Climatology of Winter Cold Waves and Associated Atmospheric Circulation Anomalies in China During the Last 40 Years
-
摘要: 利用1980—2023年高分辨率中国气象站观测数据,根据寒潮标准及强度指数,对中国寒潮事件的强度及影响区域进行客观分类,探讨全国性、区域性寒潮事件的时空变化特征和环流演变。结果表明:近40年我国冬季寒潮频次呈显著减少趋势,其影响范围扩大,而强寒潮的强度呈显著增加趋势,且年际变化幅度明显增大。中国寒潮冷空气主要来源于新地岛东南地区,路径因寒潮类型而异。分析全国型、东北华北型和西北华北型寒潮前期和同期大气环流异常特征发现:格陵兰岛的异常深厚暖高压是全国型寒潮的重要前兆,欧亚大陆对流层中高层纬向波列是其爆发的显著特征;东北华北型寒潮与冷涡在中低纬度异常高压系统阻挡下的东移有关;西北华北型寒潮与东欧平原上空暖性高压脊的发展及欧亚大陆两脊一槽的形势密切相关。所有类型寒潮爆发前均有乌拉尔阻塞高压的维持和西伯利亚地区冷空气的堆积。Abstract: Based on daily high-resolution temperature observations at 1941 meteorological stations in China from 1980 to 2023, stations reaching standard for cold wave and 418 cold wave processes (including 152 strong cold waves processes) in winter are identified according to the monitoring indices of cold air processes. And cold wave processes are objectively classified according to their intensity and influencing areas using K-means++ clustering method. The temporal and spatial characteristics of the single-station cold waves and 418 cold wave events are discussed. Results show that the frequency of cold waves in the high affecting areas of China has not increased significantly but has shown a decreasing trend over the last 40 years. The increasing trend of frequency and intensity of single-station cold waves in the middle-lower reaches of the Yangtze River Plain is significant. Additionally, the intensity of single-station cold waves in South China is also noticeably enhanced. The frequency of winter cold wave events in China has decreased significantly in the last 40 years with an expanding range of influence, while the intensity of strong cold wave events has increased significantly, accompanied by a marked increase in the amplitude of interannual variations. The cold air associated with cold waves in China mainly originates from the southeast of Novaya Zemlya, and its trajectory varies depending on the type of cold wave. Based on the fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis data (ERA5), characteristics of atmospheric circulation anomalies in the preceding and the simultaneous period for cold wave processes in the countrywide, Northeast-North China and Northwest-North China are analyzed. It is found that the deep warm high pressure in Greenland is an important precursor of the countrywide cold wave, and the zonal wave train in the middle and upper troposphere of Eurasia is a prominent feature of the cold wave outbreak. The cold wave in Northeast-North China is related to the eastward movement of the cold vortex under the block of anomalous high-pressure system in the mid-low latitudes. The cold wave in Northwest-North China is closely related to the development of a warm high ridge over the East European Plain and the circulation situation of two-ridge-one-trough in mid-high latitudes of Eurasia. All types of cold waves are preceded by the maintenance of the Ural blocking high and the accumulation of cold air in Siberia.
-
Key words:
- cold wave;
- tracks of cold air;
- Siberian high;
- Ural blocking high
-
图 1 中国冬季6类寒潮事件峰值日24 h降温幅度合成(填色) (填色区表示降温幅度达到0.05显著性水平,红点表示单站寒潮发生的频次) (a)全国型,(b)东北华北型,(c)西北华北型,(d)东部型,(e)东北西南型,(f)西南型
Fig. 1 Composites of the daily maximum temperature drops within 24 hours (the shaded) at their peak days for six types of cold waves (the shaded denotes temperature drops passing the test of 0.05 level, the red dot denotes frequency of single-station cold waves) (a)countrywide, (b)Northeast-North China, (c)Northwest-North China, (d)East China, (e)Northeast-Southwest China, (f)Southwest China
图 2 418个寒潮个例的冷空气路径(红色粗线表示最大2 m温度负距平合成的冷空气路径,绿色点和紫色点分别表示路径的起点和终点) (a)全国型,(b)东北华北型,(c)西北华北型,(d)东部型,(e)东北西南型,(f)西南型
Fig. 2 Trajectories of cold air for 418 cold waves (the thick red line denotes cold air trajectory composited by the minimum value of 2 m temperature negative anomalies, green and the purple dots denote starting and ending of trajectories, respetively) (a)countrywide, (b)Northeast-North China, (c)Northwest-North China, (d)East China, (e)Northeast-Southwest China, (f)Southwest China
图 3 1980—2022年冬季中国单站寒潮频次和线性趋势系数的空间分布(红点表示趋势达到0.05显著性水平) (a)频次多年平均值,(b)频次最大值,(c)频次线性趋势,(d)48 h最大降温幅度线性趋势
Fig. 3 Spatial distribution of single-station cold wave frequency and linear trend coefficient in China during 1980-2022 (the red dot denotes passing the test of 0.05 level) (a)climate mean of cold wave frequency, (b)the maximum frequency of cold wave, (c)linear trend coefficients of cold wave frequency, (d)linear trend coefficients of the maximum temperature drops within 48 hours
图 5 全国型寒潮500 hPa位势高度场(等值线,单位:gpm) 及其距平(填色) 的合成图(等值线间隔为40 gpm,粗等值线为5440 gpm,黑色点区表示500 hPa位势高度距平达到0.05显著性水平)
Fig. 5 Composites of 500 hPa geopotential height (the contour, unit:gpm) and its anomalies (the shaded) for countrywide cold waves (the contour interval is 40 gpm and the thick line denotes 5440 gpm, the black dot denotes anomalies passing the test of 0.05 level)
-
[1] 宋艳玲, 周广胜, 郭建平, 等.北方冬小麦冬季冻害及播期延迟应对.应用气象学报, 2022, 33(4):454-465. doi: 10.11898/1001-7313.20220406Song Y L, Zhou G S, Guo J P, et al. Freezing injury of winter wheat in Northern China and delaying sowing date to adapt. J Appl Meteor Sci, 2022, 33(4): 454-465. doi: 10.11898/1001-7313.20220406 [2] 陶诗言. 十年来我国对东亚寒潮的研究. 气象学报, 1959, 17(3): 226-230. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB195903006.htmTao S Y. China's research on the cold wave in East Asia in the past decade. Acta Meteor Sinica, 1959, 17(3): 226-230. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB195903006.htm [3] 徐羹慧. 寒潮中期预报方案. 气象, 1985, 11(2): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX198502001.htmXu G H. Medium-term forecast scheme of cold wave. Meteor Mon, 1985, 11(2): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX198502001.htm [4] 朱乾根, 林锦瑞, 寿绍文, 等. 天气学原理和方法(第3版). 北京: 气象出版社, 2000: 269-319.Zhu Q G. Lin J R, Shou S W, et al. Principles and Methods of Meteorology(3rd Ed). Beijing: China Meteorological Press, 2000: 269-319. [5] 丁一汇. 东亚寒潮冷空气的传播和行星尺度作用. 应用气象学报, 1991, 2(2): 124-132. http://qikan.camscma.cn/article/id/19910218Ding Y H. The propagation of the winter monsoon during cold air outbreaks in East Asia and the associated planetary-scale effect. Q J Appl Meteor, 1991, 2(2): 124-132. http://qikan.camscma.cn/article/id/19910218 [6] 仇永康, 李晓东, 仇永炎. 我国冷空气活动的特征及其与欧亚大陆积雪的关系. 应用气象学报, 1992, 3(2): 235-241. http://qikan.camscma.cn/article/id/19920239Qiu Y K, Li X D, Qiu Y Y. Statistical features of the cold waves invaded China and their relation to the snow cover area over the Eurasian continent. Q J Appl Meteor, 1992, 3(2): 235-241. http://qikan.camscma.cn/article/id/19920239 [7] 张培忠, 丁一汇, 郭春生, 等. 东亚寒潮高压的位涡诊断研究. 应用气象学报, 1994, 5(1): 49-56. http://qikan.camscma.cn/article/id/19940109Zhang P Z, Ding Y H, Guo C S, et al. Study on potential vorticity diagnosis of cold wave high pressure in East Asia. Q J Appl Meteor, 1994, 5(1): 49-56. http://qikan.camscma.cn/article/id/19940109 [8] 魏凤英. 气候变暖背景下我国寒潮灾害的变化特征. 自然科学进展, 2008, 18(3): 289-295. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200803007.htmWei F Y. Variation characteristics of cold wave disasters in China under the background of climate warming. Progress in Natural Science, 2008, 18(3): 289-295. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200803007.htm [9] 朱姜韬, 路瑶, 李艳. 1970—2019年中国大陆地区寒潮年代际变化及大气环流成因. 兰州大学学报(自然科学版), 2022, 58(3): 337-346;355. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK202203007.htmZhu J T, Lu Y, Li Y. Study on interdecadal variations of cold wave and genesis of atmospheric circulation in the Chinese Mainland from 1970 to 2019. J Lanzhou Univ Nat Sci, 2022, 58(3): 337-346;355. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK202203007.htm [10] 马力, 韦志刚, 李娴茹, 等. 2000年前后我国寒潮活动特征的比较分析. 冰川冻土, 2022, 44(6): 1757-1772. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202206008.htmMa L, Wei Z G, Li X R, et al. Comparative analysis of the cold surge characteristics over China before and after 2000. J Glaciol Geocryol, 2022, 44(6): 1757-1772. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202206008.htm [11] 王遵娅, 丁一汇. 近53年中国寒潮的变化特征及其可能原因. 大气科学, 2006, 30(6): 1068-1076. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200606001.htmWang Z Y, Ding Y H. Climate change of the cold wave frequency of China in the last 53 years and the possible reasons. Chinese J Atmos Sci, 2006, 30(6): 1068-1076. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200606001.htm [12] 钱维宏, 张玮玮. 我国近46年来的寒潮时空变化与冬季增暖. 大气科学, 2007, 31(6): 1266-1278. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200706022.htmQian W H, Zhang W W. Changes in cold wave events and warm winter in China during the last 46 years. Chinese J Atmos Sci, 2007, 31(6): 1266-1278. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200706022.htm [13] 周琳, 孙照渤. 1961—2010年我国冷空气的活动特征. 大气科学学报, 2015, 38(3): 342-353. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201503006.htmZhou L, Sun Z B. Activity characteristics of cold air in China from 1961 to 2010. Trans Atmos Sci, 2015, 38(3): 342-353. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201503006.htm [14] 李红英, 林纾, 王云鹏, 等. 1961—2017年京津冀地区寒潮活动特征. 干旱气象, 2022, 40(1): 41-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX202201005.htmLi H Y, Lin S, Wang Y P, et al. Characteristics of cold wave activities in Beijing-Tianjin-Hebei Region from 1961 to 2017. J Arid Meteor, 2022, 40(1): 41-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX202201005.htm [15] 李菲, 李辑, 林蓉, 等. 东北地区寒潮特征及与影响因子关系的年代际变化. 江西农业学报, 2022, 34(7): 142-149. https://www.cnki.com.cn/Article/CJFDTOTAL-JXNY202207024.htmLi F, Li J, Lin R, et al. Interdecadal variation of cold wave characteristics and its relationship with influencing factors in Northeast China. Acta Agric Jiangxi, 2022, 34(7): 142-149. https://www.cnki.com.cn/Article/CJFDTOTAL-JXNY202207024.htm [16] 刘美娇, 李颖, 孙美平. 1961—2018年河西走廊寒潮频次时空变化特征及其环流影响因素研究. 冰川冻土, 2020, 42(3): 801-811. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202003008.htmLiu M J, Li Y, Sun M P. Spatial-temporal variation of cold wave frequency and its influencing factors of circulation in Hexi Corridor during 1961-2018. J Glaciol Geocryol, 2020, 42(3): 801-811. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202003008.htm [17] 肖红茹, 龙柯吉, 伍清, 等. 1980—2017年四川盆地寒潮及其气温变化特征. 高原山地气象研究, 2020, 40(4): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX202004008.htmXiao H R, Long K J, Wu Q, et al. Temperature changes of cold wave in Sichuan Basin from 1980 to 2017. Plateau Mt Meteor Res, 2020, 40(4): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX202004008.htm [18] 宋艳玲. 全球干旱指数研究进展. 应用气象学报, 2022, 33(5): 513-526. doi: 10.11898/1001-7313.20220501Song Y L. Global research progress of drought indices. J Appl Meteor Sci, 2022, 33(5): 513-526. doi: 10.11898/1001-7313.20220501 [19] 任素玲, 牛宁, 覃丹宇, 等. 2021年2月北美极端低温暴雪的卫星遥感监测. 应用气象学报, 2022, 33(6): 696-710. doi: 10.11898/1001-7313.20220605Ren S L, Niu N, Qin D Y, et al. Extreme cold and snowstorm event in North America in February 2021 based on satellite data. J Appl Meteor Sci, 2022, 33(6): 696-710. doi: 10.11898/1001-7313.20220605 [20] 何立富, 齐道日娜, 余文. 引发东北极端暴雪的黄渤海气旋爆发性发展机制. 应用气象学报, 2022, 33(4): 385-399. doi: 10.11898/1001-7313.20220401He L F, Chyi D, Yu W. Development mechanisms of the Yellow Sea and Bohai Sea cyclone causing extreme snowstorm in Northeast China. J Appl Meteor Sci, 2022, 33(4): 385-399. doi: 10.11898/1001-7313.20220401 [21] Wu B Y, Yang K, Francis J A. A cold event in Asia during January-February 2012 and its possible association with Arctic Sea ice loss. J Climate, 2017, 30(19): 7971-7990. [22] 武炳义. 2012年1月、2016年1月东亚两次极端严寒事件及其与北极增暖的可能联系. 大气科学学报, 2019, 42(1): 14-27. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201901003.htmWu B Y. Two extremely cold events in East Asia in January of 2012 and 2016 and their possible associations with Arctic warming. Trans Atmos Sci, 2019, 42(1): 14-27. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201901003.htm [23] 张琳, 吕俊梅, 丁明虎. 2015年初北极极端气旋对中国寒潮的影响. 应用气象学报, 2020, 31(3): 315-327. doi: 10.11898/1001-7313.20200306Zhang L, Lü J M, Ding M H. Impact of Arctic extreme cyclones on cold spells in China during early 2015. J Appl Meteor Sci, 2020, 31(3): 315-327. doi: 10.11898/1001-7313.20200306 [24] Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Q J R Meteor Soc, 2020, 146(730): 1999-2049. [25] 全国气候与气候变化标准化技术委员会. 冷空气过程监测指标QX/T 393—2017. 北京: 气象出版社, 2017.National Technical Committee on Standardization of Climate and Climate Change. Monitoring Indices of Cold Air Processes QX/T 393-2017. Beijing: China Meteorological Press, 2017. [26] 国家气候中心. 中国灾害性天气气候图集(1961—2015年). 北京: 气象出版社, 2018.National Climate Center. Atlas of Hazardous Weather and Climate in China(1961-2015). Beijing: China Meteorological Press, 2018. [27] Peng J B, Bueh C. The definition and classification of extensive and persistent extreme cold events in China. Atmos Ocean Sci Lett, 2011, 4(5): 281-286. [28] 布和朝鲁, 彭京备, 谢作威, 等. 冬季大范围持续性极端低温事件与欧亚大陆大型斜脊斜槽系统研究进展. 大气科学, 2018, 42(3): 656-676. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201803014.htmBueh C, Peng J B, Xie Z W, et al. Recent progresses on the studies of wintertime extensive and persistent extreme cold events in China and large-scale tilted ridges and troughs over the Eurasian continent. Chinese J Atmos Sci, 2018, 42(3): 656-676. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201803014.htm [29] 彭京备, 孙淑清. 我国南方持续性低温与东亚冬季风"北弱南强"模态的关系. 大气科学, 2017, 41(4): 691-701. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201704003.htmPeng J B, Sun S Q. The relationship between persistent cold spell in Southern China and the variation mode of East Asian winter monsoon with opposite signs in the north and south. Chinese J Atmos Sci, 2017, 41(4): 691-701. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201704003.htm [30] 张智超, 周放, 张浩鑫, 等. BCC_CSM1.1m对冬季典型环流系统的预测评估. 应用气象学报, 2023, 34(1): 27-38. doi: 10.11898/1001-7313.20230103Zhang Z C, Zhou F, Zhang H X, et al. Predication of typical winter circulation systems based on BCC_CSM1.1m model. J Appl Meteor Sci, 2023, 34(1): 27-38. doi: 10.11898/1001-7313.20230103 [31] Fang Y H, Lin Y T, Zhao C Y, et al. Two types of cold waves affecting Northeast China and the corresponding different key regions of precedent sea ice and sea surface temperature. Int J Climatol, 2022, 42(16): 10451-10463. [32] 梁阔, 李丽平, 任景华, 等. 中纬度海温对北方冬季寒潮强度异常的协同影响. 高原气象, 2023, 42(3): 711-724. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202303015.htmLiang K, Li L P, Ren J H, et al. Synergistic effects of mid-latitude sea surface temperature on intensity anomalies of cold waves in winter of Northern China. Plateau Meteor, 2023, 42(3): 711-724. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202303015.htm