留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

祁连山北坡沙尘天气气溶胶特征的飞机观测

奚立宗 把黎 庞朝云 李宝梓 黄山

奚立宗, 把黎, 庞朝云, 等. 祁连山北坡沙尘天气气溶胶特征的飞机观测. 应用气象学报, 2024, 35(3): 311-322. DOI:  10.11898/1001-7313.20240305..
引用本文: 奚立宗, 把黎, 庞朝云, 等. 祁连山北坡沙尘天气气溶胶特征的飞机观测. 应用气象学报, 2024, 35(3): 311-322. DOI:  10.11898/1001-7313.20240305.
Xi Lizong, Ba Li, Pang Zhaoyun, et al. Aerosol characteristics of dust weather on north slope of the Qilian Mountains. J Appl Meteor Sci, 2024, 35(3): 311-322. DOI:  10.11898/1001-7313.20240305.
Citation: Xi Lizong, Ba Li, Pang Zhaoyun, et al. Aerosol characteristics of dust weather on north slope of the Qilian Mountains. J Appl Meteor Sci, 2024, 35(3): 311-322. DOI:  10.11898/1001-7313.20240305.

祁连山北坡沙尘天气气溶胶特征的飞机观测

DOI: 10.11898/1001-7313.20240305
资助项目: 

甘肃省重点研发计划 22YF7FA041

中国气象局创新发展专项 CXFZ2023J040

甘肃省自然科学基金项目 23JRRA1576

详细信息
    通信作者:

    把黎, 邮箱:bllnuist@hotmail.com

Aerosol Characteristics of Dust Weather on North Slope of the Qilian Mountains

  • 摘要: 了解沙尘天气下气溶胶的垂直分布特征对于进一步认识气溶胶-云相互作用及其天气、气候效应至关重要。基于2023年9月6日沙尘天气下的飞机观测数据, 分析祁连山北坡沙尘气溶胶的垂直分布特征。结果表明: 此次沙尘天气是在高空锋区及地面冷高压的共同作用下形成。受沙尘天气影响, 气溶胶粒径谱宽增宽; 气溶胶数浓度较背景可上升约2~3倍, 且气溶胶数浓度大值区呈悬垂状态分布, 粒子数浓度大值层位于4000~4500 m和3000~4000 m高度; 对沙尘气溶胶数浓度贡献最大的细粒子和粗粒子粒径分别为1.2~1.8 μm和6.5~16.6 μm, 且气溶胶数浓度的增大在粗粒子段更为明显。气溶胶来源及输送层、以及气象要素垂直分布演变在气溶胶垂直分布及谱分布中发挥了重要作用。
  • 图  1  2023年9月6日地面天气图(数字为能见度(单位: km),风羽为地面风,填色为沙尘区域, 红圈为中川机场)

    Fig. 1  Ground mapping on 6 Sep 2023 (the number denotes visibility(unit: km), the barb denotes ground wind, the shaded denotes dust area, the red circle denotes Zhongchuan Airport)

    图  2  2023年9月6日飞机飞行轨迹和飞行区概况

    Fig. 2  Flight path and flight area of aircraft on 6 Sep 2023

    图  3  飞行观测全时段的气溶胶数浓度和云滴数浓度

    Fig. 3  Aerosol number concentration and cloud droplet number concentration for the whole period of flight observation

    图  4  2023年9月6日20:00 500 hPa位势高度(黑线,单位:dagpm)、温度(红线,单位:℃)、水平风场(风羽)、风速(填色) (a)和地面等压线(黑线,单位:hPa)、水平风场(风羽)、风速(填色) (b) (+为中川机场)

    Fig. 4  500 hPa geopotential height (the black line, unit: dagpm), temperature (the red line, unit: ℃), wind field (the barb), wind speed (the shaded) (a) and ground isobar (the black line, unit: hPa), wind field (the barb), wind speed (the shaded) (b) at 2000 BT 6 Sep 2023 (+ denotes Zhongchuan Airport)

    图  5  2023年9月6日飞机上升和下降航迹PCASP和FCDP探测的气溶胶数浓度和有效直径垂直分布

    Fig. 5  Vertical distribution of aerosol particle number concentration and effective diameter detected by PCASP and FCDP for ascending and descending tracks of aircraft on 6 Sep 2023

    图  6  2023年9月6日飞机上升和下降航迹PCASP和FCDP探测的气溶胶数浓度谱垂直分布

    Fig. 6  Vertical distribution of aerosol particle number concentration spectra detected by PCASP and FCDP probes for ascending and descending tracks of aircraft on 6 Sep 2023

    图  7  2023年9月6日不同高度平均气溶胶谱分布

    Fig. 7  Mean aerosol spectral distribution at different altitudes on 6 Sep 2023

    图  8  2023年9月6日不同高度气团48 h后向轨迹

    Fig. 8  Backward tracks of air mass in 48 h at different altitudes on 6 Sep 2023

    图  9  2023年9月6日08:00—23:00风速(填色)、水平风场(风羽)、垂直速度(虚线,单位:Pa·s-1,正值表示上升运动) 垂直剖面

    Fig. 9  Vertical profile of wind speed (the shaded), horizontal wind field (the barb), vertical velocity (the dashed line, unit: Pa·s-1, the positive value denotes rising) from 0800 BT to 2300 BT on 6 Sep 2023

    表  1  新舟60增雨飞机搭载主要探测设备

    Table  1  Detection equipment information of MA60 aircraft

    探头名称 分档数量 测量范围 探测粒子类型
    PCASP 30 0.1~3 μm 气溶胶
    FCDP 20 1~50 μm 霾、云滴
    AIMMS 温度、气压、湿度、风、经纬度
    下载: 导出CSV
  • [1] Fan J W, Wang Y, Rosenfeld D, et al. Review of aerosol-cloud interactions: Mechanisms, significance, and challenges. J Atmos Sci, 2016, 73(11): 4221-4252. doi:  10.1175/JAS-D-16-0037.1
    [2] 李占清. 气溶胶对中国天气、气候和环境影响综述. 大气科学学报, 2020, 43(1): 76-92. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202001009.htm

    Li Z Q. Impact of aerosols on the weather, climate and environment of China: An overview. Trans Atmos Sci, 2020, 43(1): 76-92. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202001009.htm
    [3] Mascioli N R, Evan A T, Ralph F M. Influence of dust on precipitation during landfalling atmospheric rivers in an idealized framework. J Geophys Res Atmos, 2021, 126(22). DOI:  10.1029/2021/JD034813.
    [4] IPCC. The Physical Science Basis. Contribution of Working Group Ⅰ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021.
    [5] Roy A, Chatterjee A, Sarkar C, et al. A study on aerosol-cloud condensation nuclei(CCN) activation over eastern Himalaya in India. Atmos Res, 2017, 189(1): 69-81.
    [6] 李睿劼, 黄梦宇, 丁德平, 等. 基于70 m3膨胀云室的暖云滴谱试验研究. 应用气象学报, 2023, 34(5): 540-551. doi:  10.11898/1001-7313.20230503

    Li R J, Huang M Y, Ding D P, et al. Warm cloud size distribution experiment based on 70 m3 expansion cloud chamber. J Appl Meteor Sci, 2023, 34(5): 540-551. doi:  10.11898/1001-7313.20230503
    [7] Liu Y, Huang J, Shi G, et al. Aerosol optical properties and radiative effect determined from sky-radiometer over Loess Plateau of Northwest China. Atmos Chem Phys, 2011, 11(22): 11455-11463. doi:  10.5194/acp-11-11455-2011
    [8] 王天河, 孙梦仙, 黄建平. 中国利用星载激光雷达开展沙尘和污染研究的综述. 大气科学学报, 2020, 43(1): 144-158. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202001014.htm

    Wang T H, Sun M X, Huang J P. Research review on dust and pollution using spaceborne lidar in China. Trans Atmos Sci, 2020, 43(1): 144-158. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202001014.htm
    [9] 李婉, 赵胡笳, 王昌双, 等. 2003—2022年东北地区气溶胶光学厚度变化特征. 应用气象学报, 2024, 35(2): 211-224. doi:  10.11898/1001-7313.20240207

    Li W, Zhao H J, Wang C S, et al. Variation characteristics of aerosol optical depth in Northeast China from 2003 to 2022. J Appl Meteor Sci, 2024, 35(2): 211-224. doi:  10.11898/1001-7313.20240207
    [10] 吴啸天, 王晓妍, 郑栋, 等. 不同类型气溶胶对长三角地区地闪活动影响. 应用气象学报, 2023, 34(5): 608-618. doi:  10.11898/1001-7313.20230509

    Wu X T, Wang X Y, Zheng D, et al. Effects of different aerosols on cloud-to-ground lightning activity in the Yangtze River Delta. J Appl Meteor Sci, 2023, 34(5): 608-618. doi:  10.11898/1001-7313.20230509
    [11] 郭学良, 付丹红, 郭欣, 等. 我国云降水物理飞机观测研究进展. 应用气象学报, 2021, 32(6): 641-652. doi:  10.11898/1001-7313.20210601

    Guo X L, Fu D H, Guo X, et al. Advances in aircraft measurements of clouds and precipitation in China. J Appl Meteor Sci, 2021, 32(6): 641-652. doi:  10.11898/1001-7313.20210601
    [12] 段婧, 楼小凤, 陈勇, 等. 基于航测的珠三角气溶胶垂直分布及活化特性. 应用气象学报, 2019, 30(6): 677-689. doi:  10.11898/1001-7313.20190604

    Duan J, Lou X F, Chen Y, et al. Aircraft measurements of aerosol vertical distributions and its activation efficiency over the Pearl River Delta. J Appl Meteor Sci, 2019, 30(6): 677-689. doi:  10.11898/1001-7313.20190604
    [13] 游来光, 马培民, 陈君寒, 等. 沙暴天气下大气中沙尘粒子空间分布特点及其微结构. 应用气象学报, 1991, 2(1): 13-21. http://qikan.camscma.cn/article/id/19910102

    You L G, Ma P M, Chen J H, et al. A case study of the aerosol characteristics in the lower troposphere during a dust storm event. J Appl Meteor Sci, 1991, 2(1): 13-21. http://qikan.camscma.cn/article/id/19910102
    [14] 牛生杰, 孙照渤. 春末中国西北沙漠地区沙尘气溶胶物理特性的飞机观测. 高原气象, 2005, 24(4): 604-610. doi:  10.3321/j.issn:1000-0534.2005.04.021

    Niu S J, Sun Z B. Aircraft measurements of sand aerosol over Northwest China Desert Area in late spring. Plateau Meteor, 2005, 24(4): 604-610. doi:  10.3321/j.issn:1000-0534.2005.04.021
    [15] 马新成, 毕凯, 田海军, 等. 北京地区沙尘天气气溶胶飞机观测特征. 气象科技, 2016, 44(1): 95-103. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201601017.htm

    Ma X C, Bi K, Tian H J, et al. Aircraft measurements of aerosol characteristics during dust evens in Beijing. Meteor Sci Technol, 2016, 44(1): 95-103. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201601017.htm
    [16] 董晓波, 麦榕, 王红磊, 等. 石家庄一次沙尘大气污染物与边界层相互作用. 中国环境科学, 2021, 41(3): 1024-1033. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202103006.htm

    Dong X B, Mai R, Wang H L, et al. An interaction study between atmospheric pollutants and boundary layer during a dust storm weather in Shijiazhuang. China Environ Sci, 2021, 41(3): 1024-1033. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202103006.htm
    [17] Cai Z X, Li Z Q, Li P R, et al. Vertical distributions of aerosol microphysical and optical properties based on aircraft measurements made over the Loess Plateau in China. Atmos Environ, 2022, 270. DOI:  10.1016/j.atmosenv.2021.118888.
    [18] 马学谦, 郭学良, 刘娜, 等. 青藏高原中东部气溶胶特征的飞机观测. 应用气象学报, 2021, 32(6): 706-719. doi:  10.11898/1001-7313.20210606

    Ma X Q, Guo X L, Liu N, et al. Aircraft measurements on properties of aerosols over the central and eastern Qinghai-Tibet Plateau. J Appl Meteor Sci, 2021, 32(6): 706-719. doi:  10.11898/1001-7313.20210606
    [19] 陈思宇, 黄建平, 李景鑫, 等. 塔克拉玛干沙漠和戈壁沙尘起沙、传输和沉降的对比研究. 中国科学(地球科学), 2017, 47(8): 939-957. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201708006.htm

    Chen S Y, Huang J P, Li J X, et al. Comparison of dust emissions, transport, and deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011. Sci China(Earth Sci), 2017, 47(8): 939-957. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201708006.htm
    [20] Huang J P, Ma J R, Guan X D, et al. Progress in semi-arid climate change studies in China. Adv Atmos Sci, 2019, 36(9): 922-937.
    [21] 宋艳玲. 全球干旱指数研究进展. 应用气象学报, 2022, 33(5): 513-526. doi:  10.11898/1001-7313.20220501

    Song Y L. Global research progress of drought indices. J Appl Meteor Sci, 2022, 33(5): 513-526. doi:  10.11898/1001-7313.20220501
    [22] Yao T D. Tackling on environmental changes in Tibetan Plateau with focus on water, ecosystem and adaptation. Sci Bull, 2019, 64(7): 417.
    [23] 李新, 勾晓华, 王宁练, 等. 祁连山绿色发展: 从生态治理到生态恢复. 科学通报, 2019, 64(27): 2928-2937. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201927018.htm

    Li X, Gou X H, Wang N L, et al. Tightening ecological management facilitates green development in the Qilian Mountains. Chinese Sci Bull, 2019, 64(27): 2928-2937. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201927018.htm
    [24] 张骁拓, 胡颖琼, 李宏宇, 等. 新舟60高性能增雨飞机机载任务系统集成设计. 气象科技进展, 2021, 11(5): 94-101. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ202105018.htm

    Zhang X T, Hu Y Q, Li H Y, et al. Integrated design of the airborne task system equipped for the high-performance MA60 seeding aircraft. Adv Meteor Sci Tech, 2021, 11(5): 94-101. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ202105018.htm
    [25] Li J X, Li P R, Ren G, et al. Aircraft measurements of aerosol distribution, warm cloud microphysical properties, and their relationship over the Eastern Loess Plateau in China. Tellus B Chem Phys Meteor, 2019, 71(1). DOI:  10.1080/16000889.2019.1663994.
    [26] 高茜, 刘全, 毕凯, 等. 基于航测的云底气溶胶活化率与过饱和度估算. 应用气象学报, 2021, 32(6): 653-664. doi:  10.11898/1001-7313.20210602

    Gao Q, Liu Q, Bi K, et al. Estimation of aerosol activation ratio and water vapor supersaturation at cloud base using aircraft measurement. J Appl Meteor Sci, 2021, 32(6): 653-664. doi:  10.11898/1001-7313.20210602
    [27] 刘春文, 郭学良, 段玮, 等. 云南省积层混合云微物理特征飞机观测. 应用气象学报, 2022, 33(2): 142-154. doi:  10.11898/1001-7313.20220202

    Liu C W, Guo X L, Duan W, et al. Observation and analysis of microphysical characteristics of stratiform clouds with embedded convections in Yunnan. J Appl Meteor Sci, 2022, 33(2): 142-154. doi:  10.11898/1001-7313.20220202
    [28] 王泽林, 周旭, 吴俊辉, 等. 一次飞机严重积冰的天气条件和云微物理特征. 应用气象学报, 2022, 33(5): 555-567. doi:  10.11898/1001-7313.20220504

    Wang Z L, Zhou X, Wu J H, et al. Weather conditions and cloud microphysical characteristics of an aircraft severe icing process. J Appl Meteor Sci, 2022, 33(5): 555-567. doi:  10.11898/1001-7313.20220504
    [29] Huai B J, Wang J Y, Sun W J, et al. Evaluation of the near-surface climate of the recent global atmospheric reanalysis for Qilian Mountains, Qinghai-Tibet Plateau. Atmos Res, 2021, 250. DOI:  10.1016/j.atmosres.2020.105401.
    [30] Bera B, Bhattacharjee S, Sengupta N, et al. Variation and dispersal of PM10 and PM2.5 during COVID-19 lockdown over Kolkata metropolitan city, India investigated through HYSPLIT model. Geosci Front, 2022, 13(1). DOI:  10.1016/j.gsf.2021.101291.
    [31] 牛生杰, 章澄昌, 孙继明. 贺兰山地区沙尘气溶胶粒子谱分布的观测研究. 大气科学, 2001, 25(2): 243-252. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200102012.htm

    Niu S J, Zhang C C, Sun J M. Observational researches on the size distribution of sand aerosol particles in the Helan Mountain Area. Chinese J Atmos Sci, 2001, 25(2): 243-252. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200102012.htm
    [32] 王研峰, 冷文楠, 庞朝云, 等. 西北地区气溶胶垂直分布及其对云微物理影响的飞机观测个例研究. 高原气象, 2023, 42(4): 1031-1043. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202304018.htm

    Wang Y F, Leng W N, Pang Z Y, et al. A case study of aircraft observation of aerosol vertical distribution and its effect on cloud microphysics in Northwest China. Plateau Meteor, 2023, 42(4): 1031-1043. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202304018.htm
    [33] 孙建华, 赵琳娜, 赵思雄. 一个适用于我国北方的沙尘暴天气数值预测系统及其应用试验. 气候与环境研究, 2003, 8(2): 125-142. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200302000.htm

    Sun J H, Zhao L N, Zhao S X. An integrated numerical modeling system of dust storm suitable to North China and its applications. Clim Environ Res, 2003, 8(2): 125-142. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200302000.htm
    [34] 张强, 王胜. 论特强沙尘暴(黑风)的物理特征及其气候效应. 中国沙漠, 2005, 25(5): 675-681. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS200505009.htm

    Zhang Q, Wang S. On physical characteristics of heavy dust storm and its climatic effect. J Desert Res, 2005, 25(5): 675-681. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS200505009.htm
    [35] 贾瑞, 刘玉芝, 吴楚樵, 等. 2007—2017年中国沙尘气溶胶的三维分布特征及输送过程. 中国沙漠, 2019, 39(6): 108-117. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201906013.htm

    Jia R, Liu Y Z, Wu C Q, et al. Three-dimensional distribution and transport process of dust aerosols over China from 2007 to 2017. J Desert Res, 2019, 39(6): 108-117. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201906013.htm
    [36] 刘玉芝, 罗润, 祝清哲, 等. 东亚旱区气溶胶、云及其相互作用研究进展. 气象科技, 2023, 51(1): 124-133. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202301014.htm

    Liu Y Z, Luo R, Zhu Q Z, et al. Advances in researches on properties and interactions of aerosols and clouds over drylands of East Asian. Meteor Sci Technol, 2023, 51(1): 124-133. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202301014.htm
    [37] 杨慧玲, 肖辉, 洪延超. 气溶胶对云宏微观特性和降水影响的研究进展. 气候与环境研究, 2011, 16(4): 525-542. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201104014.htm
  • 加载中
图(9) / 表(1)
计量
  • 摘要浏览量:  268
  • HTML全文浏览量:  67
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-05
  • 修回日期:  2024-04-08
  • 刊出日期:  2024-05-31

目录

    /

    返回文章
    返回