, 于海鹏, 黄建平, 等. GRAPES_GFS 2.0模式系统误差评估. 应用气象学报, 2018, 29(5): 571-583. doi:  10.11898/1001-7313.20180506

    Zhang M, Yu H P, Huang J P, et al. Assessment on systematic errors of GRAPES_GFS 2.0. J Appl Meteor Sci, 2018, 29(5): 571-583. doi:  10.11898/1001-7313.20180506
    [3] 李喆, 陈炯, 马占山, 等. CMA-GFS云预报的偏差分布特征. 应用气象学报, 2022, 33(5): 527-540. doi:  10.11898/1001-7313.20220502

    Li Z, Chen J, Ma Z, et al. Deviation distribution features of CMA-GFS cloud prediction. J Appl Meteor Sci, 2022, 33(5): 527-540. doi:  10.11898/1001-7313.20220502
    [4] 邢楠, 仲跻芹, 雷蕾, 等. 基于CMA-BJ的北京地区短时强降水预报试验. 应用气象学报, 2023, 34(6): 641-654. doi:  10.11898/1001-7313.20230601

    Xing N, Zhong J Q, Lei L, et al. A probabilistic forecast experiment of short-duration heavy rainfall in Beijing based on CMA-BJ. J Appl Meteor Sci, 2023, 34(6): 641-654. doi:  10.11898/1001-7313.20230601
    [5] 栗晗, 王新敏, 吕林宜, 等. 黄淮地区副高边缘型降水数值预报精细化检验. 应用气象学报, 2023, 34(4): 413-425. doi:  10.11898/1001-7313.20230403

    Li H, Wang X M, Lü L Y, et al. Refined verification of numerical forecast of subtropical high edge precipitation in Huanghuai Region. J Appl Meteor Sci, 2023, 34(4): 413-425. doi:  10.11898/1001-7313.20230403
    [6] Margules M. Zur sturmtheorie. Meteor Z, 1906, 23(11): 481-497.
    [7] Lorenz E N. Available potential energy and the maintenance of the general circulation. Tellus, 1955, 7(2): 157-167. doi:  10.3402/tellusa.v7i2.8796
    [8] Oort A H. On estimates of the atmospheric energy cycle. Mon Wea Rev, 1964, 92(11): 483-493. doi:  10.1175/1520-0493(1964)092<0483:OEOTAE>2.3.CO;2
    [9] Krueger A F, Winston J S, Haines D A. Computations of atmospheric energy and its transformation for the Northern Hemisphere for a recent five-year period. Mon Wea Rev, 1965, 93(4): 227-238. doi:  10.1175/1520-0493(1965)093<0227:COAEAI>2.3.CO;2
    [10] Marques C A F, Rocha A, Corte-Real J. Comparative energetics of ERA-40, JRA-25 and NCEP-R2 reanalysis, in the wave number domain. Dyn Atmos Oceans, 2010, 50(3): 375-399. doi:  10.1016/j.dynatmoce.2010.03.003
    [11] Li L M, Jiang X, Chahine M T, et al. The mechanical energies of the global atmosphere in El Niño and La Niña years. J Atmos Sci, 2011, 68(12): 3072-3078. doi:  10.1175/JAS-D-11-072.1
    [12] Pan Y F, Li L M, Jiang X, et al. Earth's changing global atmospheric energy cycle in response to climate change. Nat Commun, 2017, 8. DOI: 10.1038/ncomms14367.
    [13] Ulbrich U, Speth P. The global energy cycle of stationary and transient atmospheric waves: Results from ECMWF analyses. Meteor Atmos Phys, 1991, 45(3): 125-138.
    [14] 耿全震. 北半球对流层上层遥相关型的涡度源、能量源与能量传播. 应用气象学报, 1996, 7(4): 414-420. http://qikan.camscma.cn/article/id/19960456

    Geng Q Z. Vorticity source, energy source and energy propagation of the teleconnection patterns in the upper troposphere of the Northern Hemisphere. J Appl Meteor Sci, 1996, 7(4): 414-420. http://qikan.camscma.cn/article/id/19960456
    [15] 魏凤英. 气候统计诊断与预测方法研究进展——纪念中国气象科学研究院成立50周年. 应用气象学报, 2006, 17(6): 736-742. doi:  10.3969/j.issn.1001-7313.2006.06.011

    Wei F Y. Progresses on climatological statistical diagnosis and prediction methods-In commenoration of the 50 anniversaries of CAMS estatblishment. J Appl Meteor Sci, 2006, 17(6): 736-742. doi:  10.3969/j.issn.1001-7313.2006.06.011
    [16] Li L M, Ingersoll A P, Jiang X, et al. Lorenz energy cycle of the global atmosphere based on reanalysis datasets. Geophys Res Lett, 2007, 34(16). DOI: 10.1029/2007GL029985.
    [17] Zhao B, Zhang B, Shi C X, et al. Comparison of the global energy cycle between Chinese reanalysis interim and ECMWF reanalysis. J Meteor Res, 2019, 33(3): 563-575. doi:  10.1007/s13351-019-8129-7
    [18] 孔荣, 王建捷, 梁丰, 等. 尺度分解技术在定量降水临近预报检验中的应用. 应用气象学报, 2010, 21(5): 535-544. doi:  10.3969/j.issn.1001-7313.2010.05.003

    Kong R, Wang J J, Liang F, et al. Applying scale decomposition method to verification of quantitative precipitation nowcasts. J Appl Meteor Sci, 2010, 21(5): 535-544. doi:  10.3969/j.issn.1001-7313.2010.05.003
    [19] Saltsman B. Equations governing the energetics of the larger scales of atmospheric turbulence in the domain of wave number. J Meteor, 1957, 14(6): 513-523. doi:  10.1175/1520-0469(1957)014<0513:EGTEOT>2.0.CO;2
    [20] Saltzman B, Teweles S. Further statistics on the exchange of kinetic energy between harmonic components of the atmospheric flow. Tellus, 1964, 16(4): 432-435. doi:  10.1111/j.2153-3490.1964.tb00180.x
    [21] Shen X S, Wang J J, Li Z C, et al. Research and operational development of numerical weather prediction in China. J Meteor Res, 2020, 34(4): 675-698. doi:  10.1007/s13351-020-9847-6
    [22] 张进, 孙健, 沈学顺, 等. CMA-GFS V4.0模式关键技术研发和业务化. 应用气象学报, 2023, 34(5): 513-526. doi:  10.11898/1001-7313.20230501

    Zhang J, Sun J, Shen X S, et al. Key model technologies of CMA-GFS V4.0 and application to operational forecast. J Appl Meteor Sci, 2023, 34(5): 513-526. doi:  10.11898/1001-7313.20230501
    [23] 霍振华, 李晓莉, 陈静, 等. 基于背景场奇异向量的CMA全球集合预报试验. 应用气象学报, 2022, 33(6): 655-667. doi:  10.11898/1001-7313.20220602

    Huo Z H, Li X L, Chen J, et al. CMA global ensemble prediction using singular vectors from background field. J Appl Meteor Sci, 2022, 33(6): 655-667. doi:  10.11898/1001-7313.20220602
    [24] Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Q J R Meteor Soc, 2020, 146(730): 1999-2049.
    [25] Li Z H, Peng J, Zhang L F, et al. Exploring the differences in kinetic energy spectra between the NCEP FNL and ERA5 datasets. J Atmos Sci, 2023, 81(2): 363-380.
  • 加载中
图(8)
计量
  • 摘要浏览量:  104
  • HTML全文浏览量:  22
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-08
  • 修回日期:  2024-02-05
  • 刊出日期:  2024-03-31

目录

    /

    返回文章
    返回