Characteristics of Precipitation Cloud System in Northeast China Cold Vortex at Changbai Mountain Foothills
-
摘要: 利用2020年中国气象局吉林云物理野外科学试验基地微波辐射计数据,结合小时降水量数据、ERA5(ECMWF reanalysis version 5)再分析数据等对长白山麓东北冷涡降水云系进行统计分析,将东北冷涡降水划分为强降水、中等强度降水和弱降水3类。结果表明:在长白山麓东北冷涡降水发生前6 h首先出现中高云,水汽、云液态水含量对东北冷涡强降水的发生与维持至关重要。东北冷涡强降水发生前5 h,6 km高度以下水汽出现跃升,1.0 km高度以下水汽密度增加至12~14 g·m-3;5~6 km高度温度层结为-5 ℃至-10 ℃,云液态水含量为1.0~1.6 g·m-3,有助于冰雪晶的形成;在温度层结-6 ℃至-16 ℃内存在中高云,云底高度从5.5~7 km陡降至地面,出现干冷空气侵入现象,相对湿度急剧下降,这些特征一直持续至强降水发生;在东北冷涡中等强度降水和弱降水发生前6 h,云系为中云,5~6 km高度的云液态水含量为0.4~0.8 g·m-3,但并未出现水汽跃升、相对湿度下降的特征。Abstract: Utilizing the microwave radiometer data and hourly rainfall data in Jilin Cloud Physics Field Scientific Test Base, CMA, the precipitation cloud system in Northeast China cold vortex at the Changbai Mountain foothills is analyzed. Rainfall events are divided into heavy precipitation, moderate intensity precipitation, and weak precipitation. Assisted by ERA5 reanalysis data, results show that the middle and high clouds appear first by 6 hours before the precipitation occurrence at the Changbai Mountain foothills. Water vapor and cloud water are both important for the occurrence and maintenance of heavy precipitation induced by Northeast China cold vortex. The cloud liquid water appears approximately with the height of 5-6 km by 4 hours before the precipitation induced by Northeast China cold vortex. Two hours before precipitation, the cloud descendes sharply. During one hour after the three types precipitation occurrence, the vapor density respectively leap to 13-14 g·m-3, 9-12 g·m-3, and 7-9 g·m-3 below 1 km height. Integrated water vapor during three types of precipitation increase to 5.8 cm, 4.2 cm, and 3.5 cm, respectively. The water vapor increases 5 hours before the occurrence of strong precipitation below 6 km height. The vapor density increases to 12-14 g·m-3 below 1 km height. There is cloud liquid water with 1.0-1.6 g·m-3 at the height of 5-6 km in the temperature layers of -5--10 ℃, which contributes to the formation of ice and snow crystals. Six hours before the heavy precipitation, moderate intensity precipitation, and weak precipitation, the integrated cloud liquid water are 4.2-4.8 mm, 3.0 mm, 2.3 mm, respectively. There are middle and high clouds in the temperature layers of -6 ℃ and -16 ℃. The height of cloud base drops sharply from 5.5-7 km to the ground, while the relative humidity drops sharply. These characteristics continue until the beginning of heavy rainfall. For moderate and weak precipitation induced by Northeast China cold vortex, there is middle cloud before the precipitation, and the cloud liquid water is 0.4-0.8 g· m-3 at the height of 5-6 km. However, there is no characteristic of water vapor jumping or relative humidity decreasing.Through the study of these physical quantity characteristics, indicators with indicative and predictive significance for precipitation induced by Northeast China cold vortex have been established.
-
图 3 2020年靖宇站东北冷涡强降水、中等强度降水和弱降水的云液态水含量(填色) 及温度层结垂直分布(等值线,单位:℃)
Fig. 3 Vertical distribution of cloud liquid water (the shaded) and temperature layers (the isoline, unit:℃) for heavy precipitation, moderate intensity precipitation and weak precipitation induced by Northeast China cold vortex at Jingyu Station in 2020
图 5 2020年靖宇站东北冷涡强降水、中等强度降水和弱降水的垂直积分云液态水含量和垂直积分水汽含量、水汽到云液态水转化率
Fig. 5 Vertical distribution of integrated cloud liquid water and integrated water vapor, conversion rate of water vapor to cloud liquid water for heavy precipitation, moderate intensity precipitation, weak precipitation induced by Northeast China cold vortex at Jingyu Station in 2020
图 8 2020年8月13日08:00沿强降水区127° E等熵位涡(等值线,单位:PVU)、假相当位温(填色) 和风场垂直剖面(棕色实线表示锋区)
Fig. 8 Vertical section of potential vorticity(the isoline, unit:PVU), pseudo-equivalent potential temperature (the shaded) and vertical velocity along 127°E at 0800 BT 13 Aug 2020 (the brown solid line denotes the frontal zone)
图 9 2020年8月13日06:00—14日01:00靖宇站冰相粒子含量、雪粒子含量、云液态水含量、雨水含量的高度-时间分布(等值线表示温度,单位:℃)
Fig. 9 Height-time distribution of ice water content, snow water content, cloud liquid water content, rain water content at Jingyu Station from 0600 BT 13 Aug to 0100 14 Aug in 2020 (the isoline denotes temperature, unit:℃)
表 1 2020年靖宇站3类东北冷涡降水个例
Table 1 Three-type precipitation induced by Northeast China cold vortex at Jingyu Station in 2020
类别 分类编号 降水起止时间 强降水 1 08-09T10:00—18:00 2 08-13T12:00—14T01:00 中等强度降水 1 05-17T02:00—07:00 2 05-24T01:00—08:00 3 07-19T11:00—20T00:00 4 08-03T23:00—04T02:00 5 08-04T16:00—20:00 6 08-15T16:00—20:00 7 09-16T01:00—09:00 8 09-16T18:00—21:00 9 09-19T01:00—02:00 弱降水 1 05-10T16:00—17:00 2 05-12T04:00—13:00 3 05-13T03:00—04:00 4 05-15T18:00—20:00 5 05-18T10:00—17:00 6 06-01T03:00—14:00 7 06-15T01:00—02:00 8 08-11T18:00—19:00 9 08-14T19:00—20:00 10 09-09T15:00—10T05:00 11 09-22T14:00—18:00 12 10-01T17:00—21:00 -
[1] 孙力, 安刚, 廉毅, 等.夏季东北冷涡持续性活动及其大气环流异常特征的分析.气象学报, 2000, 58(6):704-714. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200006005.htmSun L, An G, Lian Y, et al. A study of the persistent activity of northeast cold vortex in summer and its genral circulation anomaly charecteristics. Acta Meteor Sinica, 2000, 58(6): 704-714. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200006005.htm [2] 徐玥, 邵美荣, 唐凯, 等. 2021年黑龙江两次超级单体龙卷过程多尺度特征. 应用气象学报, 2022, 33(3): 305-318. doi: 10.11898/1001-7313.20220305Xu Y, Shao M R, Tang K, et al. Multiscale characteristics of two supercell tornados of Heilongjiang in 2021. J Appl Meteor Sci, 2022, 33(3): 305-318. doi: 10.11898/1001-7313.20220305 [3] 高洋, 蔡淼, 曹治强, 等. "21·7" 河南暴雨环境场及云的宏微观特征. 应用气象学报, 2022, 33(6): 682-695. doi: 10.11898/1001-7313.20220604Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. doi: 10.11898/1001-7313.20220604 [4] 孙力, 廉毅, 白乐生. 东北地区一次突发性暴雨分析. 高原气象, 1995, 14(4): 103-111. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX504.012.htmSun L, Lian Y, Bai L S. Analysis of a sudden rainstorm in Northeast China. Plateau Meteor, 1995, 14(4): 103-111. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX504.012.htm [5] 应爽, 袁大宇, 李尚锋. 一次东北冷涡不同阶段强对流天气特征对比分析. 气象与环境学报, 2014, 30(4): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201404002.htmYing S, Yuan D Y, Li S F. Comparative analysis of severe convective weather characteristics in different stages of Northeast China cold vortex. J Meteor Environ, 2014, 30(4): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201404002.htm [6] 王培, 沈新勇, 高守亭. 一次东北冷涡过程的数值模拟与降水分析. 大气科学, 2012, 36(1): 130-144. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201201011.htmWang P, Shen X Y, Gao S T. A numerical study and rainfall analysis of a cold vortex process over Northeast China. Chinese J Atmos Sci, 2012, 36(1): 130-144. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201201011.htm [7] Yang Y T, Cui X P, Zou Q L. Moisture sources tracking of a cold vortex rainstorm over Northeast China using FLEXPART. Atmos Sci Lett, 2022, 23(3). DOI: 10.1002/asl.1123. [8] 王振会, 李青, 楚艳丽, 等. 地基微波辐射计工作环境对K波段亮温观测影响. 应用气象学报, 2014, 25(6): 711-721. http://qikan.camscma.cn/article/id/20140607Wang Z H, Li Q, Chu Y L, et al. Environmental thermal radiation interference on atmospheric brightness temperature measurement with ground-based K-band microwave radiometer. J Appl Meteor Sci, 2014, 25(6): 711-721. http://qikan.camscma.cn/article/id/20140607 [9] 刘晓璐, 刘东升, 郭丽君, 等. 国产MWP967KV型地基微波辐射计探测精度. 应用气象学报, 2019, 30(6): 731-744. doi: 10.11898/1001-7313.20190609Liu X L, Liu D S, Guo L J, et al. The observational precision of domestic MWP967KV ground-based microwave radiometer. J Appl Meteor Sci, 2019, 30(6): 731-744. doi: 10.11898/1001-7313.20190609 [10] 王洪, 周后福, 王琛, 等. 基于微波辐射计和探空的FY-4A温度廓线检验. 应用气象学报, 2023, 34(3): 295-308. doi: 10.11898/1001-7313.20230304Wang H, Zhou H F, Wang C, et al. Accuracy validation of FY-4A temperature profile based on microwave radiometer and radiosonde. J Appl Meteor Sci, 2023, 34(3): 295-308. doi: 10.11898/1001-7313.20230304 [11] 林晓萌, 尉英华, 张楠, 等. 基于地基遥感设备构建遥感探空廓线. 应用气象学报, 2022, 33(5): 568-580. doi: 10.11898/1001-7313.20220505Lin X M, Wei Y H, Zhang N, et al. Construction of air-sounding-profile system based on foundation-remote-sensing equipment. J Appl Meteor Sci, 2022, 33(5): 568-580. doi: 10.11898/1001-7313.20220505 [12] Heggli M, Rauber R M, Snider J B. Field evaluation of a dual-channel microwave radiometer designed for measurements of integrated water vapor and cloud liquid water in the atmosphere. J Atmos Oceanic Technol, 1987, 4(1): 204-213. doi: 10.1175/1520-0426(1987)004<0204:FEOADC>2.0.CO;2 [13] Ruffieux D, Nash J, Jeannet P, et al. The COST 720 temperature, humidity, and cloud profiling campaign: TUC. Meteorologische Zeitschrift, 2006, 15(1): 5-10. doi: 10.1127/0941-2948/2006/0095 [14] Revercomb H E, Turner D D, Tobin D C, et al. The ARM program's water vapor intensive observation periods: Overview, initial accomplishments, and future challenges. Bull Amer Meteor Soc, 2003, 84(2): 217-236. doi: 10.1175/BAMS-84-2-217 [15] Löhnert U, Crewell S, Simmer C, et al. Profiling cloud liquid water by combining active and passive microwave measurements with cloud model statistics. J Atmos Oceanic Technol, 2001, 18(8): 1354-1366. doi: 10.1175/1520-0426(2001)018<1354:PCLWBC>2.0.CO;2 [16] 朱元竞, 胡成达, 甄进明, 等. 微波辐射计在人工影响天气研究中的应用. 北京大学学报(自然科学版), 1994, 30(5): 597-606. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ405.011.htmZhu Y J, Hu C D, Zhen J M, et al. Application of microwave radiometer in weather modification research. Acta Sci Nat Univ Pekin, 1994, 30(5): 597-606. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ405.011.htm [17] 陈洪滨. 利用高频微波被动遥感探测大气. 遥感技术与应用, 1999, 14(2): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS902.008.htmChen H B. Using high frequency microwave passive remote sensing to detect the atmosphere. Remote Sens Technol Appl, 1999, 14(2): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS902.008.htm [18] 雷恒池, 魏重, 沈志来, 等. 微波辐射计探测降雨前水汽和云液水. 应用气象学报, 2001, 12(增刊Ⅰ): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2001S1009.htmLei H C, Wei Z, Shen Z L, et al. Detection of water vapor and cloud liquid water before rainfall by microwave radiometer. J Appl Meteor Sci, 2001, 12(Suppl Ⅰ): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2001S1009.htm [19] 李万彪, 刘盈辉, 朱元竞, 等. HUBEX试验期间地基微波辐射计反演资料的应用研究. 气候与环境研究, 2001, 6(2): 203-208. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200102010.htmLi W B, Liu Y H, Zhu Y J, et al. An application of the measurements by the ground-based microwave radiometers in HUBEX. Clim Environ Res, 2001, 6(2): 203-208. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200102010.htm [20] 刘志雄, 戴泽军, 彭菊香, 等. 基于LAPS的一次局地强冰雹过程分析. 暴雨灾害, 2009, 28(4): 313-320. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX200904005.htmLiu Z X, Dai Z J, Peng J X, et al. Mechanism analysis of a local strong hail based on LAPS. Torrential Rain Disasters, 2009, 28(4): 313-320. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX200904005.htm [21] 黄治勇, 徐桂荣, 王晓芳, 等. 地基微波辐射资料在短时暴雨潜势预报中的应用. 应用气象学报, 2013, 24(5): 576-584. http://qikan.camscma.cn/article/id/20130507Huang Z Y, Xu G R, Wang X F, et al. Applications of ground-based microwave radiation data to short-term rainstorm and potential forecast. J Appl Meteor Sci, 2013, 24(5): 576-584. http://qikan.camscma.cn/article/id/20130507 [22] 敖雪, 王振会, 徐桂荣, 等. 地基微波辐射计资料在降水分析中的应用. 暴雨灾害, 2011, 30(4): 358-365. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201104012.htmAo X, Wang Z H, Xu G R, et al. Apply of ground-based microwave radiometer observation in precipitation events. Torrential Rain Disasters, 2011, 30(4): 358-365. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201104012.htm [23] 黄治勇, 周志敏, 徐桂荣, 等. 风廓线雷达和地基微波辐射计在冰雹天气监测中的应用. 高原气象, 2015, 34(1): 269-278. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201501029.htmHuang Z Y, Zhou Z M, Xu G R, et al. Monitoring application of hailstorm event with the observation of wind profile radar and ground-based microwave radiometer. Plateau Meteor, 2015, 34(1): 269-278. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201501029.htm [24] 汪小康, 徐桂荣, 院琨. 不同强度降水发生前微波辐射计反演参数的差异分析. 暴雨灾害, 2016, 35(3): 227-233. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201603005.htmWang X K, Xu G R, Yuan K. Different characteristic analysis of inversion parameters for heavy rainfall and weak rainfall by microwave radiometer data. Torrential Rain Disasters, 2016, 35(3): 227-233. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201603005.htm [25] 周冰雪, 朱朗峰, 吴昊, 等. 微波辐射计反演大气廓线精度及降水预报应用. 应用气象学报, 2023, 34(6): 717-728. doi: 10.11898/1001-7313.20230607Zhou B X, Zhu L F, Wu H, et al. Accuracy of atmospheric profiles retrieved from microwave radiometer and its application to precipitation forecast. J Appl Meteor Sci, 2023, 34(6): 717-728. doi: 10.11898/1001-7313.20230607 [26] 孙力, 郑秀雅, 王琪. 东北冷涡的时空分布特征及其与东亚大型环流系统之间的关系. 应用气象学报, 1994, 5(3): 297-303. http://qikan.camscma.cn/article/id/YYQX403005Sun L, Zheng X Y, Wang Q. Temporal and spatial distribution characteristics of northeast cold vortex and its relationship with large circulation system in East Asia. J Appl Meteor Sci, 1994, 5(3): 297-303. http://qikan.camscma.cn/article/id/YYQX403005 [27] 郑秀雅, 张廷治, 白人海. 东北暴雨. 北京: 气象出版社, 1992: 129-137.Zheng X Y, Zhang T Z, Bai R H. Northeast Rainstorm. Beijing: China Meteorological Press, 1992: 129-137. [28] 许皓琳, 郑佳锋, 姜涛, 等. 乌鲁木齐和成都两地机场雷暴降水水汽条件的分析研究. 气象, 2020, 46(11): 1440-1449. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202011005.htmXu H L, Zheng J F, Jiang T, et al. Analysis and research on water vapor condition of thunderstorm precipitation in Urumqi and Chengdu Airports. Meteor Mon, 2020, 46(11): 1440-1449. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202011005.htm [29] 齐彦斌, 郭学良, 金德镇. 一次东北冷涡中对流云带的宏微物理结构探测研究. 大气科学, 2007, 31(4): 621-634. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200704006.htmQi Y B, Guo X L, Jin D Z. An observational study of macro/microphysical structures of convective rainbands of a cold vortex over Northeast China. Chinese J Atmos Sci, 2007, 31(4): 621-634. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200704006.htm [30] 张佃国, 郭学良, 付丹红, 等. 2003年8~9月北京及周边地区云系微物理飞机探测研究. 大气科学, 2007, 31(4): 596-610. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200704004.htmZhang D G, Guo X L, Fu D H, et al. Aircraft observation on cloud microphysics in Beijing and its surrounding regions during august-september 2003. Chinese J Atmos Sci, 2007, 31(4): 596-610. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200704004.htm [31] 李聪, 姜有山, 姜迪, 等. 一次冰雹天气过程的多源资料观测分析. 气象, 2017, 43(9): 1084-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201709006.htmLi C, Jiang Y S, Jiang D, et al. Observation and analysis of a hailstorm event based on multi-source data. Meteor Mon, 2017, 43(9): 1084-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201709006.htm [32] 聂皓浩, 王婉, 郭晓军, 等. 基于机载微波辐射计的天津地区典型层状云水汽和液态水分布特征分析. 干旱气象, 2023, 41(4): 599-606. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX202304009.htmNie H H, Wang W, Guo X J, et al. Distribution characteristics of typical stratiform clouds water vapor and liquid water in Tianjin Area based on airborne microwave radiometer. J Arid Meteor, 2023, 41(4): 599-606. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX202304009.htm [33] 段英, 李云川, 赵亚民. 华北平原对流风暴的个例分析. 气象, 1999, 25(11): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX199911004.htmDuan Y, Li Y C, Zhao Y M. A case study of a convective storm over the North China Plain. Meteor Mon, 1999, 25(11): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX199911004.htm [34] 李昀英, 方乐锌, 寇雄伟. 卫星-地基-模式统一的自动观测云分类原则和标准的研究. 地球物理学报, 2014, 57(8): 2433-2441. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201408005.htmLi Y Y, Fang L X, Kou X W. Principle and standard of auto-observation cloud classification for satellite, ground measurements and model. Chinese J Geophys, 2014, 57(8): 2433-2441. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201408005.htm [35] 吴国雄, 蔡雅萍, 唐晓菁. 湿位涡和倾斜涡度发展. 气象学报, 1995, 53(4): 387-405. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB504.001.htmWu G X, Cai Y P, Tang X J. Development of wet potential vorticity and inclined vorticity. Acta Meteor Sinica, 1995, 53(4): 387-405. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB504.001.htm [36] 王秀娟, 姜忠宝, 马晓华, 等. 2018年吉林省一次暴雨过程成因分析. 气象与环境学报, 2020, 36(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX202002001.htmWang X J, Jiang Z B, Ma X H, et al. Causes analysis of heavy rainfall in 2018 in Jilin Province. J Meteor Environ, 2020, 36(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX202002001.htm [37] 刘英, 王东海, 张中锋, 等. 东北冷涡的结构及其演变特征的个例综合分析. 气象学报, 2012, 70(3): 354-370. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201203003.htmLiu Y, Wang D H, Zhang Z F, et al. A comprehensive analysis of the structure of a Northeast China-cold-vortex and its characteristics of evolution. Acta Meteor Sinica, 2012, 70(3): 354-370. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201203003.htm