Aerosol Characteristics of Dust Weather on North Slope of the Qilian Mountains
-
摘要: 了解沙尘天气下气溶胶的垂直分布特征对于进一步认识气溶胶-云相互作用及其天气、气候效应至关重要。基于2023年9月6日沙尘天气下的飞机观测数据, 分析祁连山北坡沙尘气溶胶的垂直分布特征。结果表明: 此次沙尘天气是在高空锋区及地面冷高压的共同作用下形成。受沙尘天气影响, 气溶胶粒径谱宽增宽; 气溶胶数浓度较背景可上升约2~3倍, 且气溶胶数浓度大值区呈悬垂状态分布, 粒子数浓度大值层位于4000~4500 m和3000~4000 m高度; 对沙尘气溶胶数浓度贡献最大的细粒子和粗粒子粒径分别为1.2~1.8 μm和6.5~16.6 μm, 且气溶胶数浓度的增大在粗粒子段更为明显。气溶胶来源及输送层、以及气象要素垂直分布演变在气溶胶垂直分布及谱分布中发挥了重要作用。Abstract: Understanding the vertical distribution characteristics of aerosols in dust weather is crucial for further discussion of aerosol-cloud interaction and its impacts on weather and climate. In response to a dust storm in Northwest China on 6 September 2023, Gansu Weather Modification Office conducts aircraft detection and operational flights on north slope of the Qilian Mountains, obtaining the vertical detection data of aerosols. The vertical distribution of aerosols in dust weather is analyzed, and causes of vertical distribution of dust aerosols, related meteorological factors and air mass sources are studied. Results show that the dust weather is formed under the combined action of the upper front area and the surface cold high pressure. Affected by the dust weather, the peak mass concentration of PM10 and PM2.5 reaches 1150 μg·m-3 and 282 μg·m-3, respectively, at Wuwei Environmental Monitoring Station on north slope of the Qilian Mountains. Under the influence of dust weather, aerosol particles across all size segment show an increase in number concentration and particle size. Most of the dust particles are 1.2-1.8 μm and 6.5-16.6 μm in size, and there is a large concentration of aerosol particle number at the height of 4000-4500 m and 3000-4000 m. In addition, compared with the average concentration of particles in the fine particle segment and the coarse particle segment, the average concentration of particles increases by 2 times and 3.5 times, respectively. The average particle size increases by 3 times and 1.5 times, respectively. After the transit of sand and dust, the spectrum width widens, and the high-value region of the number concentration shows an overhanging state. In the coarse particle segment, the distribution of aerosol particle spectra changes from bimodal to trimodal. The increase in aerosol particle number concentration is more pronounced in the coarse particle segment and the lower layer. At the altitude of 500-2000 m above the ground, aerosol particles mainly come from the Gurbantunggut Desert in Xinjiang, while at the altitude of 2000-3000 m, aerosol particles mainly come from the Badain Jaran Desert in Inner Mongolia. In addition, the vertical upward movement in the middle layer and the strong northwest wind speed in the lower layer may play an important role in the vertical and spectral distribution of aerosols. Various sources and transport layers of aerosols, along with the vertical distribution evolution of meteorological elements, play an important role in the vertical distribution and spectral distribution of aerosols.
-
图 4 2023年9月6日20:00 500 hPa位势高度(黑线,单位:dagpm)、温度(红线,单位:℃)、水平风场(风羽)、风速(填色) (a)和地面等压线(黑线,单位:hPa)、水平风场(风羽)、风速(填色) (b) (+为中川机场)
Fig. 4 500 hPa geopotential height (the black line, unit: dagpm), temperature (the red line, unit: ℃), wind field (the barb), wind speed (the shaded) (a) and ground isobar (the black line, unit: hPa), wind field (the barb), wind speed (the shaded) (b) at 2000 BT 6 Sep 2023 (+ denotes Zhongchuan Airport)
表 1 新舟60增雨飞机搭载主要探测设备
Table 1 Detection equipment information of MA60 aircraft
探头名称 分档数量 测量范围 探测粒子类型 PCASP 30 0.1~3 μm 气溶胶 FCDP 20 1~50 μm 霾、云滴 AIMMS 温度、气压、湿度、风、经纬度 -
[1] Fan J W, Wang Y, Rosenfeld D, et al. Review of aerosol-cloud interactions: Mechanisms, significance, and challenges. J Atmos Sci, 2016, 73(11): 4221-4252. doi: 10.1175/JAS-D-16-0037.1 [2] 李占清. 气溶胶对中国天气、气候和环境影响综述. 大气科学学报, 2020, 43(1): 76-92. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202001009.htmLi Z Q. Impact of aerosols on the weather, climate and environment of China: An overview. Trans Atmos Sci, 2020, 43(1): 76-92. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202001009.htm [3] Mascioli N R, Evan A T, Ralph F M. Influence of dust on precipitation during landfalling atmospheric rivers in an idealized framework. J Geophys Res Atmos, 2021, 126(22). DOI: 10.1029/2021/JD034813. [4] IPCC. The Physical Science Basis. Contribution of Working Group Ⅰ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021. [5] Roy A, Chatterjee A, Sarkar C, et al. A study on aerosol-cloud condensation nuclei(CCN) activation over eastern Himalaya in India. Atmos Res, 2017, 189(1): 69-81. [6] 李睿劼, 黄梦宇, 丁德平, 等. 基于70 m3膨胀云室的暖云滴谱试验研究. 应用气象学报, 2023, 34(5): 540-551. doi: 10.11898/1001-7313.20230503Li R J, Huang M Y, Ding D P, et al. Warm cloud size distribution experiment based on 70 m3 expansion cloud chamber. J Appl Meteor Sci, 2023, 34(5): 540-551. doi: 10.11898/1001-7313.20230503 [7] Liu Y, Huang J, Shi G, et al. Aerosol optical properties and radiative effect determined from sky-radiometer over Loess Plateau of Northwest China. Atmos Chem Phys, 2011, 11(22): 11455-11463. doi: 10.5194/acp-11-11455-2011 [8] 王天河, 孙梦仙, 黄建平. 中国利用星载激光雷达开展沙尘和污染研究的综述. 大气科学学报, 2020, 43(1): 144-158. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202001014.htmWang T H, Sun M X, Huang J P. Research review on dust and pollution using spaceborne lidar in China. Trans Atmos Sci, 2020, 43(1): 144-158. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202001014.htm [9] 李婉, 赵胡笳, 王昌双, 等. 2003—2022年东北地区气溶胶光学厚度变化特征. 应用气象学报, 2024, 35(2): 211-224. doi: 10.11898/1001-7313.20240207Li W, Zhao H J, Wang C S, et al. Variation characteristics of aerosol optical depth in Northeast China from 2003 to 2022. J Appl Meteor Sci, 2024, 35(2): 211-224. doi: 10.11898/1001-7313.20240207 [10] 吴啸天, 王晓妍, 郑栋, 等. 不同类型气溶胶对长三角地区地闪活动影响. 应用气象学报, 2023, 34(5): 608-618. doi: 10.11898/1001-7313.20230509Wu X T, Wang X Y, Zheng D, et al. Effects of different aerosols on cloud-to-ground lightning activity in the Yangtze River Delta. J Appl Meteor Sci, 2023, 34(5): 608-618. doi: 10.11898/1001-7313.20230509 [11] 郭学良, 付丹红, 郭欣, 等. 我国云降水物理飞机观测研究进展. 应用气象学报, 2021, 32(6): 641-652. doi: 10.11898/1001-7313.20210601Guo X L, Fu D H, Guo X, et al. Advances in aircraft measurements of clouds and precipitation in China. J Appl Meteor Sci, 2021, 32(6): 641-652. doi: 10.11898/1001-7313.20210601 [12] 段婧, 楼小凤, 陈勇, 等. 基于航测的珠三角气溶胶垂直分布及活化特性. 应用气象学报, 2019, 30(6): 677-689. doi: 10.11898/1001-7313.20190604Duan J, Lou X F, Chen Y, et al. Aircraft measurements of aerosol vertical distributions and its activation efficiency over the Pearl River Delta. J Appl Meteor Sci, 2019, 30(6): 677-689. doi: 10.11898/1001-7313.20190604 [13] 游来光, 马培民, 陈君寒, 等. 沙暴天气下大气中沙尘粒子空间分布特点及其微结构. 应用气象学报, 1991, 2(1): 13-21. http://qikan.camscma.cn/article/id/19910102You L G, Ma P M, Chen J H, et al. A case study of the aerosol characteristics in the lower troposphere during a dust storm event. J Appl Meteor Sci, 1991, 2(1): 13-21. http://qikan.camscma.cn/article/id/19910102 [14] 牛生杰, 孙照渤. 春末中国西北沙漠地区沙尘气溶胶物理特性的飞机观测. 高原气象, 2005, 24(4): 604-610. doi: 10.3321/j.issn:1000-0534.2005.04.021Niu S J, Sun Z B. Aircraft measurements of sand aerosol over Northwest China Desert Area in late spring. Plateau Meteor, 2005, 24(4): 604-610. doi: 10.3321/j.issn:1000-0534.2005.04.021 [15] 马新成, 毕凯, 田海军, 等. 北京地区沙尘天气气溶胶飞机观测特征. 气象科技, 2016, 44(1): 95-103. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201601017.htmMa X C, Bi K, Tian H J, et al. Aircraft measurements of aerosol characteristics during dust evens in Beijing. Meteor Sci Technol, 2016, 44(1): 95-103. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201601017.htm [16] 董晓波, 麦榕, 王红磊, 等. 石家庄一次沙尘大气污染物与边界层相互作用. 中国环境科学, 2021, 41(3): 1024-1033. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202103006.htmDong X B, Mai R, Wang H L, et al. An interaction study between atmospheric pollutants and boundary layer during a dust storm weather in Shijiazhuang. China Environ Sci, 2021, 41(3): 1024-1033. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202103006.htm [17] Cai Z X, Li Z Q, Li P R, et al. Vertical distributions of aerosol microphysical and optical properties based on aircraft measurements made over the Loess Plateau in China. Atmos Environ, 2022, 270. DOI: 10.1016/j.atmosenv.2021.118888. [18] 马学谦, 郭学良, 刘娜, 等. 青藏高原中东部气溶胶特征的飞机观测. 应用气象学报, 2021, 32(6): 706-719. doi: 10.11898/1001-7313.20210606Ma X Q, Guo X L, Liu N, et al. Aircraft measurements on properties of aerosols over the central and eastern Qinghai-Tibet Plateau. J Appl Meteor Sci, 2021, 32(6): 706-719. doi: 10.11898/1001-7313.20210606 [19] 陈思宇, 黄建平, 李景鑫, 等. 塔克拉玛干沙漠和戈壁沙尘起沙、传输和沉降的对比研究. 中国科学(地球科学), 2017, 47(8): 939-957. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201708006.htmChen S Y, Huang J P, Li J X, et al. Comparison of dust emissions, transport, and deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011. Sci China(Earth Sci), 2017, 47(8): 939-957. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201708006.htm [20] Huang J P, Ma J R, Guan X D, et al. Progress in semi-arid climate change studies in China. Adv Atmos Sci, 2019, 36(9): 922-937. [21] 宋艳玲. 全球干旱指数研究进展. 应用气象学报, 2022, 33(5): 513-526. doi: 10.11898/1001-7313.20220501Song Y L. Global research progress of drought indices. J Appl Meteor Sci, 2022, 33(5): 513-526. doi: 10.11898/1001-7313.20220501 [22] Yao T D. Tackling on environmental changes in Tibetan Plateau with focus on water, ecosystem and adaptation. Sci Bull, 2019, 64(7): 417. [23] 李新, 勾晓华, 王宁练, 等. 祁连山绿色发展: 从生态治理到生态恢复. 科学通报, 2019, 64(27): 2928-2937. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201927018.htmLi X, Gou X H, Wang N L, et al. Tightening ecological management facilitates green development in the Qilian Mountains. Chinese Sci Bull, 2019, 64(27): 2928-2937. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201927018.htm [24] 张骁拓, 胡颖琼, 李宏宇, 等. 新舟60高性能增雨飞机机载任务系统集成设计. 气象科技进展, 2021, 11(5): 94-101. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ202105018.htmZhang X T, Hu Y Q, Li H Y, et al. Integrated design of the airborne task system equipped for the high-performance MA60 seeding aircraft. Adv Meteor Sci Tech, 2021, 11(5): 94-101. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ202105018.htm [25] Li J X, Li P R, Ren G, et al. Aircraft measurements of aerosol distribution, warm cloud microphysical properties, and their relationship over the Eastern Loess Plateau in China. Tellus B Chem Phys Meteor, 2019, 71(1). DOI: 10.1080/16000889.2019.1663994. [26] 高茜, 刘全, 毕凯, 等. 基于航测的云底气溶胶活化率与过饱和度估算. 应用气象学报, 2021, 32(6): 653-664. doi: 10.11898/1001-7313.20210602Gao Q, Liu Q, Bi K, et al. Estimation of aerosol activation ratio and water vapor supersaturation at cloud base using aircraft measurement. J Appl Meteor Sci, 2021, 32(6): 653-664. doi: 10.11898/1001-7313.20210602 [27] 刘春文, 郭学良, 段玮, 等. 云南省积层混合云微物理特征飞机观测. 应用气象学报, 2022, 33(2): 142-154. doi: 10.11898/1001-7313.20220202Liu C W, Guo X L, Duan W, et al. Observation and analysis of microphysical characteristics of stratiform clouds with embedded convections in Yunnan. J Appl Meteor Sci, 2022, 33(2): 142-154. doi: 10.11898/1001-7313.20220202 [28] 王泽林, 周旭, 吴俊辉, 等. 一次飞机严重积冰的天气条件和云微物理特征. 应用气象学报, 2022, 33(5): 555-567. doi: 10.11898/1001-7313.20220504Wang Z L, Zhou X, Wu J H, et al. Weather conditions and cloud microphysical characteristics of an aircraft severe icing process. J Appl Meteor Sci, 2022, 33(5): 555-567. doi: 10.11898/1001-7313.20220504 [29] Huai B J, Wang J Y, Sun W J, et al. Evaluation of the near-surface climate of the recent global atmospheric reanalysis for Qilian Mountains, Qinghai-Tibet Plateau. Atmos Res, 2021, 250. DOI: 10.1016/j.atmosres.2020.105401. [30] Bera B, Bhattacharjee S, Sengupta N, et al. Variation and dispersal of PM10 and PM2.5 during COVID-19 lockdown over Kolkata metropolitan city, India investigated through HYSPLIT model. Geosci Front, 2022, 13(1). DOI: 10.1016/j.gsf.2021.101291. [31] 牛生杰, 章澄昌, 孙继明. 贺兰山地区沙尘气溶胶粒子谱分布的观测研究. 大气科学, 2001, 25(2): 243-252. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200102012.htmNiu S J, Zhang C C, Sun J M. Observational researches on the size distribution of sand aerosol particles in the Helan Mountain Area. Chinese J Atmos Sci, 2001, 25(2): 243-252. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200102012.htm [32] 王研峰, 冷文楠, 庞朝云, 等. 西北地区气溶胶垂直分布及其对云微物理影响的飞机观测个例研究. 高原气象, 2023, 42(4): 1031-1043. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202304018.htmWang Y F, Leng W N, Pang Z Y, et al. A case study of aircraft observation of aerosol vertical distribution and its effect on cloud microphysics in Northwest China. Plateau Meteor, 2023, 42(4): 1031-1043. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202304018.htm [33] 孙建华, 赵琳娜, 赵思雄. 一个适用于我国北方的沙尘暴天气数值预测系统及其应用试验. 气候与环境研究, 2003, 8(2): 125-142. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200302000.htmSun J H, Zhao L N, Zhao S X. An integrated numerical modeling system of dust storm suitable to North China and its applications. Clim Environ Res, 2003, 8(2): 125-142. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200302000.htm [34] 张强, 王胜. 论特强沙尘暴(黑风)的物理特征及其气候效应. 中国沙漠, 2005, 25(5): 675-681. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS200505009.htmZhang Q, Wang S. On physical characteristics of heavy dust storm and its climatic effect. J Desert Res, 2005, 25(5): 675-681. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS200505009.htm [35] 贾瑞, 刘玉芝, 吴楚樵, 等. 2007—2017年中国沙尘气溶胶的三维分布特征及输送过程. 中国沙漠, 2019, 39(6): 108-117. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201906013.htmJia R, Liu Y Z, Wu C Q, et al. Three-dimensional distribution and transport process of dust aerosols over China from 2007 to 2017. J Desert Res, 2019, 39(6): 108-117. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201906013.htm [36] 刘玉芝, 罗润, 祝清哲, 等. 东亚旱区气溶胶、云及其相互作用研究进展. 气象科技, 2023, 51(1): 124-133. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202301014.htmLiu Y Z, Luo R, Zhu Q Z, et al. Advances in researches on properties and interactions of aerosols and clouds over drylands of East Asian. Meteor Sci Technol, 2023, 51(1): 124-133. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202301014.htm [37] 杨慧玲, 肖辉, 洪延超. 气溶胶对云宏微观特性和降水影响的研究进展. 气候与环境研究, 2011, 16(4): 525-542. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201104014.htm