Characteristics and Causes of Extreme Heavy Rainfall in Heilongjiang Province During August 2023
-
摘要: 利用多源观测资料及ERA5(ECMWF reanalysis version 5)再分析资料,从气候统计、天气分析及物理量诊断等角度,分析2023年8月2—4日黑龙江省东南部一次极端强降水过程。高空持续辐散、副热带高压和东北北部冷涡稳定少动、西南低空急流持续水汽输送等有利条件是此次强降水过程持续时间较长的主要原因。该过程可分为两个阶段:第1阶段,经向水汽净收入层和大气饱和层深厚,大气层结为弱对流不稳定;中层受西北气流控制,低层西南急流发展、伴随弱低涡东移,形成水平风速辐合及系统性上升运动,产生大范围持续性降水;该阶段以层积混合云为主,降水效率高,个别时段伴有列车效应,造成极端小时降水量及较大累积降水量。第2阶段,经向水汽净收入集中在对流层低层,且中心强度较大,对流层低层暖湿、饱和,中高层干冷,大气具有较强对流不稳定;在中层槽和低层暖式切变的系统性抬升以及地形辐合抬升的共同作用下,局地有积云发展,引发短时强降水,降水强度分布不均。Abstract: From 2 August to 4 August in 2023, a prolonged and extensive extreme heavy rainfall event occurrs in the southeast of Heilongjiang Province. Utilizing multiple observations and ERA5 reanalysis data, characteristics of the precipitation process are analyzed focusing on large-scale circulation background, mesoscale circulation system evolution, environmental conditions from perspectives of climate statistics, weather analysis, and physical quantity diagnosis. Factors contributing to the prolonged extreme heavy rainfall event are explored. Main causes for the long duration of this heavy precipitation event are the stable maintenance of favorable large-scale conditions, such as the persistent divergence of the upper troposphere, the stable location of the west Pacific subtropical high (WPSH) and Northeast China cold vortex (NCCV), and continuous water vapor transport by the southwest jet. Due to the strong southwest jet, there is abundant moisture transfer, primarily through the advection of water vapor, which is the primary source for heavy rainfall. The process can be divided into two stages due to significant differences of rainfall, atmospheric stratification, and local circulation characteristics. In the first stage, the meridional water vapor inflow layer and the saturated layer are thick, resulting in high tropospheric humidity. The atmospheric condition is characterized by weak convective instability. Under the control of the northwest airflow at 500 hPa, the development of southwest jet, along with the influence of a weak eastward-moving vortex system at 850 hPa, results in horizontal wind speed convergence and systematic upward motion, leading to widespread and prolonged precipitation. The heavy rainfall area is mainly composed of cumulus embedded stratus, with a large coverage area of the cloud system, low echo centroid height, and high precipitation efficiency. With weak convective instability that promotes the development of convection and train effect in some periods, extreme hourly precipitation and large cumulative precipitation occur. In the second stage, the meridional water vapor inflow is concentrated in the lower troposphere with high intensity. The lower troposphere is close to saturation, with high humidity and temperature, while the middle and upper troposphere is dry and cold, and the atmospheric condition is more unstable than that in the first stage. Convection is developed and strengthened by the combined action of systematic uplift by a trough at 500 hPa, warm shear at 850 hPa, topographic convergence, and uplift. The cloud system is dominated by local strong cumulus clouds, and the distribution of precipitation intensity is uneven. At the beginning of this stage, convective cells continue to form at the trumpet-shaped terrain and move towards the eastern mountainous areas, organizing into linear convection. This is accompanied by the development and southward movement of surface convergence lines, leading to the generation of new convection and continuously causing localized intense short-duration rainfall.
-
Key words:
- extreme heavy rainfall;
- southwest jet;
- train effect;
- orographic effect
-
图 3 2023年8月2—4日500 hPa位势高度场(蓝色等值线,加粗线条为5880 gpm等值线,等值线间隔为40 gpm)、300 hPa风场(风向杆不小于20 m·s-1) 及散度场(填色)(黑色方框为强降水区,下同)
Fig. 3 500 hPa geopotential height (the blue contour, the bold line is 5880 gpm, the interval is 40 gpm), 300 hPa wind (the red barb), 300 hPa divergence (the shaded) from 2 Aug to 4 Aug in 2023 (the black rectangular denotes the big-value area of precipitation, similarly hereinafter)
图 4 2023年8月2—4日850 hPa位势高度场(黑等值线,加粗线条为1500 gpm等值线,等值线间隔为20 gpm)、风场(蓝色、青色矢量分别代表不小于12 m·s-1和小于12 m·s-1的风矢量) 和比湿场(红色等值线,单位:g·kg-1)
Fig. 4 850 hPa geopotential height (the black contour, the bold line is 1500 gpm, the interval is 20 gpm), wind (blue and cyan vectors denote wind speeds no less than 12 m·s-1 and less than 12 m·s-1, respectively), specific humidity (the red isoline, unit:g·kg-1) from 2 Aug to 4 Aug in 2023
图 6 2023年8月2—4日沿43.5°~45.5°N平均的经度-高度垂直剖面(填色代表假相当位温,矢量为纬向与垂直(扩大20倍) 的合成风,蓝色等值线为垂直速度(起始等值线为-0.3 Pa·s-1,等值线间隔为-0.3 Pa·s-1),灰色代表地形以下的部分)
Fig. 6 Longitude-height cross section average between 43.5°-45.5°N from 2 Aug to 4 Aug in 2023 (the shaded denotes pseudo-equivalent potential temperature, the vector denotes the composite wind field from zonal wind and vertical wind(to expand 20 times), the blue dashed isoline denotes vertical velocity (starting from -0.3 Pa·s-1 with interval of -0.3 Pa·s-1), the grey denotes terrain)
图 7 2023年8月2—4日44.5°~45.5°N、126°~128°E区域平均假相当位温(填色)、垂直速度(等值线,单位:Pa·s-1)、0℃层(绿色虚线) 高度-时间分布(a)以及区域平均小时降水量、有降水气象站数的时间变化(b)
Fig. 7 Height-time distribution of averaged pseudo-equivalent potential temperature (the shaded), vertical velocity (the isoline, unit:Pa·s-1), 0℃ level (the green dash line) (a) and time series of mean intensity, number of rainfall stations(b) in 44.5°-45.5°N, 126°-128°E from 2 Aug to 4 Aug in 2023
图 9 第2阶段初期强降水区地面位温的水平扰动场(彩色圆点,单位:K) 及风场(矢量,单位:m·s-1) 分布(填色代表地形高度,红线代表地面辐合线,蓝色实线圈为大于35 dBZ强回波)
Fig. 9 Distributions of surface disturbed potential temperature (the colored dot, unit:K) and wind (the vector, unit:m·s-1) in heavy rainfall area at the beginning of stage-Ⅱ (the shaded denotes terrain, the red line and the blue circle denote convergence line and strong echo areas greater than 35 dBZ, respectively)
表 1 1961—2023年降水量大值区内县气象站降水历史排名
Table 1 Historical ranking of county observational stations in the big-value area of precipitation in 1961-2023
站名 排序Ⅰ 排序Ⅱ 排序Ⅲ 2023年8月2—4日累积降水量/mm 过程降水量占8月平均降水量比例/% 哈尔滨 11 1 22 80.7 71.2 双城 7 1 5 128.9 118.4 阿城 4 1 1 143.2 124.6 宾县 72 3 27 81.8 67.0 木兰 6 20.6 15.9 通河 11 12.5 9.7 延寿 6 49.2 37.4 尚志 2 1 2 154.7 107.7 扶余 66 1 13 106.0 95.8 榆树 1 23 84.7 70.6 舒兰 60 1 5 127.3 89.2 五常 2 1 1 270.7 202.5 牡丹江 6 1 5 112.8 95.3 宁安 1 1 1 159.6 137.5 吉林城郊 6 36.8 27.0 蛟河 9 38.5 26.2 -
[1] Zhang Y,Xu Y L,Dong W J,et al.A future climate scenario of regional changes in extreme climate events over China using the PRECIS climate model.Geophys Res Lett,2006, 33(24).DOI: 10.1029/2006GL027229. [2] Lenderink G, van Meijgaard E. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nature Geosci, 2008, 1(8): 511-514. doi: 10.1038/ngeo262 [3] 陈思, 高建芸, 黄丽娜, 等. 华南前汛期持续性暴雨年代际变化特征及成因. 应用气象学报, 2017, 28(1): 86-97. doi: 10.11898/1001-7313.20170108Chen S, Gao J Y, Huang L N, et al. Decadal variation characteristics of South China pre-flood season persistent rainstorm and its mechanism. J Appl Meteor Sci, 2017, 28(1): 86-97. doi: 10.11898/1001-7313.20170108 [4] 周玉淑, 刘璐, 朱科锋, 等. 北京"7.21" 特大暴雨过程中尺度系统的模拟及演变特征分析. 大气科学, 2014, 38(5): 885-896. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201405006.htmZhou Y S, Liu L, Zhu K F, et al. Simulation and evolution characteristics of mesoscale systems occurring in Beijing on 21 July 2012. Chinese J Atmos Sci, 2014, 38(5): 885-896. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201405006.htm [5] 史文茹, 李昕, 曾明剑, 等. "7·20" 郑州特大暴雨的多模式对比及高分辨率区域模式预报分析. 大气科学学报, 2021, 44(5): 688-702.Shi W R, Li X, Zeng M J, et al. Multi-model comparison and high-resolution regional model forecast analysis for the "7·20" Zhengzhou severe heavy rain. Trans Atmos Sci, 2021, 44(5): 688-702. [6] 伍志方, 蔡景就, 林良勋, 等. 2017年广州"5·7" 暖区特大暴雨的中尺度系统和可预报性. 气象, 2018, 44(4): 485-499. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201804002.htmWu Z F, Cai J J, Lin L X, et al. Analysis of mesoscale systems and predictability of the torrential rain process in Guangzhou on 7 May 2017. Meteor Mon, 2018, 44(4): 485-499. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201804002.htm [7] 蔡志颖, 郑艳, 段晶晶, 等. 台风"烟花" 影响浙江期间GPM卫星降水产品的评估及订正. 暴雨灾害, 2023, 42(6): 704-715. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX202306008.htmCai Z Y, Zheng Y, Duan J J, et al. Evaluation and correction of GPM satellite precipitation products during Typhoon "In-Fa" affecting Zhejiang. Torrential Rain Disasters, 2023, 42(6): 704-715. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX202306008.htm [8] 宝兴华, 夏茹娣, 罗亚丽, 等. "21·7" 河南特大暴雨气象和水文雨量观测对比. 应用气象学报, 2022, 33(6): 668-681. doi: 10.11898/1001-7313.20220603Bao X H, Xia R D, Luo Y L, et al. Comparative analysis on meteorological and hydrological rain gauge observations of the extreme heavy rainfall event in Henan Province during July 2021. J Appl Meteor Sci, 2022, 33(6): 668-681. doi: 10.11898/1001-7313.20220603 [9] 张恩红, 曹云昌, 王晓英, 等. 利用地基GPS数据分析北京"7·21" 暴雨水汽特征. 气象科技, 2015, 43(6): 1157-1163. doi: 10.3969/j.issn.1671-6345.2015.06.023Zhang E H, Cao Y C, Wang X Y, et al. Characteristics of water vapor in a heavy rainstorm based on ground-based GPS measurements in Beijing. Meteor Sci Technol, 2015, 43(6): 1157-1163. doi: 10.3969/j.issn.1671-6345.2015.06.023 [10] 赵洋洋, 张庆红, 杜宇, 等. 北京"7.21" 特大暴雨环流形势极端性客观分析. 气象学报, 2013, 71(5): 817-824. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201305002.htmZhao Y Y, Zhang Q H, Du Y, et al. Objective analysis of the extreme of circulation patterns during the 21 July 2012 torrential rain event in Beijing. Acta Meteor Sinica, 2013, 71(5): 817-824. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201305002.htm [11] 徐珺, 李如梦, 张庆红, 等. 从大尺度环流解读河南"21·7" 特大暴雨事件的极端性. 中国科学(地球科学), 2022, 52(10): 1873-1886. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202210002.htmXu J, Li R M, Zhang Q H, et al. Interpretation of extremity of "21·7" extraordinary rainstorm event in Henan Province from large-scale circulation. Science China Earth Sciences, 2022, 52(10): 1873-1886. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202210002.htm [12] 崔晓鹏, 杨玉婷. "21·7" 河南暴雨水汽源地追踪和定量贡献分析. 大气科学, 2022, 46(6): 1543-1556. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202206019.htmCui X P, Yang Y T. Tracking and quantitative contribution analyses of moisture sources of rainstorm in Henan Province in July 2021. Chinese J Atmos Sci, 2022, 46(6): 1543-1556. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202206019.htm [13] 郭姿佑, 伍志方, 蔡景就, 等. "18·8" 广东季风低压持续性特大暴雨水汽输送特征. 暴雨灾害, 2019, 38(6): 587-596. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201906003.htmGuo Z Y, Wu Z F, Cai J J, et al. Analysis of water vapor transport characteristics of a monsoon low-pressure continuous heavy rain event at the end of August 2018 in Guangdong Area. Torrential Rain Disasters, 2019, 38(6): 587-596. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201906003.htm [14] 王宇虹, 徐国强, 贾丽红, 等. 太行山对北京"7.21" 特大暴雨的影响及水汽敏感性分析的数值研究. 气象, 2015, 41(4): 389-400. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201504001.htmWang Y H, Xu G Q, Jia L H, et al. Numerical simulation analysis on impact of Taihang Mountain and vapor sensitivity on the 21 July 2012 extremely severe rainstorm in Beijing. Meteor Mon, 2015, 41(4): 389-400. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201504001.htm [15] 张元春, 孙建华, 傅慎明, 等. "21·7" 河南特大暴雨的中尺度系统活动特征. 大气科学, 2023, 47(4): 1196-1216. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202304022.htmZhang Y C, Sun J H, Fu S M, et al. Active characteristics of mesoscale systems during the heavy rainfall in Henan Province in July 2021. Chinese J Atmos Sci, 2023, 47(4): 1196-1216. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202304022.htm [16] 徐珺, 毕宝贵, 谌芸, 等. "5.7"广州局地突发特大暴雨中尺度特征及成因分析. 气象学报, 2018, 76(4): 511-524. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201804002.htmXu J, Bi B G, Chen Y, et al. Mesoscale characteristics and mechanism analysis of the unexpected local torrential rain in Guangzhou on 7 May 2017. Acta Meteor Sinica, 2018, 76(4): 511-524. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201804002.htm [17] Fu S M, Zhang Y C, Wang H J, et al. On the evolution of a long-lived mesoscale convective vortex that acted as a crucial condition for the extremely strong hourly precipitation in Zhengzhou. J Geophys Res Atmos, 2022, 127(11). DOI: 10.1029/2021JD036233. [18] 刘璐, 冉令坤, 周玉淑, 等. 北京"7.21"暴雨的不稳定性及其触发机制分析. 大气科学, 2015, 39(3): 583-595. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201503012.htmLiu L, Ran L K, Zhou Y S, et al. Analysis on the instability and trigger mechanism of torrential rainfall event in Beijing on 21 July 2012. Chinese J Atmos Sci, 2015, 39(3): 583-595. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201503012.htm [19] 齐道日娜, 何立富, 王秀明, 等. "7·20"河南极端暴雨精细观测及热动力成因. 应用气象学报, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101 [20] 周毓荃, 蒋元华, 蔡淼. 北京"7.21" 特大暴雨云降水结构及云雨转化特征. 大气科学学报, 2015, 38(3): 321-332. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201503004.htmZhou Y Q, Jiang Y H, Cai M. Characteristics and transformation of cloud and precipitation of the extreme torrential rain in Beijing on 21 July 2012. Trans Atmos Sci, 2015, 38(3): 321-332. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201503004.htm [21] 高洋, 蔡淼, 曹治强, 等. "21·7" 河南暴雨环境场及云的宏微观特征. 应用气象学报, 2022, 33(6): 682-695. doi: 10.11898/1001-7313.20220604Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. doi: 10.11898/1001-7313.20220604 [22] Yin L, Ping F, Mao J H, et al. Analysis on precipitation efficiency of the "21.7" Henan extremely heavy rainfall event. Adv Atmos Sci, 2023, 40(3): 374-392. doi: 10.1007/s00376-022-2054-x [23] 朱科锋, 张晨悦, 薛明, 等. 对流可分辨尺度集合预报对河南"21·7"极端降水事件可预报性研究. 中国科学(地球科学), 2022, 52(10): 1905-1928. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202210004.htmZhu K F, Zhang C R, Xue M, et al. Predictability and skill of convection-permitting ensemble forecast systems in predicting the record-breaking "21·7" extreme rainfall event in Henan Province, China. Science China Earth Sciences, 2022, 52(10): 1905-1928. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202210004.htm [24] 张云济, 于慧珍, 张慕容, 等. 河南"21·7" 极端暴雨预报的不确定性和误差增长机制. 中国科学(地球科学), 2022, 52(10): 1929-1947. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202210005.htmZhang Y J, Yu H Z, Zhang M R, et al. Uncertainty and error growth mechanism of "21·7" extreme rainstorm forecast in Henan Province. Science China Earth Sciences, 2022, 52(10): 1929-1947. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202210005.htm [25] 陈黛雅, 沈学顺, 霍振华. 广州"5·7"暴雨预报的模式不确定性研究. 气象学报, 2023, 81(1): 58-78. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202301004.htmChen D Y, Shen X S, Huo Z H. A research on the model uncertainty in forecast of the 7 May 2017 heavy rainfall in Guangzhou. Acta Meteor Sinica, 2023, 81(1): 58-78. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202301004.htm [26] 朱乾根, 林瑞锦, 寿绍文, 等. 天气学原理和方法(第3版). 北京: 气象出版社, 2000.Zhu Q G, Lin J R, Shou S W, et al Principles and Methods of Meteorology(3rd Ed). Beijing: China Meteorological Press, 2000. [27] 任丽, 杨艳敏, 金磊, 等. 一次东北冷涡暴雨数值模拟及动力诊断分析. 气象与环境学报, 2014, 30(4): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201404003.htmRen L, Yang Y M, Jin L, et al. Numerical simulation on a rainstorm process caused by Northeast China cold vortex and its diagnostic analysis. J Meteor Environ, 2014, 30(4): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201404003.htm [28] 齐铎, 袁美英, 周奕含, 等. 一次东北冷涡过程的结构特征与降水关系分析. 高原气象, 2020, 39(4): 808-818. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202004013.htmQi D, Yuan M Y, Zhou Y H, et al. Analysis of the relationship between structures of a cold vortex process and rainfall over the Northeast China. Plateau Meteor, 2020, 39(4): 808-818. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202004013.htm [29] 迟静, 周玉淑, 冉令坤, 等. 吉林一次极端降水发生发展动热力过程的数值模拟分析. 大气科学, 2021, 45(6): 1400-1414. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202106016.htmChi J, Zhou Y S, Ran L K, et al. Numerical simulation analysis on the generation and evolution of the dynamic and thermodynamic processes of an extreme rainfall in Jilin Province. Chinese J Atmos Sci, 2021, 45(6): 1400-1414. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202106016.htm [30] 史月琴, 高松影, 孙晶, 等. 辽宁一次区域性暴雨的特征条件与成因分析. 高原气象, 2022, 41(3): 630-645. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202203008.htmShi Y Q, Gao S Y, Sun J, et al. Analysis of the characteristics and mechanism of a regional heavy rain event in Liaoning Province. Plateau Meteor, 2022, 41(3): 630-645. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202203008.htm [31] 段云霞, 李得勤, 纪永明, 等. 东北冷涡背景下沈阳地区一次强降水过分析. 气象与环境学报, 2022, 38(4): 1-10. doi: 10.3969/j.issn.1673-503X.2022.04.001Duan Y X, Li D Q, Ji Y M, et al. Analysis of strong precipitation in the urban area of Shenyang under the Northeast Cold Vortex background. J Meteor Environ, 2022 38(4): 1-10. doi: 10.3969/j.issn.1673-503X.2022.04.001 [32] 任丽, 马国忠, 孙琪. 一次东北冷涡暴雨过程中尺度及云物理特征分析. 沙漠与绿洲气象, 2021, 15(6): 31-39. doi: 10.12057/j.issn.1002-0799.2021.06.005Ren L, Ma G Z, Sun Q. Analysis of mesoscale and cloud physical characteristics of a cold vortex rainstorm in Northeast China. Desert Oasis Meteor, 2021, 15(6): 31-39. doi: 10.12057/j.issn.1002-0799.2021.06.005 [33] 孙力, 董伟, 药明, 等. 1215号"布拉万" 台风暴雨及降水非对称性分布的成因分析. 气象学报, 2015, 73(1): 36-49. doi: 10.3969/j.issn.1005-0582.2015.01.008Sun L, Dong W, Yao M, et al. A diagnostic analysis of the causes of the torrential rain and precipitation asymmetric distribution of Typhoon Bolaven(2012). Acta Meteor Sinica, 2015, 73(1): 36-49. doi: 10.3969/j.issn.1005-0582.2015.01.008 [34] 王承伟, 齐铎, 徐玥, 等. 冷空气入侵台风"灿鸿" 引发的东北暴雨分析. 高原气象, 2017, 36(5): 1257-1266. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201705010.htmWang C W, Qi D, Xu Y, et al. Analysis of rainstorm induced by interaction between Typhoon Chan-hom(2015) and cold air in Northeast China. Plateau Meteor, 2017, 36(5): 1257-1266. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201705010.htm [35] 刘硕, 李得勤, 赛瀚, 等. 台风"狮子山" 并入温带气旋过程及引发东北强降水的分析. 高原气象, 2019, 38(4): 804-816. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201904013.htmLiu S, Li D Q, Sai H, et al. The physical mechanism and strong precipitation in Northeast China analysis during Typhoon "Lionrock" merging into extratropical cyclone process. Plateau Meteor, 2019, 38(4): 804-816. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201904013.htm [36] 杨卫东. 黑龙江省气象灾害防御技术手册. 北京: 气象出版社, 2017: 2-5.Yang W D. Technical Manual of Meteorological Disaster Prevention in Heilongjiang Province. Beijing: China Meteorological Press, 2017: 2-5. [37] Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Q J R Meteor Soc, 2020, 146(730): 1999-2049. doi: 10.1002/qj.3803 [38] 张芳华, 杨舒楠, 胡艺, 等. "23·7"华北特大暴雨过程的水汽特征. 气象, 2023, 49(12): 1421-1434. doi: 10.7519/j.issn.1000-0526.2023.103003Zhang F H, Yang S N, Hu Y, et al. Water vapor characteristics of the July 2023 severe torrential rain in North China. Meteor Mon, 2023, 49(12): 1421-1434. doi: 10.7519/j.issn.1000-0526.2023.103003 [39] Huang Y J, Wu W, McFarquhar G M, et al. Microphysical processes producing high ice water contents(HIWCs) in tropical convective clouds during the HAIC-HIWC field campaign: Dominant role of secondary ice production. Atmos Chem Phys, 2022, 22(4): 2365-2384. doi: 10.5194/acp-22-2365-2022 [40] Huang Y J, Cui X P, Wang Y P. Cloud microphysical differences with precipitation intensity in a torrential rainfall event in Sichuan, China. Atmos Ocean Sci Lett, 2016, 9(2): 90-98. doi: 10.1080/16742834.2016.1139436 [41] 俞小鼎. 短时强降水临近预报的思路与方法. 暴雨灾害, 2013, 32(3): 202-209. doi: 10.3969/j.issn.1004-9045.2013.03.002Yu X D. Nowcasting thinking and method of flash heavy rain. Torrential Rain Disasters, 2013, 32(3): 202-209. doi: 10.3969/j.issn.1004-9045.2013.03.002 [42] 葛黎黎, 吕囯真, 赵桂香, 等. 太原地区雨滴谱季节分布特征. 应用气象学报, 2023, 34(4): 489-502. doi: 10.11898/1001-7313.20230409Ge L L, Lü G Z, Zhao G X, et al. Seasonal distribution characteristics of raindrop spectrum in Taiyuan. J Appl Meteor Sci, 2023, 34(4): 489-502. doi: 10.11898/1001-7313.20230409 [43] 王俊, 郑丽娜, 王洪, 等. 山东6次台风暴雨雨滴谱统计特征及区域差异. 应用气象学报, 2023, 34(4): 475-488. doi: 10.11898/1001-7313.20230408Wang J, Zheng L N, Wang H, et al. Statistical characteristics and regional differences of raindrop size distribution during 6 typhoon rainstorms in Shandong. J Appl Meteor Sci, 2023, 34(4): 475-488. doi: 10.11898/1001-7313.20230408 [44] 寿亦萱, 许健民. "05.6" 东北暴雨中尺度对流系统研究Ⅱ: MCS动力结构特征的雷达卫星资料分析. 气象学报, 2007, 65(2): 171-182. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200702003.htmShou Y X, Xu J M. The rainstorm and mesoscale convective systems over Northeast China in June 2005 Ⅱ: A synthetic analysis of MCS's dynamical structure by radar and satellite observations. Acta Meteor Sinica, 2007, 65(2): 171-182. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200702003.htm [45] 杨磊, 郑永光, 袁子鹏, 等. 2019年8月16日沈阳极端降水事件的低空γ中尺度涡旋观测特征和机理分析. 气象学报, 2023, 81(1): 19-39. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202301002.htmYang L, Zheng Y G, Yuan Z P, et al. The low-level meso-γ-scale vortices during the extreme rainfall in Shenyang on 16 August 2019: Formatiom, merging, and rain-producing mechanisms. Acta Meteor Sinica, 2023, 81(1): 19-39. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202301002.htm [46] 韩丰, 沃伟峰. SWAN2.0系统的设计与实现. 应用气象学报, 2018, 29(1): 25-34. doi: 10.11898/1001-7313.20180103Han F, Wo W F. Design and implementation of SWAN2.0 platform. J Appl Meteor Sci, 2018, 29(1): 25-34. doi: 10.11898/1001-7313.20180103 [47] 韩丰, 龙明盛, 李月安, 等. 循环神经网络在雷达临近预报中的应用. 应用气象学报, 2019, 30(1): 61-69. doi: 10.11898/1001-7313.20190106Han F, Long M S, Li Y A, et al. The application of recurrent neural network to nowcasting. J Appl Meteor Sci, 2019, 30(1): 61-69. doi: 10.11898/1001-7313.20190106 [48] 韩丰, 杨璐, 周楚炫, 等. 基于探空数据集成学习的短时强降水预报试验. 应用气象学报, 2021, 32(2): 188-199. doi: 10.11898/1001-7313.20210205Han F, Yang L, Zhou C X, et al. An experimental study of the short-time heavy rainfall event forecast based on ensemble learning and sounding data. J Appl Meteor Sci, 2021, 32(2): 188-199. doi: 10.11898/1001-7313.20210205 [49] Li H Q, Cui X P, Zhang D L. On the initiation of an isolated heavy-rain-producing storm near the central urban area of Beijing metropolitan region. Mon Wea Rev, 2017, 145(1): 181-197. doi: 10.1175/MWR-D-16-0115.1