留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近40年中国冬季寒潮的气候特征及大气环流异常

王淼淼 丁明虎 吕俊梅 陈军明

王淼淼, 丁明虎, 吕俊梅, 等. 近40年中国冬季寒潮的气候特征及大气环流异常. 应用气象学报, 2024, 35(3): 298-310. DOI:  10.11898/1001-7313.20240304..
引用本文: 王淼淼, 丁明虎, 吕俊梅, 等. 近40年中国冬季寒潮的气候特征及大气环流异常. 应用气象学报, 2024, 35(3): 298-310. DOI:  10.11898/1001-7313.20240304.
Wang Miaomiao, Ding Minghu, Lü Junmei, et al. Climatology of winter cold waves and associated atmospheric circulation anomalies in China during the last 40 years. J Appl Meteor Sci, 2024, 35(3): 298-310. DOI:  10.11898/1001-7313.20240304.
Citation: Wang Miaomiao, Ding Minghu, Lü Junmei, et al. Climatology of winter cold waves and associated atmospheric circulation anomalies in China during the last 40 years. J Appl Meteor Sci, 2024, 35(3): 298-310. DOI:  10.11898/1001-7313.20240304.

近40年中国冬季寒潮的气候特征及大气环流异常

DOI: 10.11898/1001-7313.20240304
资助项目: 

国家自然科学基金项目 42122047

中国气象科学研究院基本科研业务费 2023Z015

中国气象科学研究院基本科研业务费 2023Z025

详细信息
    通信作者:

    吕俊梅, 邮箱:wind-ljm@163.com

Climatology of Winter Cold Waves and Associated Atmospheric Circulation Anomalies in China During the Last 40 Years

  • 摘要: 利用1980—2023年高分辨率中国气象站观测数据,根据寒潮标准及强度指数,对中国寒潮事件的强度及影响区域进行客观分类,探讨全国性、区域性寒潮事件的时空变化特征和环流演变。结果表明:近40年我国冬季寒潮频次呈显著减少趋势,其影响范围扩大,而强寒潮的强度呈显著增加趋势,且年际变化幅度明显增大。中国寒潮冷空气主要来源于新地岛东南地区,路径因寒潮类型而异。分析全国型、东北华北型和西北华北型寒潮前期和同期大气环流异常特征发现:格陵兰岛的异常深厚暖高压是全国型寒潮的重要前兆,欧亚大陆对流层中高层纬向波列是其爆发的显著特征;东北华北型寒潮与冷涡在中低纬度异常高压系统阻挡下的东移有关;西北华北型寒潮与东欧平原上空暖性高压脊的发展及欧亚大陆两脊一槽的形势密切相关。所有类型寒潮爆发前均有乌拉尔阻塞高压的维持和西伯利亚地区冷空气的堆积。
  • 图  1  中国冬季6类寒潮事件峰值日24 h降温幅度合成(填色) (填色区表示降温幅度达到0.05显著性水平,红点表示单站寒潮发生的频次) (a)全国型,(b)东北华北型,(c)西北华北型,(d)东部型,(e)东北西南型,(f)西南型

    Fig. 1  Composites of the daily maximum temperature drops within 24 hours (the shaded) at their peak days for six types of cold waves (the shaded denotes temperature drops passing the test of 0.05 level, the red dot denotes frequency of single-station cold waves) (a)countrywide, (b)Northeast-North China, (c)Northwest-North China, (d)East China, (e)Northeast-Southwest China, (f)Southwest China

    图  2  418个寒潮个例的冷空气路径(红色粗线表示最大2 m温度负距平合成的冷空气路径,绿色点和紫色点分别表示路径的起点和终点) (a)全国型,(b)东北华北型,(c)西北华北型,(d)东部型,(e)东北西南型,(f)西南型

    Fig. 2  Trajectories of cold air for 418 cold waves (the thick red line denotes cold air trajectory composited by the minimum value of 2 m temperature negative anomalies, green and the purple dots denote starting and ending of trajectories, respetively) (a)countrywide, (b)Northeast-North China, (c)Northwest-North China, (d)East China, (e)Northeast-Southwest China, (f)Southwest China

    图  3  1980—2022年冬季中国单站寒潮频次和线性趋势系数的空间分布(红点表示趋势达到0.05显著性水平) (a)频次多年平均值,(b)频次最大值,(c)频次线性趋势,(d)48 h最大降温幅度线性趋势

    Fig. 3  Spatial distribution of single-station cold wave frequency and linear trend coefficient in China during 1980-2022 (the red dot denotes passing the test of 0.05 level) (a)climate mean of cold wave frequency, (b)the maximum frequency of cold wave, (c)linear trend coefficients of cold wave frequency, (d)linear trend coefficients of the maximum temperature drops within 48 hours

    图  4  1980—2022年冬季中国寒潮事件年际变化 (a)频次, (b)冷空气过程强度指数

    Fig. 4  Interannual variation of cold waves in China from 1980 to 2022 (a)frequency, (b)cold air process intensity index

    图  5  全国型寒潮500 hPa位势高度场(等值线,单位:gpm) 及其距平(填色) 的合成图(等值线间隔为40 gpm,粗等值线为5440 gpm,黑色点区表示500 hPa位势高度距平达到0.05显著性水平)

    Fig. 5  Composites of 500 hPa geopotential height (the contour, unit:gpm) and its anomalies (the shaded) for countrywide cold waves (the contour interval is 40 gpm and the thick line denotes 5440 gpm, the black dot denotes anomalies passing the test of 0.05 level)

    图  6  图 5,但为东北华北型寒潮事件 (等值线间隔为30 gpm)

    Fig. 6  The same as in Fig. 5, but for cold waves in Northeast-North China (the contour interval is 30 gpm)

    图  7  图 5,但为西北华北型寒潮事件

    Fig. 7  The same as in Fig. 5, but for cold waves in Northwest-North China

  • [1] 宋艳玲, 周广胜, 郭建平, 等.北方冬小麦冬季冻害及播期延迟应对.应用气象学报, 2022, 33(4):454-465. doi:  10.11898/1001-7313.20220406

    Song Y L, Zhou G S, Guo J P, et al. Freezing injury of winter wheat in Northern China and delaying sowing date to adapt. J Appl Meteor Sci, 2022, 33(4): 454-465. doi:  10.11898/1001-7313.20220406
    [2] 陶诗言. 十年来我国对东亚寒潮的研究. 气象学报, 1959, 17(3): 226-230. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB195903006.htm

    Tao S Y. China's research on the cold wave in East Asia in the past decade. Acta Meteor Sinica, 1959, 17(3): 226-230. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB195903006.htm
    [3] 徐羹慧. 寒潮中期预报方案. 气象, 1985, 11(2): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX198502001.htm

    Xu G H. Medium-term forecast scheme of cold wave. Meteor Mon, 1985, 11(2): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX198502001.htm
    [4] 朱乾根, 林锦瑞, 寿绍文, 等. 天气学原理和方法(第3版). 北京: 气象出版社, 2000: 269-319.

    Zhu Q G. Lin J R, Shou S W, et al. Principles and Methods of Meteorology(3rd Ed). Beijing: China Meteorological Press, 2000: 269-319.
    [5] 丁一汇. 东亚寒潮冷空气的传播和行星尺度作用. 应用气象学报, 1991, 2(2): 124-132. http://qikan.camscma.cn/article/id/19910218

    Ding Y H. The propagation of the winter monsoon during cold air outbreaks in East Asia and the associated planetary-scale effect. Q J Appl Meteor, 1991, 2(2): 124-132. http://qikan.camscma.cn/article/id/19910218
    [6] 仇永康, 李晓东, 仇永炎. 我国冷空气活动的特征及其与欧亚大陆积雪的关系. 应用气象学报, 1992, 3(2): 235-241. http://qikan.camscma.cn/article/id/19920239

    Qiu Y K, Li X D, Qiu Y Y. Statistical features of the cold waves invaded China and their relation to the snow cover area over the Eurasian continent. Q J Appl Meteor, 1992, 3(2): 235-241. http://qikan.camscma.cn/article/id/19920239
    [7] 张培忠, 丁一汇, 郭春生, 等. 东亚寒潮高压的位涡诊断研究. 应用气象学报, 1994, 5(1): 49-56. http://qikan.camscma.cn/article/id/19940109

    Zhang P Z, Ding Y H, Guo C S, et al. Study on potential vorticity diagnosis of cold wave high pressure in East Asia. Q J Appl Meteor, 1994, 5(1): 49-56. http://qikan.camscma.cn/article/id/19940109
    [8] 魏凤英. 气候变暖背景下我国寒潮灾害的变化特征. 自然科学进展, 2008, 18(3): 289-295. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200803007.htm

    Wei F Y. Variation characteristics of cold wave disasters in China under the background of climate warming. Progress in Natural Science, 2008, 18(3): 289-295. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200803007.htm
    [9] 朱姜韬, 路瑶, 李艳. 1970—2019年中国大陆地区寒潮年代际变化及大气环流成因. 兰州大学学报(自然科学版), 2022, 58(3): 337-346;355. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK202203007.htm

    Zhu J T, Lu Y, Li Y. Study on interdecadal variations of cold wave and genesis of atmospheric circulation in the Chinese Mainland from 1970 to 2019. J Lanzhou Univ Nat Sci, 2022, 58(3): 337-346;355. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK202203007.htm
    [10] 马力, 韦志刚, 李娴茹, 等. 2000年前后我国寒潮活动特征的比较分析. 冰川冻土, 2022, 44(6): 1757-1772. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202206008.htm

    Ma L, Wei Z G, Li X R, et al. Comparative analysis of the cold surge characteristics over China before and after 2000. J Glaciol Geocryol, 2022, 44(6): 1757-1772. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202206008.htm
    [11] 王遵娅, 丁一汇. 近53年中国寒潮的变化特征及其可能原因. 大气科学, 2006, 30(6): 1068-1076. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200606001.htm

    Wang Z Y, Ding Y H. Climate change of the cold wave frequency of China in the last 53 years and the possible reasons. Chinese J Atmos Sci, 2006, 30(6): 1068-1076. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200606001.htm
    [12] 钱维宏, 张玮玮. 我国近46年来的寒潮时空变化与冬季增暖. 大气科学, 2007, 31(6): 1266-1278. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200706022.htm

    Qian W H, Zhang W W. Changes in cold wave events and warm winter in China during the last 46 years. Chinese J Atmos Sci, 2007, 31(6): 1266-1278. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200706022.htm
    [13] 周琳, 孙照渤. 1961—2010年我国冷空气的活动特征. 大气科学学报, 2015, 38(3): 342-353. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201503006.htm

    Zhou L, Sun Z B. Activity characteristics of cold air in China from 1961 to 2010. Trans Atmos Sci, 2015, 38(3): 342-353. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201503006.htm
    [14] 李红英, 林纾, 王云鹏, 等. 1961—2017年京津冀地区寒潮活动特征. 干旱气象, 2022, 40(1): 41-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX202201005.htm

    Li H Y, Lin S, Wang Y P, et al. Characteristics of cold wave activities in Beijing-Tianjin-Hebei Region from 1961 to 2017. J Arid Meteor, 2022, 40(1): 41-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX202201005.htm
    [15] 李菲, 李辑, 林蓉, 等. 东北地区寒潮特征及与影响因子关系的年代际变化. 江西农业学报, 2022, 34(7): 142-149. https://www.cnki.com.cn/Article/CJFDTOTAL-JXNY202207024.htm

    Li F, Li J, Lin R, et al. Interdecadal variation of cold wave characteristics and its relationship with influencing factors in Northeast China. Acta Agric Jiangxi, 2022, 34(7): 142-149. https://www.cnki.com.cn/Article/CJFDTOTAL-JXNY202207024.htm
    [16] 刘美娇, 李颖, 孙美平. 1961—2018年河西走廊寒潮频次时空变化特征及其环流影响因素研究. 冰川冻土, 2020, 42(3): 801-811. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202003008.htm

    Liu M J, Li Y, Sun M P. Spatial-temporal variation of cold wave frequency and its influencing factors of circulation in Hexi Corridor during 1961-2018. J Glaciol Geocryol, 2020, 42(3): 801-811. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202003008.htm
    [17] 肖红茹, 龙柯吉, 伍清, 等. 1980—2017年四川盆地寒潮及其气温变化特征. 高原山地气象研究, 2020, 40(4): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX202004008.htm

    Xiao H R, Long K J, Wu Q, et al. Temperature changes of cold wave in Sichuan Basin from 1980 to 2017. Plateau Mt Meteor Res, 2020, 40(4): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX202004008.htm
    [18] 宋艳玲. 全球干旱指数研究进展. 应用气象学报, 2022, 33(5): 513-526. doi:  10.11898/1001-7313.20220501

    Song Y L. Global research progress of drought indices. J Appl Meteor Sci, 2022, 33(5): 513-526. doi:  10.11898/1001-7313.20220501
    [19] 任素玲, 牛宁, 覃丹宇, 等. 2021年2月北美极端低温暴雪的卫星遥感监测. 应用气象学报, 2022, 33(6): 696-710. doi:  10.11898/1001-7313.20220605

    Ren S L, Niu N, Qin D Y, et al. Extreme cold and snowstorm event in North America in February 2021 based on satellite data. J Appl Meteor Sci, 2022, 33(6): 696-710. doi:  10.11898/1001-7313.20220605
    [20] 何立富, 齐道日娜, 余文. 引发东北极端暴雪的黄渤海气旋爆发性发展机制. 应用气象学报, 2022, 33(4): 385-399. doi:  10.11898/1001-7313.20220401

    He L F, Chyi D, Yu W. Development mechanisms of the Yellow Sea and Bohai Sea cyclone causing extreme snowstorm in Northeast China. J Appl Meteor Sci, 2022, 33(4): 385-399. doi:  10.11898/1001-7313.20220401
    [21] Wu B Y, Yang K, Francis J A. A cold event in Asia during January-February 2012 and its possible association with Arctic Sea ice loss. J Climate, 2017, 30(19): 7971-7990.
    [22] 武炳义. 2012年1月、2016年1月东亚两次极端严寒事件及其与北极增暖的可能联系. 大气科学学报, 2019, 42(1): 14-27. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201901003.htm

    Wu B Y. Two extremely cold events in East Asia in January of 2012 and 2016 and their possible associations with Arctic warming. Trans Atmos Sci, 2019, 42(1): 14-27. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201901003.htm
    [23] 张琳, 吕俊梅, 丁明虎. 2015年初北极极端气旋对中国寒潮的影响. 应用气象学报, 2020, 31(3): 315-327. doi:  10.11898/1001-7313.20200306

    Zhang L, Lü J M, Ding M H. Impact of Arctic extreme cyclones on cold spells in China during early 2015. J Appl Meteor Sci, 2020, 31(3): 315-327. doi:  10.11898/1001-7313.20200306
    [24] Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Q J R Meteor Soc, 2020, 146(730): 1999-2049.
    [25] 全国气候与气候变化标准化技术委员会. 冷空气过程监测指标QX/T 393—2017. 北京: 气象出版社, 2017.

    National Technical Committee on Standardization of Climate and Climate Change. Monitoring Indices of Cold Air Processes QX/T 393-2017. Beijing: China Meteorological Press, 2017.
    [26] 国家气候中心. 中国灾害性天气气候图集(1961—2015年). 北京: 气象出版社, 2018.

    National Climate Center. Atlas of Hazardous Weather and Climate in China(1961-2015). Beijing: China Meteorological Press, 2018.
    [27] Peng J B, Bueh C. The definition and classification of extensive and persistent extreme cold events in China. Atmos Ocean Sci Lett, 2011, 4(5): 281-286.
    [28] 布和朝鲁, 彭京备, 谢作威, 等. 冬季大范围持续性极端低温事件与欧亚大陆大型斜脊斜槽系统研究进展. 大气科学, 2018, 42(3): 656-676. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201803014.htm

    Bueh C, Peng J B, Xie Z W, et al. Recent progresses on the studies of wintertime extensive and persistent extreme cold events in China and large-scale tilted ridges and troughs over the Eurasian continent. Chinese J Atmos Sci, 2018, 42(3): 656-676. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201803014.htm
    [29] 彭京备, 孙淑清. 我国南方持续性低温与东亚冬季风"北弱南强"模态的关系. 大气科学, 2017, 41(4): 691-701. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201704003.htm

    Peng J B, Sun S Q. The relationship between persistent cold spell in Southern China and the variation mode of East Asian winter monsoon with opposite signs in the north and south. Chinese J Atmos Sci, 2017, 41(4): 691-701. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201704003.htm
    [30] 张智超, 周放, 张浩鑫, 等. BCC_CSM1.1m对冬季典型环流系统的预测评估. 应用气象学报, 2023, 34(1): 27-38. doi:  10.11898/1001-7313.20230103

    Zhang Z C, Zhou F, Zhang H X, et al. Predication of typical winter circulation systems based on BCC_CSM1.1m model. J Appl Meteor Sci, 2023, 34(1): 27-38. doi:  10.11898/1001-7313.20230103
    [31] Fang Y H, Lin Y T, Zhao C Y, et al. Two types of cold waves affecting Northeast China and the corresponding different key regions of precedent sea ice and sea surface temperature. Int J Climatol, 2022, 42(16): 10451-10463.
    [32] 梁阔, 李丽平, 任景华, 等. 中纬度海温对北方冬季寒潮强度异常的协同影响. 高原气象, 2023, 42(3): 711-724. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202303015.htm

    Liang K, Li L P, Ren J H, et al. Synergistic effects of mid-latitude sea surface temperature on intensity anomalies of cold waves in winter of Northern China. Plateau Meteor, 2023, 42(3): 711-724. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202303015.htm
  • 加载中
图(7)
计量
  • 摘要浏览量:  363
  • HTML全文浏览量:  66
  • PDF下载量:  843
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-24
  • 修回日期:  2024-04-22
  • 刊出日期:  2024-05-31

目录

    /

    返回文章
    返回