留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

“23·8”黑龙江极端强降水过程特征与成因

齐铎 王承伟 白雪梅 公衍铎 孙琪 栾晨 唐凯 赵玉洁

齐铎, 王承伟, 白雪梅, 等. “23·8”黑龙江极端强降水过程特征与成因. 应用气象学报, 2024, 35(3): 257-271. DOI:  10.11898/1001-7313.20240301..
引用本文: 齐铎, 王承伟, 白雪梅, 等. “23·8”黑龙江极端强降水过程特征与成因. 应用气象学报, 2024, 35(3): 257-271. DOI:  10.11898/1001-7313.20240301.
Qi Duo, Wang Chengwei, Bai Xuemei, et al. Characteristics and causes of extreme heavy rainfall in Heilongjiang Province during August 2023. J Appl Meteor Sci, 2024, 35(3): 257-271. DOI:  10.11898/1001-7313.20240301.
Citation: Qi Duo, Wang Chengwei, Bai Xuemei, et al. Characteristics and causes of extreme heavy rainfall in Heilongjiang Province during August 2023. J Appl Meteor Sci, 2024, 35(3): 257-271. DOI:  10.11898/1001-7313.20240301.

“23·8”黑龙江极端强降水过程特征与成因

DOI: 10.11898/1001-7313.20240301
资助项目: 

中国气象局创新发展专项 CXFZ2023011

黑龙江省自然科学基金项目 LH2022D021

黑龙江省科技厅省院合作项目 YS2018Z01

中国气象局2024年复盘总结专项 FPZJ2024-036

详细信息
    通信作者:

    王承伟, 邮箱:byuan3123@sina.com

Characteristics and Causes of Extreme Heavy Rainfall in Heilongjiang Province During August 2023

  • 摘要: 利用多源观测资料及ERA5(ECMWF reanalysis version 5)再分析资料,从气候统计、天气分析及物理量诊断等角度,分析2023年8月2—4日黑龙江省东南部一次极端强降水过程。高空持续辐散、副热带高压和东北北部冷涡稳定少动、西南低空急流持续水汽输送等有利条件是此次强降水过程持续时间较长的主要原因。该过程可分为两个阶段:第1阶段,经向水汽净收入层和大气饱和层深厚,大气层结为弱对流不稳定;中层受西北气流控制,低层西南急流发展、伴随弱低涡东移,形成水平风速辐合及系统性上升运动,产生大范围持续性降水;该阶段以层积混合云为主,降水效率高,个别时段伴有列车效应,造成极端小时降水量及较大累积降水量。第2阶段,经向水汽净收入集中在对流层低层,且中心强度较大,对流层低层暖湿、饱和,中高层干冷,大气具有较强对流不稳定;在中层槽和低层暖式切变的系统性抬升以及地形辐合抬升的共同作用下,局地有积云发展,引发短时强降水,降水强度分布不均。
  • 图  1  2023年8月2日02:00—4日20:00区域内气象站累积降水量分布 (单位:mm, 黑色虚线框为降水量大值区)

    Fig. 1  Accumulated precipitation of regional rain gauge stations from 0200 BT 2 Aug to 2000 BT 4 Aug in 2023 (unit:mm, the black dashed rectangular denotes the big-value area of precipitation)

    图  2  2023年8月2日02:00—4日20:00降水量大值区内(图 1黑色虚线框所示范围气象站) 的区域平均小时降水量及强降水占比的时间变化

    Fig. 2  Hourly average precipitation and heavy rainfall ratio in the big-value area (rain gauge stations in the black dashed rectangular in Fig. 1) from 0200 BT 2 Aug to 2000 BT 4 Aug in 2023

    图  3  2023年8月2—4日500 hPa位势高度场(蓝色等值线,加粗线条为5880 gpm等值线,等值线间隔为40 gpm)、300 hPa风场(风向杆不小于20 m·s-1) 及散度场(填色)(黑色方框为强降水区,下同)

    Fig. 3  500 hPa geopotential height (the blue contour, the bold line is 5880 gpm, the interval is 40 gpm), 300 hPa wind (the red barb), 300 hPa divergence (the shaded) from 2 Aug to 4 Aug in 2023 (the black rectangular denotes the big-value area of precipitation, similarly hereinafter)

    图  4  2023年8月2—4日850 hPa位势高度场(黑等值线,加粗线条为1500 gpm等值线,等值线间隔为20 gpm)、风场(蓝色、青色矢量分别代表不小于12 m·s-1和小于12 m·s-1的风矢量) 和比湿场(红色等值线,单位:g·kg-1)

    Fig. 4  850 hPa geopotential height (the black contour, the bold line is 1500 gpm, the interval is 20 gpm), wind (blue and cyan vectors denote wind speeds no less than 12 m·s-1 and less than 12 m·s-1, respectively), specific humidity (the red isoline, unit:g·kg-1) from 2 Aug to 4 Aug in 2023

    图  5  2023年8月2—4日降水大值区的经向、纬向水汽净流入(填色) 垂直剖面(灰色代表地形高度)

    Fig. 5  Vertical cross-sections of water vapor (the shaded) meridional and zonal budget over the big-value area of precipitation (the grey denotes terrain) from 2 Aug to 4 Aug in 2023

    图  6  2023年8月2—4日沿43.5°~45.5°N平均的经度-高度垂直剖面(填色代表假相当位温,矢量为纬向与垂直(扩大20倍) 的合成风,蓝色等值线为垂直速度(起始等值线为-0.3 Pa·s-1,等值线间隔为-0.3 Pa·s-1),灰色代表地形以下的部分)

    Fig. 6  Longitude-height cross section average between 43.5°-45.5°N from 2 Aug to 4 Aug in 2023 (the shaded denotes pseudo-equivalent potential temperature, the vector denotes the composite wind field from zonal wind and vertical wind(to expand 20 times), the blue dashed isoline denotes vertical velocity (starting from -0.3 Pa·s-1 with interval of -0.3 Pa·s-1), the grey denotes terrain)

    图  7  2023年8月2—4日44.5°~45.5°N、126°~128°E区域平均假相当位温(填色)、垂直速度(等值线,单位:Pa·s-1)、0℃层(绿色虚线) 高度-时间分布(a)以及区域平均小时降水量、有降水气象站数的时间变化(b)

    Fig. 7  Height-time distribution of averaged pseudo-equivalent potential temperature (the shaded), vertical velocity (the isoline, unit:Pa·s-1), 0℃ level (the green dash line) (a) and time series of mean intensity, number of rainfall stations(b) in 44.5°-45.5°N, 126°-128°E from 2 Aug to 4 Aug in 2023

    图  8  2023年8月2—3日FY-4A气象卫星TBB图像(黑点位置自左至右分别为长发站、临河站、龙凤山站、珍珠山乡站)

    Fig. 8  FY-4A TBB images from 2 Aug to 3 Aug in 2023 (black dots from left to right denote stations of Changfa, Linhe, Longfengshan and Zhenzhushan)

    图  9  第2阶段初期强降水区地面位温的水平扰动场(彩色圆点,单位:K) 及风场(矢量,单位:m·s-1) 分布(填色代表地形高度,红线代表地面辐合线,蓝色实线圈为大于35 dBZ强回波)

    Fig. 9  Distributions of surface disturbed potential temperature (the colored dot, unit:K) and wind (the vector, unit:m·s-1) in heavy rainfall area at the beginning of stage-Ⅱ (the shaded denotes terrain, the red line and the blue circle denote convergence line and strong echo areas greater than 35 dBZ, respectively)

    表  1  1961—2023年降水量大值区内县气象站降水历史排名

    Table  1  Historical ranking of county observational stations in the big-value area of precipitation in 1961-2023

    站名 排序Ⅰ 排序Ⅱ 排序Ⅲ 2023年8月2—4日累积降水量/mm 过程降水量占8月平均降水量比例/%
    哈尔滨 11 1 22 80.7 71.2
    双城 7 1 5 128.9 118.4
    阿城 4 1 1 143.2 124.6
    宾县 72 3 27 81.8 67.0
    木兰 6 20.6 15.9
    通河 11 12.5 9.7
    延寿 6 49.2 37.4
    尚志 2 1 2 154.7 107.7
    扶余 66 1 13 106.0 95.8
    榆树 1 23 84.7 70.6
    舒兰 60 1 5 127.3 89.2
    五常 2 1 1 270.7 202.5
    牡丹江 6 1 5 112.8 95.3
    宁安 1 1 1 159.6 137.5
    吉林城郊 6 36.8 27.0
    蛟河 9 38.5 26.2
    下载: 导出CSV
  • [1] Zhang Y,Xu Y L,Dong W J,et al.A future climate scenario of regional changes in extreme climate events over China using the PRECIS climate model.Geophys Res Lett,2006, 33(24).DOI: 10.1029/2006GL027229.
    [2] Lenderink G, van Meijgaard E. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nature Geosci, 2008, 1(8): 511-514. doi:  10.1038/ngeo262
    [3] 陈思, 高建芸, 黄丽娜, 等. 华南前汛期持续性暴雨年代际变化特征及成因. 应用气象学报, 2017, 28(1): 86-97. doi:  10.11898/1001-7313.20170108

    Chen S, Gao J Y, Huang L N, et al. Decadal variation characteristics of South China pre-flood season persistent rainstorm and its mechanism. J Appl Meteor Sci, 2017, 28(1): 86-97. doi:  10.11898/1001-7313.20170108
    [4] 周玉淑, 刘璐, 朱科锋, 等. 北京"7.21" 特大暴雨过程中尺度系统的模拟及演变特征分析. 大气科学, 2014, 38(5): 885-896. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201405006.htm

    Zhou Y S, Liu L, Zhu K F, et al. Simulation and evolution characteristics of mesoscale systems occurring in Beijing on 21 July 2012. Chinese J Atmos Sci, 2014, 38(5): 885-896. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201405006.htm
    [5] 史文茹, 李昕, 曾明剑, 等. "7·20" 郑州特大暴雨的多模式对比及高分辨率区域模式预报分析. 大气科学学报, 2021, 44(5): 688-702.

    Shi W R, Li X, Zeng M J, et al. Multi-model comparison and high-resolution regional model forecast analysis for the "7·20" Zhengzhou severe heavy rain. Trans Atmos Sci, 2021, 44(5): 688-702.
    [6] 伍志方, 蔡景就, 林良勋, 等. 2017年广州"5·7" 暖区特大暴雨的中尺度系统和可预报性. 气象, 2018, 44(4): 485-499. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201804002.htm

    Wu Z F, Cai J J, Lin L X, et al. Analysis of mesoscale systems and predictability of the torrential rain process in Guangzhou on 7 May 2017. Meteor Mon, 2018, 44(4): 485-499. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201804002.htm
    [7] 蔡志颖, 郑艳, 段晶晶, 等. 台风"烟花" 影响浙江期间GPM卫星降水产品的评估及订正. 暴雨灾害, 2023, 42(6): 704-715. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX202306008.htm

    Cai Z Y, Zheng Y, Duan J J, et al. Evaluation and correction of GPM satellite precipitation products during Typhoon "In-Fa" affecting Zhejiang. Torrential Rain Disasters, 2023, 42(6): 704-715. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX202306008.htm
    [8] 宝兴华, 夏茹娣, 罗亚丽, 等. "21·7" 河南特大暴雨气象和水文雨量观测对比. 应用气象学报, 2022, 33(6): 668-681. doi:  10.11898/1001-7313.20220603

    Bao X H, Xia R D, Luo Y L, et al. Comparative analysis on meteorological and hydrological rain gauge observations of the extreme heavy rainfall event in Henan Province during July 2021. J Appl Meteor Sci, 2022, 33(6): 668-681. doi:  10.11898/1001-7313.20220603
    [9] 张恩红, 曹云昌, 王晓英, 等. 利用地基GPS数据分析北京"7·21" 暴雨水汽特征. 气象科技, 2015, 43(6): 1157-1163. doi:  10.3969/j.issn.1671-6345.2015.06.023

    Zhang E H, Cao Y C, Wang X Y, et al. Characteristics of water vapor in a heavy rainstorm based on ground-based GPS measurements in Beijing. Meteor Sci Technol, 2015, 43(6): 1157-1163. doi:  10.3969/j.issn.1671-6345.2015.06.023
    [10] 赵洋洋, 张庆红, 杜宇, 等. 北京"7.21" 特大暴雨环流形势极端性客观分析. 气象学报, 2013, 71(5): 817-824. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201305002.htm

    Zhao Y Y, Zhang Q H, Du Y, et al. Objective analysis of the extreme of circulation patterns during the 21 July 2012 torrential rain event in Beijing. Acta Meteor Sinica, 2013, 71(5): 817-824. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201305002.htm
    [11] 徐珺, 李如梦, 张庆红, 等. 从大尺度环流解读河南"21·7" 特大暴雨事件的极端性. 中国科学(地球科学), 2022, 52(10): 1873-1886. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202210002.htm

    Xu J, Li R M, Zhang Q H, et al. Interpretation of extremity of "21·7" extraordinary rainstorm event in Henan Province from large-scale circulation. Science China Earth Sciences, 2022, 52(10): 1873-1886. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202210002.htm
    [12] 崔晓鹏, 杨玉婷. "21·7" 河南暴雨水汽源地追踪和定量贡献分析. 大气科学, 2022, 46(6): 1543-1556. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202206019.htm

    Cui X P, Yang Y T. Tracking and quantitative contribution analyses of moisture sources of rainstorm in Henan Province in July 2021. Chinese J Atmos Sci, 2022, 46(6): 1543-1556. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202206019.htm
    [13] 郭姿佑, 伍志方, 蔡景就, 等. "18·8" 广东季风低压持续性特大暴雨水汽输送特征. 暴雨灾害, 2019, 38(6): 587-596. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201906003.htm

    Guo Z Y, Wu Z F, Cai J J, et al. Analysis of water vapor transport characteristics of a monsoon low-pressure continuous heavy rain event at the end of August 2018 in Guangdong Area. Torrential Rain Disasters, 2019, 38(6): 587-596. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201906003.htm
    [14] 王宇虹, 徐国强, 贾丽红, 等. 太行山对北京"7.21" 特大暴雨的影响及水汽敏感性分析的数值研究. 气象, 2015, 41(4): 389-400. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201504001.htm

    Wang Y H, Xu G Q, Jia L H, et al. Numerical simulation analysis on impact of Taihang Mountain and vapor sensitivity on the 21 July 2012 extremely severe rainstorm in Beijing. Meteor Mon, 2015, 41(4): 389-400. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201504001.htm
    [15] 张元春, 孙建华, 傅慎明, 等. "21·7" 河南特大暴雨的中尺度系统活动特征. 大气科学, 2023, 47(4): 1196-1216. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202304022.htm

    Zhang Y C, Sun J H, Fu S M, et al. Active characteristics of mesoscale systems during the heavy rainfall in Henan Province in July 2021. Chinese J Atmos Sci, 2023, 47(4): 1196-1216. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202304022.htm
    [16] 徐珺, 毕宝贵, 谌芸, 等. "5.7"广州局地突发特大暴雨中尺度特征及成因分析. 气象学报, 2018, 76(4): 511-524. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201804002.htm

    Xu J, Bi B G, Chen Y, et al. Mesoscale characteristics and mechanism analysis of the unexpected local torrential rain in Guangzhou on 7 May 2017. Acta Meteor Sinica, 2018, 76(4): 511-524. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201804002.htm
    [17] Fu S M, Zhang Y C, Wang H J, et al. On the evolution of a long-lived mesoscale convective vortex that acted as a crucial condition for the extremely strong hourly precipitation in Zhengzhou. J Geophys Res Atmos, 2022, 127(11). DOI: 10.1029/2021JD036233.
    [18] 刘璐, 冉令坤, 周玉淑, 等. 北京"7.21"暴雨的不稳定性及其触发机制分析. 大气科学, 2015, 39(3): 583-595. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201503012.htm

    Liu L, Ran L K, Zhou Y S, et al. Analysis on the instability and trigger mechanism of torrential rainfall event in Beijing on 21 July 2012. Chinese J Atmos Sci, 2015, 39(3): 583-595. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201503012.htm
    [19] 齐道日娜, 何立富, 王秀明, 等. "7·20"河南极端暴雨精细观测及热动力成因. 应用气象学报, 2022, 33(1): 1-15. doi:  10.11898/1001-7313.20220101

    Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi:  10.11898/1001-7313.20220101
    [20] 周毓荃, 蒋元华, 蔡淼. 北京"7.21" 特大暴雨云降水结构及云雨转化特征. 大气科学学报, 2015, 38(3): 321-332. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201503004.htm

    Zhou Y Q, Jiang Y H, Cai M. Characteristics and transformation of cloud and precipitation of the extreme torrential rain in Beijing on 21 July 2012. Trans Atmos Sci, 2015, 38(3): 321-332. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201503004.htm
    [21] 高洋, 蔡淼, 曹治强, 等. "21·7" 河南暴雨环境场及云的宏微观特征. 应用气象学报, 2022, 33(6): 682-695. doi:  10.11898/1001-7313.20220604

    Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. doi:  10.11898/1001-7313.20220604
    [22] Yin L, Ping F, Mao J H, et al. Analysis on precipitation efficiency of the "21.7" Henan extremely heavy rainfall event. Adv Atmos Sci, 2023, 40(3): 374-392. doi:  10.1007/s00376-022-2054-x
    [23] 朱科锋, 张晨悦, 薛明, 等. 对流可分辨尺度集合预报对河南"21·7"极端降水事件可预报性研究. 中国科学(地球科学), 2022, 52(10): 1905-1928. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202210004.htm

    Zhu K F, Zhang C R, Xue M, et al. Predictability and skill of convection-permitting ensemble forecast systems in predicting the record-breaking "21·7" extreme rainfall event in Henan Province, China. Science China Earth Sciences, 2022, 52(10): 1905-1928. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202210004.htm
    [24] 张云济, 于慧珍, 张慕容, 等. 河南"21·7" 极端暴雨预报的不确定性和误差增长机制. 中国科学(地球科学), 2022, 52(10): 1929-1947. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202210005.htm

    Zhang Y J, Yu H Z, Zhang M R, et al. Uncertainty and error growth mechanism of "21·7" extreme rainstorm forecast in Henan Province. Science China Earth Sciences, 2022, 52(10): 1929-1947. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202210005.htm
    [25] 陈黛雅, 沈学顺, 霍振华. 广州"5·7"暴雨预报的模式不确定性研究. 气象学报, 2023, 81(1): 58-78. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202301004.htm

    Chen D Y, Shen X S, Huo Z H. A research on the model uncertainty in forecast of the 7 May 2017 heavy rainfall in Guangzhou. Acta Meteor Sinica, 2023, 81(1): 58-78. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202301004.htm
    [26] 朱乾根, 林瑞锦, 寿绍文, 等. 天气学原理和方法(第3版). 北京: 气象出版社, 2000.

    Zhu Q G, Lin J R, Shou S W, et al Principles and Methods of Meteorology(3rd Ed). Beijing: China Meteorological Press, 2000.
    [27] 任丽, 杨艳敏, 金磊, 等. 一次东北冷涡暴雨数值模拟及动力诊断分析. 气象与环境学报, 2014, 30(4): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201404003.htm

    Ren L, Yang Y M, Jin L, et al. Numerical simulation on a rainstorm process caused by Northeast China cold vortex and its diagnostic analysis. J Meteor Environ, 2014, 30(4): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201404003.htm
    [28] 齐铎, 袁美英, 周奕含, 等. 一次东北冷涡过程的结构特征与降水关系分析. 高原气象, 2020, 39(4): 808-818. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202004013.htm

    Qi D, Yuan M Y, Zhou Y H, et al. Analysis of the relationship between structures of a cold vortex process and rainfall over the Northeast China. Plateau Meteor, 2020, 39(4): 808-818. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202004013.htm
    [29] 迟静, 周玉淑, 冉令坤, 等. 吉林一次极端降水发生发展动热力过程的数值模拟分析. 大气科学, 2021, 45(6): 1400-1414. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202106016.htm

    Chi J, Zhou Y S, Ran L K, et al. Numerical simulation analysis on the generation and evolution of the dynamic and thermodynamic processes of an extreme rainfall in Jilin Province. Chinese J Atmos Sci, 2021, 45(6): 1400-1414. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202106016.htm
    [30] 史月琴, 高松影, 孙晶, 等. 辽宁一次区域性暴雨的特征条件与成因分析. 高原气象, 2022, 41(3): 630-645. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202203008.htm

    Shi Y Q, Gao S Y, Sun J, et al. Analysis of the characteristics and mechanism of a regional heavy rain event in Liaoning Province. Plateau Meteor, 2022, 41(3): 630-645. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202203008.htm
    [31] 段云霞, 李得勤, 纪永明, 等. 东北冷涡背景下沈阳地区一次强降水过分析. 气象与环境学报, 2022, 38(4): 1-10. doi:  10.3969/j.issn.1673-503X.2022.04.001

    Duan Y X, Li D Q, Ji Y M, et al. Analysis of strong precipitation in the urban area of Shenyang under the Northeast Cold Vortex background. J Meteor Environ, 2022 38(4): 1-10. doi:  10.3969/j.issn.1673-503X.2022.04.001
    [32] 任丽, 马国忠, 孙琪. 一次东北冷涡暴雨过程中尺度及云物理特征分析. 沙漠与绿洲气象, 2021, 15(6): 31-39. doi:  10.12057/j.issn.1002-0799.2021.06.005

    Ren L, Ma G Z, Sun Q. Analysis of mesoscale and cloud physical characteristics of a cold vortex rainstorm in Northeast China. Desert Oasis Meteor, 2021, 15(6): 31-39. doi:  10.12057/j.issn.1002-0799.2021.06.005
    [33] 孙力, 董伟, 药明, 等. 1215号"布拉万" 台风暴雨及降水非对称性分布的成因分析. 气象学报, 2015, 73(1): 36-49. doi:  10.3969/j.issn.1005-0582.2015.01.008

    Sun L, Dong W, Yao M, et al. A diagnostic analysis of the causes of the torrential rain and precipitation asymmetric distribution of Typhoon Bolaven(2012). Acta Meteor Sinica, 2015, 73(1): 36-49. doi:  10.3969/j.issn.1005-0582.2015.01.008
    [34] 王承伟, 齐铎, 徐玥, 等. 冷空气入侵台风"灿鸿" 引发的东北暴雨分析. 高原气象, 2017, 36(5): 1257-1266. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201705010.htm

    Wang C W, Qi D, Xu Y, et al. Analysis of rainstorm induced by interaction between Typhoon Chan-hom(2015) and cold air in Northeast China. Plateau Meteor, 2017, 36(5): 1257-1266. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201705010.htm
    [35] 刘硕, 李得勤, 赛瀚, 等. 台风"狮子山" 并入温带气旋过程及引发东北强降水的分析. 高原气象, 2019, 38(4): 804-816. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201904013.htm

    Liu S, Li D Q, Sai H, et al. The physical mechanism and strong precipitation in Northeast China analysis during Typhoon "Lionrock" merging into extratropical cyclone process. Plateau Meteor, 2019, 38(4): 804-816. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201904013.htm
    [36] 杨卫东. 黑龙江省气象灾害防御技术手册. 北京: 气象出版社, 2017: 2-5.

    Yang W D. Technical Manual of Meteorological Disaster Prevention in Heilongjiang Province. Beijing: China Meteorological Press, 2017: 2-5.
    [37] Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Q J R Meteor Soc, 2020, 146(730): 1999-2049. doi:  10.1002/qj.3803
    [38] 张芳华, 杨舒楠, 胡艺, 等. "23·7"华北特大暴雨过程的水汽特征. 气象, 2023, 49(12): 1421-1434. doi:  10.7519/j.issn.1000-0526.2023.103003

    Zhang F H, Yang S N, Hu Y, et al. Water vapor characteristics of the July 2023 severe torrential rain in North China. Meteor Mon, 2023, 49(12): 1421-1434. doi:  10.7519/j.issn.1000-0526.2023.103003
    [39] Huang Y J, Wu W, McFarquhar G M, et al. Microphysical processes producing high ice water contents(HIWCs) in tropical convective clouds during the HAIC-HIWC field campaign: Dominant role of secondary ice production. Atmos Chem Phys, 2022, 22(4): 2365-2384. doi:  10.5194/acp-22-2365-2022
    [40] Huang Y J, Cui X P, Wang Y P. Cloud microphysical differences with precipitation intensity in a torrential rainfall event in Sichuan, China. Atmos Ocean Sci Lett, 2016, 9(2): 90-98. doi:  10.1080/16742834.2016.1139436
    [41] 俞小鼎. 短时强降水临近预报的思路与方法. 暴雨灾害, 2013, 32(3): 202-209. doi:  10.3969/j.issn.1004-9045.2013.03.002

    Yu X D. Nowcasting thinking and method of flash heavy rain. Torrential Rain Disasters, 2013, 32(3): 202-209. doi:  10.3969/j.issn.1004-9045.2013.03.002
    [42] 葛黎黎, 吕囯真, 赵桂香, 等. 太原地区雨滴谱季节分布特征. 应用气象学报, 2023, 34(4): 489-502. doi:  10.11898/1001-7313.20230409

    Ge L L, Lü G Z, Zhao G X, et al. Seasonal distribution characteristics of raindrop spectrum in Taiyuan. J Appl Meteor Sci, 2023, 34(4): 489-502. doi:  10.11898/1001-7313.20230409
    [43] 王俊, 郑丽娜, 王洪, 等. 山东6次台风暴雨雨滴谱统计特征及区域差异. 应用气象学报, 2023, 34(4): 475-488. doi:  10.11898/1001-7313.20230408

    Wang J, Zheng L N, Wang H, et al. Statistical characteristics and regional differences of raindrop size distribution during 6 typhoon rainstorms in Shandong. J Appl Meteor Sci, 2023, 34(4): 475-488. doi:  10.11898/1001-7313.20230408
    [44] 寿亦萱, 许健民. "05.6" 东北暴雨中尺度对流系统研究Ⅱ: MCS动力结构特征的雷达卫星资料分析. 气象学报, 2007, 65(2): 171-182. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200702003.htm

    Shou Y X, Xu J M. The rainstorm and mesoscale convective systems over Northeast China in June 2005 Ⅱ: A synthetic analysis of MCS's dynamical structure by radar and satellite observations. Acta Meteor Sinica, 2007, 65(2): 171-182. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200702003.htm
    [45] 杨磊, 郑永光, 袁子鹏, 等. 2019年8月16日沈阳极端降水事件的低空γ中尺度涡旋观测特征和机理分析. 气象学报, 2023, 81(1): 19-39. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202301002.htm

    Yang L, Zheng Y G, Yuan Z P, et al. The low-level meso-γ-scale vortices during the extreme rainfall in Shenyang on 16 August 2019: Formatiom, merging, and rain-producing mechanisms. Acta Meteor Sinica, 2023, 81(1): 19-39. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202301002.htm
    [46] 韩丰, 沃伟峰. SWAN2.0系统的设计与实现. 应用气象学报, 2018, 29(1): 25-34. doi:  10.11898/1001-7313.20180103

    Han F, Wo W F. Design and implementation of SWAN2.0 platform. J Appl Meteor Sci, 2018, 29(1): 25-34. doi:  10.11898/1001-7313.20180103
    [47] 韩丰, 龙明盛, 李月安, 等. 循环神经网络在雷达临近预报中的应用. 应用气象学报, 2019, 30(1): 61-69. doi:  10.11898/1001-7313.20190106

    Han F, Long M S, Li Y A, et al. The application of recurrent neural network to nowcasting. J Appl Meteor Sci, 2019, 30(1): 61-69. doi:  10.11898/1001-7313.20190106
    [48] 韩丰, 杨璐, 周楚炫, 等. 基于探空数据集成学习的短时强降水预报试验. 应用气象学报, 2021, 32(2): 188-199. doi:  10.11898/1001-7313.20210205

    Han F, Yang L, Zhou C X, et al. An experimental study of the short-time heavy rainfall event forecast based on ensemble learning and sounding data. J Appl Meteor Sci, 2021, 32(2): 188-199. doi:  10.11898/1001-7313.20210205
    [49] Li H Q, Cui X P, Zhang D L. On the initiation of an isolated heavy-rain-producing storm near the central urban area of Beijing metropolitan region. Mon Wea Rev, 2017, 145(1): 181-197. doi:  10.1175/MWR-D-16-0115.1
  • 加载中
图(9) / 表(1)
计量
  • 摘要浏览量:  706
  • HTML全文浏览量:  112
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-11
  • 修回日期:  2024-03-26
  • 刊出日期:  2024-05-31

目录

    /

    返回文章
    返回