Moisture Transfer Characteristics of Extreme Precipitation During the Warm Season in the Mid-south Section of the Taihang Mountains
-
摘要: 利用自动气象站观测降水、ERA5(ECMWF reanalysis version 5)再分析资料和GDAS(Global Data Assimilation System)资料,基于SOMs(self-organizing maps)算法和天气学检验方法,归纳总结2012—2021年太行山中南段75次暖季极端降水事件的环流形势,探讨不同形势下的水汽输送特征及降水差异。结果表明:影响太行山中南段暖季极端降水的环流形势可分为高空槽型、低涡型、副高纬向型、副高经向型和西北气流型5种,其中以高空槽型最为常见,西北气流型最少。低涡型存在孟加拉湾、南海和西北太平洋水汽输送通道,其日降水极值、最大小时降水强度和影响范围在所有类型中均最大,与低涡型相比,高空槽型缺少西北太平洋水汽输送通道,而副高纬向型和副高经向型缺少孟加拉湾水汽输送通道。利用HYSPLIT(hybrid single-particle Lagrangian integrated trajectory)模型追踪气团发现:低涡型和副高纬向型均以来自西北太平洋的水汽输送贡献最大,高空槽型和副高经向型分别以来自黄海沿岸和南海的水汽输送贡献最大。整层水汽收支分析表明:太行山中南段暖季极端降水最主要的水汽流入来自南边界,其他流入边界及各边界水汽流入贡献的相对大小与环流形势有关。Abstract: Extreme precipitation events in China have increased significantly in recent decades. Extreme precipitation can easily trigger natural disasters such as urban waterlogging, landslides, and mudslides, which poses a serious threat to the social economy, human lives and property. Currently, research on extreme precipitation has attracted widespread attention.To increase the accuracy of extreme precipitation forecasts, precipitation data from automatic meteorological stations, ERA5 reanalysis data, and Global Data Assimilation System (GDAS) data are used to summarize the synoptic circulation affecting 75 extreme precipitation events in the mid-south section of the Taihang Mountains during the warm season (May-September) for the period of 2012-2021 on the basis of self-organizing maps (SOMs) neural network, synoptic verification method, and hybrid single-particle Lagrangian integrated trajectory (HYSPLIT) model. Characteristics of moisture transfer and the resulting precipitation for various types of synoptic circulation are also discussed. Results show that there are five types of synoptic circulation that affect extreme precipitation during the warm season in the mid-south section of the Taihang Mountains, namely the upper trough type, low vortex type, zonal subtropical high type, meridional subtropical high type, and northwest airflow type. The upper trough type is the most frequent, accounting for 40.0%, while the northwest airflow type is the least common, representing less than 5%. The daily extreme, maximum hourly intensity, and impact range of precipitation resulting from the low vortex circulation are the highest among all types. There are three moisture transfer passages for the low vortex type: The Bay of Bengal, South China Sea, and Northwest Pacific. Compared to the low vortex type, the upper trough type cannot transfer moisture through the Northwest Pacific passage, while neither the zonal subtropical high type nor the meridional subtropical high type can transfer moisture through the Bay of Bengal passage. Air mass tracking results indicate that the contribution of moisture transfer from the Northwest Pacific is the highest for both the low vortex type and the zonal subtropical high type, the contribution of moisture transfer from the Yellow Sea coast is the highest for the upper trough type, and the contribution of moisture transfer from the South China Sea is the highest for the meridional subtropical high type. Analysis of the moisture budget in the whole troposphere reveals that the main moisture inflow of extreme precipitation during the warm season in the mid-south section of the Taihang Mountains comes from the southern boundary. Other inflow boundaries and the relative contribution of all inflow boundaries is related to the synoptic circulation. The moisture budget at the boundaries of the lower troposphere differs from that in the whole troposphere.
-
图 2 2012—2021年5—9月不同环流型极端降水事件合成的500 hPa位势高度(等值线,单位:dagpm) 和850 hPa风场(风矢量) (黑色矩形框为研究区范围)
Fig. 2 Composited 500 hPa geopotential height (the contour, unit:dagpm) and 850 hPa wind (the vector) for different synoptic circulation types affecting extreme precipitation events from May to Sep during 2012—2021 (the black rectangle box denotes the target area)
图 6 HYSPLIT模型对2012—2021年5—9月不同环流型极端降水事件合成的2000 m高度气块后向追踪168 h三维轨迹聚类(不同颜色代表不同的轨迹路径,轨迹路径一端的数值代表该轨迹数占比)
Fig. 6 Clustered three dimensional backward trajectories of air parcel in 168 h at 2000 m altitude for different synoptic circulation types affecting extreme precipitation events by HYSPLIT model from May to Sep during 2012—2021 (different colors denote different trajectory paths, the value at one end of the trajectory path denotes proportion of the trajectory)
表 1 影响太行山中南段暖季极端降水的5种环流类型统计特征
Table 1 Statistical characteristics of five synoptic circulation types affecting extreme precipitation events during the warm season in the mid-south section of the Taihang Mountains
特征 低涡型 高空槽型 副高纬向型 副高经向型 西北气流型 个例数量 11 30 20 11 3 个例数占比/% 14.6 40.0 26.8 14.6 4.0 平均影响站数 50 27 31 29 20 平均持续时间/h 10.4 9.0 10.5 7.8 4.9 最大小时降水强度/(mm·h-1) 201.9 80.5 84.9 96.6 77.8 日降水极值/mm 624.1 223.7 206.6 169.6 109.5 表 2 2012—2021年5—9月太行山中南段各边界上的整层水汽通量(单位:kg·m-1·s-1)
Table 2 Integrated moisture flux at boundaries of the mid-south section of the Taihang Mountains from May to Sep during 2012-2021 (unit:kg·m-1·s-1)
环流类型 边界 08:00 11:00 14:00 17:00 20:00 23:00 次日02:00 次日05:00 低涡型 西 -1415.4 -1562.7 -1349.8 -1307.6 -1373.6 -1491.0 -798.7 -508.9 东 -2149.8 -2600.5 -2595.0 -2496.2 -2805.0 -2420.1 -1881.6 -1458.4 南 3015.5 3237.0 3579.5 3197.5 3250.1 3865.4 3820.4 3288.7 北 1478.3 1709.3 2072.9 2026.0 1846.8 2002.0 1861.1 1330.3 高空槽型 西 1691.3 1840.0 2176.3 2228.9 2131.4 1737.0 2032.3 2168.8 东 1872.0 1718.2 1928.2 2166.8 2123.0 2435.9 3463.2 3545.5 南 2695.2 3033.9 3262.2 2971.0 2567.3 2942.3 2863.8 1906.7 北 1037.1 1369.3 1485.5 1325.1 964.7 975.8 736.8 180.8 副高纬向型 西 2422.4 2517.4 2619.4 2545.1 2344.3 2098.6 2595.7 2847.2 东 3138.0 3157.7 3408.6 3253.1 2755.3 2920.0 3504.2 3734.7 南 3415.7 3466.4 3455.6 3038.2 2438.6 2879.3 3096.1 2457.2 北 687.9 773.3 687.9 541.1 345.5 437.1 372.0 67.5 副高经向型 西 1852.3 2085.5 2443.7 2438.5 2257.7 2010.6 2502.4 2512.5 东 1864.6 1902.4 2320.7 2655.4 2893.5 3145.4 4054.0 4659.6 南 3467.1 3634.7 4003.8 4196.8 3546.3 4235.3 4679.0 4110.4 北 2125.0 2318.2 2332.1 2354.5 2010.9 2179.1 2096.9 1472.6 -
[1] Alexander L V, Zhang X, Peterson T C, et al.Global observed changes in daily climate extremes of temperature and precipitation.J Geophys Res, 2006, 111(D5).DOI: 10.1029/2005JD006290. [2] Donat M G, Lowry A L, Alexander L V, et al. Addendum: More extreme precipitation in the world's dry and wet regions. Nat Climate Change, 2017, 7(2): 154-158. doi: 10.1038/nclimate3160 [3] 郭蕾, 李谢辉, 刘雨亭. 城市化对川渝地区极端气候事件的影响. 应用气象学报, 2023, 34(5): 574-585. doi: 10.11898/1001-7313.20230506Guo L, Li X H, Liu Y T. Impacts of urbanization on extreme climate events in Sichuan-Chongqing Region. J Appl Meteor Sci, 2023, 34(5): 574-585. doi: 10.11898/1001-7313.20230506 [4] 卢珊, 胡泽勇, 王百朋, 等. 近56年中国极端降水事件的时空变化格局. 高原气象, 2020, 39(4): 683-693. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202004002.htmLu S, Hu Z Y, Wang B P, et al. Spatio-temporal patterns of extreme precipitation events over China in recent 56 years. Plateau Meteor, 2020, 39(4): 683-693. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202004002.htm [5] 杨浩, 周文, 汪小康, 等. "21·7" 河南特大暴雨降水特征及极端性分析. 气象, 2022, 48(5): 571-579. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202212006.htmYang H, Zhou W, Wang X K, et al. Analysis on extremity and characteristics of the "21·7" severe torrential rain in Henan Province. Meteor Mon, 2022, 48(5): 571-579. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202212006.htm [6] 宝兴华, 夏茹娣, 罗亚丽, 等. "21·7" 河南特大暴雨气象和水文雨量观测对比. 应用气象学报, 2022, 33(6): 668-681. doi: 10.11898/1001-7313.20220603Bao X H, Xia R D, Luo Y L, et al. Comparative analysis on meteorological and hydrological rain gauge observations of the extreme heavy rainfall event in Henan Province during July 2021. J Appl Meteor Sci, 2022, 33(6): 668-681. doi: 10.11898/1001-7313.20220603 [7] 武麦凤, 王旭仙, 孙健康, 等. 2003年渭河流域5次致洪暴雨过程的水汽场诊断分析. 应用气象学报, 2007, 18(2): 225-231. doi: 10.3969/j.issn.1001-7313.2007.02.013Wu M F, Wang X X, Sun J K, et al. Diagnostic comparative analysis on five flooding heavy rains moisture field of Weihe River valley in 2003. J Appl Meteor Sci, 2007, 18(2): 225-231. doi: 10.3969/j.issn.1001-7313.2007.02.013 [8] 冯晋勤, 刘铭, 蔡菁. 闽西山区"7·22"极端降水过程中尺度对流特征. 应用气象学报, 2018, 29(6): 748-758. doi: 10.11898/1001-7313.20180610Feng J Q, Liu M, Cai J. Meso-scale convective characteristics of "7·22" extreme rain in the west mountainous area of Fujian. J Appl Meteor Sci, 2018, 29(6): 748-758. doi: 10.11898/1001-7313.20180610 [9] Xu J, Li R M, Zhang Q H, et al. Extreme large-scale atmospheric circulation associated with the "21·7" Henan flood. Sci China Earth Sci, 2022, 65(10): 1847-1860. doi: 10.1007/s11430-022-9975-0 [10] 陈训来, 徐婷, 王蕊, 等. 珠江三角洲"9·7" 极端暴雨精细观测特征及成因. 应用气象学报, 2024, 35(1): 1-16. doi: 10.11898/1001-7313.20240101Chen X L, Xu T, Wang R, et al. Fine observation characteristics and causes of "9·7" extreme heavy rainstorm over Pearl River Delta, China. J Appl Meteor Sci, 2024, 35(1): 1-16. doi: 10.11898/1001-7313.20240101 [11] You Q L, Kang S C, Aguilar E, et al. Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961-2003. Climate Dyn, 2011, 36(11): 2399-2417. [12] 卢睿, 朱志伟, 李天明, 等. 淮河流域夏季极端降水频次空间分布的客观分类及其形成机理. 大气科学, 2021, 45(6): 1415-1432. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202106017.htmLu R, Zhu Z W, Li T M, et al. Objective clustering of spatial patterns of summer extreme precipitation frequency over the Huaihe River Basin and their formation mechanisms. Chinese J Atmos Sci, 2021, 45(6): 1415-1432. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202106017.htm [13] 陈红专. 湖南极端降水的气候特征及天气系统分型研究. 气象, 2021, 47(10): 1219-1232. doi: 10.7519/j.issn.1000-0526.2021.10.005Chen H Z. Climatic characteristics and weather system classification of extreme precipitation in Hunan Province. Meteor Mon, 2021, 47(10): 1219-1232. doi: 10.7519/j.issn.1000-0526.2021.10.005 [14] 孙婧超, 管兆勇, 李明刚, 等. 华南地区7—10月两类区域性极端降水事件特征及环流异常对比. 气象学报, 2019, 77(1): 43-57. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201901004.htmSun J C, Guan Z Y, Li M G, et al. Anomalous circulation patterns in association with two types of regional daily precipitation extremes over South China from July to October. Acta Meteor Sinica, 2019, 77(1): 43-57. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201901004.htm [15] 符娇兰, 马学款, 陈涛, 等. "16·7" 华北极端强降水特征及天气学成因分析. 气象, 2017, 43(5): 528-539. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201705002.htmFu J L, Ma X K, Chen T, et al. Characteristics and synoptic mechanism of the July 2016 extreme precipitation event in North China. Meteor Mon, 2017, 43(5): 528-539. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201705002.htm [16] 高洋, 蔡淼, 曹治强, 等. "21·7" 河南暴雨环境场及云的宏微观特征. 应用气象学报, 2022, 33(6): 682-695. doi: 10.11898/1001-7313.20220604Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. doi: 10.11898/1001-7313.20220604 [17] 齐道日娜, 何立富, 王秀明, 等. "7·20" 河南极端暴雨精细观测及热动力成因. 应用气象学报, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101 [18] 车少静, 李想, 丁婷, 等. 秋行夏令: 2021年10月初北方致灾性持续暴雨及水汽极端性分析. 大气科学学报, 2021, 44(6): 825-834. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202106003.htmChe S J, Li X, Ding T, et al. Typical summer rainstorm occurred in mid-autumn: Analysis of a disastrous continuous rainstorm and its extreme water vapor transport in northern China in early October 2021. Trans Atmos Sci, 2021, 44(6): 825-834. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202106003.htm [19] 布和朝鲁, 诸葛安然, 谢作威, 等. 2021年"7.20" 河南暴雨水汽输送特征及其关键天气尺度系统. 大气科学, 2022, 46(3): 725-744. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202203013.htmBueh C, Zhuge A R, Xie Z W, et al. Water vapor transportation features and key synoptic-scale systems of the "7.20" rainstorm in Henan Province in 2021. Chinese J Atmos Sci, 2022, 46(3): 725-744. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202203013.htm [20] 王婧羽, 崔春光, 王晓芳, 等. 2012年7月21日北京特大暴雨过程的水汽输送特征. 气象, 2014, 40(2): 133-145. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201402001.htmWang J Y, Cui C G, Wang X F, et al. Analysis on water vapor transport and budget of the severe torrential rain over Beijing Region on 21 July 2012. Meteor Mon, 2014, 40(2): 133-145. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201402001.htm [21] 崔晓鹏, 杨玉婷. "21·7" 河南暴雨水汽源地追踪和定量贡献分析. 大气科学, 2022, 46(6): 1543-1556. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202206019.htmCui X P, Yang Y T. Tracking and quantitative contribution analyses of moisture sources of rainstorm in Henan Province in July 2021. Chinese J Atmos Sci, 2022, 46(6): 1543-1556. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202206019.htm [22] 施小英, 施晓晖. 夏季青藏高原东南部水汽收支气候特征及其影响. 应用气象学报, 2008, 19(1): 41-46. http://qikan.camscma.cn/article/id/20080108Shi X Y, Shi X H. Climatological characteristics of summertime moisture budget over the southeast part of Tibetan Plateau with their impacts. J Appl Meteor Sci, 2008, 19(1): 41-46. http://qikan.camscma.cn/article/id/20080108 [23] 廖荣伟, 赵平. 东亚季风湿润区水分收支的气候特征. 应用气象学报, 2010, 21(6): 649-658. doi: 10.3969/j.issn.1001-7313.2010.06.002Liao R W, Zhao P. Climate characteristics of moisture budget in humid region affected by East Asian monsoon. J Appl Meteor Sci, 2010, 21(6): 649-658. doi: 10.3969/j.issn.1001-7313.2010.06.002 [24] 俞琳飞, 李会龙, 杨永辉, 等. 基于CMORPH CRT产品的太行山区降水时空格局. 中国生态农业学报(中英文), 2020, 28(2): 305-316. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN202002015.htmYu L F, Li H L, Yang Y H, et al. Spatial and temporal precipitation patterns using the CMOPRH CRT product over the Taihang Mountains. Chinese J Eco-Agric, 2020, 28(2): 305-316. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN202002015.htm [25] 何雪莉, 李亚男, 石天宇, 等. 1961—2018年太行山东西侧降水变化. 山地学报, 2022, 40(1): 43-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202201004.htmHe X L, Li Y N, Shi T Y, et al. Precipitation changes to the eastern and western sides of the Taihang Mountains from 1961 to 2018. Mt Res, 2022, 40(1): 43-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202201004.htm [26] 韩函, 吴昊旻, 黄安宁. 华北地区夏季降水日变化的时空分布特征. 大气科学, 2017, 41(2): 263-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201702004.htmHan H, Wu H M, Huang A N. Temporal and spatial distributions of the diurnal cycle of summer precipitation over North China. Chinese J Atmos Sci, 2017, 41(2): 263-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201702004.htm [27] 汪小康, 崔春光, 王婧羽, 等. "21·7" 河南特大暴雨水汽和急流特征诊断分析. 气象, 2022, 48(5): 533-544. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202205004.htmWang X K, Cui C G, Wang J Y, et al. Diagnostic analysis on water vapor and jet characteristics of the July 2021 severe torrential rain in Henan Province. Meteor Mon, 2022, 48(5): 533-544. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202205004.htm [28] 翟盘茂, 潘晓华. 中国北方近50年温度和降水极端事件变化. 地理学报, 2003, 58(增刊Ⅰ): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB2003S1000.htmZhai P M, Pan X H. Change in extreme temperature and precipitation over Northern China during the second half of the 20th century. Acta Geographica Sinica, 2003, 58(Suppl Ⅰ): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB2003S1000.htm [29] Bonsal B R, Zhang X, Vincent L A, et al. Characteristics of daily and extreme temperatures over Canada. J Climate, 2001, 14(9): 1959-1976. [30] Kohonen T. Self-organized formation of topologically correct feature maps. Biol Cybern, 1982, 43(1): 59-69. [31] 李湘瑞, 范可, 徐志清. 2000年后中国北方东部地区夏季极端降水减少及水汽输送特征. 大气科学, 2019, 43(5): 1109-1124. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201905012.htmLi X R, Fan K, Xu Z Q. Decrease in extreme precipitation in summer over East Northern China and the water-vapor transport characteristics after year 2000. Chinese J Atmos Sci, 2019, 43(5): 1109-1124. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201905012.htm [32] 江志红, 梁卓然, 刘征宇, 等. 2007年淮河流域强降水过程的水汽输送特征分析. 大气科学, 2011, 35(2): 361-372. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201102015.htmJiang Z H, Liang Z R, Liu Z Y, et al. A diagnostic study of water vapor transport and budget during heavy precipitation over the Huaihe River Basin in 2007. Chinese J Atmos Sci, 2011, 35(2): 361-372. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201102015.htm [33] 王美月, 王磊, 李谢辉, 等. 三江源地区暴雨的水汽输送源地及路径研究. 高原气象, 2022, 41(1): 68-78. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202201007.htmWang M Y, Wang L, Li X H, et al. Study on water vapor transport source and path of rainstorm in Sanjiangyuan Area. Plateau Meteor, 2022, 41(1): 68-78. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202201007.htm [34] 林佳璐, 李英, 柳龙生. 风暴-低涡影响下青藏高原一次强降水过程. 应用气象学报, 2023, 34(2): 166-178. doi: 10.11898/1001-7313.20230204Lin J L, Li Y, Liu L S. A heavy precipitation process over the Tibetan Plateau under the joint effects of a tropical cyclone and vortex. J Appl Meteor Sci, 2023, 34(2): 166-178. doi: 10.11898/1001-7313.20230204 [35] Draxler R R, Hess G D. An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition. Aust Met Mag, 1998, 47(4): 295-308.