Cloud Observation by Aircraft During Dust Storms
-
摘要: 沙尘暴天气下云的飞机观测极其缺乏, 为了研究亚洲中蒙地区沙尘气溶胶对云的影响, 利用北京地区云的综合外场观测试验数据, 分析2009年4月24日由蒙古气旋和冷锋造成的强沙尘暴天气下云的观测个例, 对比分析沙尘云和清洁云垂直观测。结果表明: 从亚洲中蒙地区输送的沙尘气溶胶是华北区域重要的冰核来源, 可被垂直输送至云顶以上3200 m高度, 并通过改变冰晶形成过程影响云顶温度(-6~-3 ℃)较高的积云性层积云微物理结构。在相同温度下, 沙尘云中冰晶平均数浓度较清洁云增加近10倍, 液态水含量减少约1倍, 云中形成大量小冰晶粒子, 凇附过程受到抑制, 降水粒子平均数浓度较清洁云中明显减少10倍以上, 无论云滴、冰雪晶还是降水粒子谱宽均较清洁云明显变窄, 并最终减弱降水, 对华北区域的天气和气候产生重要影响。Abstract: Aerosols influence cloud microphysical properties by acting as cloud condensation nuclei and ice nuclei. Aerosols have the potential to modify the location and intensity of precipitation by changing cloud properties. However, identifying precipitation changes induced by aerosols remains a significant challenge for current research. Dust aerosol carried by dust storms is an important source of ice nuclei. China and Mongolia are the primary desert regions in Asia and the world. The Mongolian cyclone in northern China is one of the significant weather systems that cause sandstorms in both countries. Studying the impact of dust aerosols on clouds under the weather conditions of Mongolian cyclones and sandstorms is of great significance. Due to challenges of aerial observations during dust storms, the impact of dust aerosols on clouds is minimally understood during Mongolian cyclone dust storms. In order to investigate the impact of dust aerosols on clouds, a study is conducted based on the comprehensive observation experiment of clouds in Beijing Area carried out by Beijing Weather Modification Center. An extremely rare case of strong sandstorm weather caused by a Mongolian cyclone and cold front is observed on 24 April 2009. The vertical macro and micro physical structure characteristics of dust cloud and clean cloud are compared and analyzed, and the potential influence of dust aerosols on clouds is discussed. Results show that dust aerosol transferred from China-Mongolia areas is an important source of ice nuclei in North China. It can be transferred vertically to a height of 3200 meters above the cloud top. The concentration of ice nuclei in the dust background area is significantly increased by 10 times compared to that in the clean background area. This increase further affects the microphysical structure of cumulus and stratocumulus clouds with high cloud top temperatures (-6 ℃ to -3 ℃) by altering the process of ice crystal formation. At the same temperature, the average concentration of ice crystals in the dust cloud increases significantly by nearly 10 times compared to that in the clean cloud. The liquid water content is reduced, leading to the formation of a large number of small ice crystal particles in the cloud. It inhibits the rime process and results in a significant reduction in the average concentration of precipitation particles compared to that in the clean cloud. Additionally, the spectral width of cloud droplets, ice and snow crystals, and precipitation particles is significantly narrower than that in the clean cloud. It will eventually weaken the precipitation, which will have a significant impact on the weather and climate in North China. It is helpful to enhance our understanding of the indirect effects of aerosols.
-
图 2 2009年4月24日飞机爬升期间的高度、温度(a)和云外气溶胶粒子谱(填色表示气溶胶数浓度) (云内气溶胶无法测量标以空白,下同) (b)时序图
Fig. 2 Time series of altitude, temperature(a) and aerosol particle spectrum outside the cloud (the shaded denotes aerosol number concentration)(the blank denotes the aerosol in the cloud cannot be measured, similarly hereinafter) (b) during climbing stage on 24 Apr 2009
图 2 2009年4月24日飞机爬升期间的高度、温度(a)和云外气溶胶粒子谱(填色表示气溶胶数浓度) (云内气溶胶无法测量标以空白,下同) (b)时序图
Fig. 2 Time series of altitude, temperature(a) and aerosol particle spectrum outside the cloud (the shaded denotes aerosol number concentration)(the blank denotes the aerosol in the cloud cannot be measured, similarly hereinafter) (b) during climbing stage on 24 Apr 2009
图 4 沙尘背景下气溶胶数浓度和计算云凝结核及冰核数浓度(a)、气溶胶粒子谱(填色表示气溶胶数浓度) 和有效直径(黑色圆点) (b)、温度和云中液态水含量(c)垂直分布
Fig. 4 Vertical distribution of aerosol number concentration and calculated cloud condensation nucleus and ice nucleus concentration(a), aerosol spectrum (the shaded denotes aerosol number concentration) and effective diameter (the black dot) (b), temperature and liquid water content(c) under dust background
图 4 沙尘背景下气溶胶数浓度和计算云凝结核及冰核数浓度(a)、气溶胶粒子谱(填色表示气溶胶数浓度) 和有效直径(黑色圆点) (b)、温度和云中液态水含量(c)垂直分布
Fig. 4 Vertical distribution of aerosol number concentration and calculated cloud condensation nucleus and ice nucleus concentration(a), aerosol spectrum (the shaded denotes aerosol number concentration) and effective diameter (the black dot) (b), temperature and liquid water content(c) under dust background
图 5 清洁背景下气溶胶数浓度和计算云凝结核及冰核数浓度(a)、气溶胶粒子谱(填色表示气溶胶数浓度)和有效直径(黑色圆点) (b)、温度和云中液态水含量(c)垂直分布
Fig. 5 Vertical distribution of aerosol number concentration and calculated cloud condensation nucleus and ice nucleus number concentration(a), aerosol spectrum (the shaded denotes aerosol number concentration) and effective diameter (the black dot) (b), temperature and liquid water content(c) under cleaning background
图 5 清洁背景下气溶胶数浓度和计算云凝结核及冰核数浓度(a)、气溶胶粒子谱(填色表示气溶胶数浓度)和有效直径(黑色圆点) (b)、温度和云中液态水含量(c)垂直分布
Fig. 5 Vertical distribution of aerosol number concentration and calculated cloud condensation nucleus and ice nucleus number concentration(a), aerosol spectrum (the shaded denotes aerosol number concentration) and effective diameter (the black dot) (b), temperature and liquid water content(c) under cleaning background
图 6 沙尘背景下云滴数浓度(黑色圆点) 和谱分布(填色表示数浓度) (a)、冰晶数浓度(黑色圆点) 和谱分布(填色表示数浓度) (b)、降水粒子数浓度(黑色圆点) 和谱分布(填色表示数浓度) (c)等微物理特征垂直分布(黑线表示平均数浓度, 下同)
Fig. 6 Vertical distribution of cloud droplet number concentration (the black dot) and spectral distribution (the shaded denotes number concentration) (a), ice crystal number concentration (the black dot) and spectral distribution (the shaded denotes number concentration) (b), precipitation particle number concentration (the black dot) and spectral distribution (the shaded denotes number concentration) (c) under dust background (the black line denotes number concentration, similarly hereinafter)
图 6 沙尘背景下云滴数浓度(黑色圆点) 和谱分布(填色表示数浓度) (a)、冰晶数浓度(黑色圆点) 和谱分布(填色表示数浓度) (b)、降水粒子数浓度(黑色圆点) 和谱分布(填色表示数浓度) (c)等微物理特征垂直分布(黑线表示平均数浓度, 下同)
Fig. 6 Vertical distribution of cloud droplet number concentration (the black dot) and spectral distribution (the shaded denotes number concentration) (a), ice crystal number concentration (the black dot) and spectral distribution (the shaded denotes number concentration) (b), precipitation particle number concentration (the black dot) and spectral distribution (the shaded denotes number concentration) (c) under dust background (the black line denotes number concentration, similarly hereinafter)
图 7 沙尘背景下云顶(a)、云中(b)和云底(c)CIP探头粒子图像示例(每条宽度1550 μm,每条旁边对应为采样时间即时: 分: 秒,下同)
Fig. 7 Example CIP images on cloud top(a), cloud middle(b), and cloud bottom(c) under dust background (the width of each horizontal strip is 1550 μm, the sampling time of each horizontal strip is hour: minute: second, similarly hereinafter)
图 7 沙尘背景下云顶(a)、云中(b)和云底(c)CIP探头粒子图像示例(每条宽度1550 μm,每条旁边对应为采样时间即时: 分: 秒,下同)
Fig. 7 Example CIP images on cloud top(a), cloud middle(b), and cloud bottom(c) under dust background (the width of each horizontal strip is 1550 μm, the sampling time of each horizontal strip is hour: minute: second, similarly hereinafter)
图 8 下降垂直探测阶段云滴数浓度(黑色圆点) 和谱分布(填色表示数浓度) (a)、冰晶数浓度(黑色圆点) 和谱分布(填色表示数浓度) (b)、降水粒子数浓度(黑色圆点) 和谱分布(填色表示数浓度) (c)等微物理特征垂直分布
Fig. 8 Vertical distribution of cloud droplet number concentration (the black dot) and spectral distribution (the shaded denotes number concentration) (a), ice crystal number concentration (the black dot) and spectral distribution (the shaded denotes number concentration) (b), precipitation particle number concentration (the black dot) and spectral distribution (the shaded denotes number concentration) (c) during declining stage
图 8 下降垂直探测阶段云滴数浓度(黑色圆点) 和谱分布(填色表示数浓度) (a)、冰晶数浓度(黑色圆点) 和谱分布(填色表示数浓度) (b)、降水粒子数浓度(黑色圆点) 和谱分布(填色表示数浓度) (c)等微物理特征垂直分布
Fig. 8 Vertical distribution of cloud droplet number concentration (the black dot) and spectral distribution (the shaded denotes number concentration) (a), ice crystal number concentration (the black dot) and spectral distribution (the shaded denotes number concentration) (b), precipitation particle number concentration (the black dot) and spectral distribution (the shaded denotes number concentration) (c) during declining stage
表 1 大气冰核数浓度(N)与温度(T)、气溶胶数浓度(n0.5)参数化方案
Table 1 Parameterization schemes of ice nucleus concentration(N) with temperature(T) and aerosols concentration(n0.5)
参数化方案 参数化公式 观测地点 D10 ND10=0.0000594×(-T)3.33×n0.5-0.0264×T+0.0033 全球多站平均 D15 ND15=n0.51.25×e-0.46×T-11.6 撒哈拉沙漠沙尘 K19 NK19=0.0026×(-T)2.3816×n0.5-0.0256×T-0.0250 华北山区 表 1 大气冰核数浓度(N)与温度(T)、气溶胶数浓度(n0.5)参数化方案
Table 1 Parameterization schemes of ice nucleus concentration(N) with temperature(T) and aerosols concentration(n0.5)
参数化方案 参数化公式 观测地点 D10 ND10=0.0000594×(-T)3.33×n0.5-0.0264×T+0.0033 全球多站平均 D15 ND15=n0.51.25×e-0.46×T-11.6 撒哈拉沙漠沙尘 K19 NK19=0.0026×(-T)2.3816×n0.5-0.0256×T-0.0250 华北山区 -
[1] 孙钦宏, 马洪波, 齐彦斌, 等. 2021年夏季长白山麓雨滴谱分布特征. 应用气象学报, 2023, 34(3): 336-347. doi: 10.11898/1001-7313.20230307Sun Q H, Ma H B, Qi Y B, et al. Distribution characteristics of raindrop spectrum at Changbai Mountain foothills in summer of 2021. J Appl Meteor Sci, 2023, 34(3): 336-347. doi: 10.11898/1001-7313.20230307 [2] 王羽飞, 齐彦斌, 李倩, 等. 一次长白山夏季雾的宏微观特征. 应用气象学报, 2022, 33(4): 442-453. doi: 10.11898/1001-7313.20220405Wang Y F, Qi Y H, Li Q, et al. Macro and micro characteristics of a fog process in Changbai Mountain in summer. J Appl Meteor Sci, 2022, 33(4): 442-453. doi: 10.11898/1001-7313.20220405 [3] 王泽林, 周旭, 吴俊辉, 等. 一次飞机严重积冰的天气条件和云微物理特征. 应用气象学报, 2022, 33(5): 555-567. doi: 10.11898/1001-7313.20220504Wang Z L, Zhou X, Wu J H, et al. Weather conditions and cloud microphysical characteristics of an aircraft severe icing process. J Appl Meteor Sci, 2022, 33(5): 555-567. doi: 10.11898/1001-7313.20220504 [4] 刘春文, 郭学良, 段玮, 等. 云南省积层混合云微物理特征飞机观测. 应用气象学报, 2022, 33(2): 142-154. doi: 10.11898/1001-7313.20220202Liu C W, Guo X L, Duan W, et al. Observation and analysis of microphysical characteristics of stratiform clouds with embedded convections in Yunnan. J Appl Meteor Sci, 2022, 33(2): 142-154. doi: 10.11898/1001-7313.20220202 [5] 李睿劼, 黄梦宇, 丁德平, 等. 基于70 m3膨胀云室的暖云滴谱试验研究. 应用气象学报, 2023, 34(5): 540-551. doi: 10.11898/1001-7313.20230503Li R J, Huang M Y, Ding D P, et al. Warm cloud size distribution experiment based on 70 m3 expansion cloud chamber. J Appl Meteor Sci, 2023, 34(5): 540-551. doi: 10.11898/1001-7313.20230503 [6] 方宗义, 王炜. 2002年我国沙尘暴的若干特征分析. 应用气象学报, 2003, 14(5): 513-521. doi: 10.3969/j.issn.1001-7313.2003.05.001Fang Z Y, Wang W. Characteristic analysis of China dust storm in 2002. J Appl Meteor Sci, 2003, 14(5): 513-521. doi: 10.3969/j.issn.1001-7313.2003.05.001 [7] Sassen K, DeMott P J, Prospero J M, et al. Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results. Geophys Res Lett, 2003, 30(12). DOI: 10.1029/2003GL017371. [8] 钱正安, 蔡英, 刘景涛, 等. 中蒙地区沙尘暴研究的若干进展. 地球物理学报, 2006, 49(1): 83-92. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200601012.htmQian Z A, Cai Y, Liu J T, et al. Some advances in dust storm research over China-Mongolia areas. Chinese J Geophys, 2006, 49(1): 83-92. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200601012.htm [9] 王炜, 方宗义. 沙尘暴天气及其研究进展综述. 应用气象学报, 2004, 15(3): 366-381. doi: 10.3969/j.issn.1001-7313.2004.03.013Wang W, Fang Z Y. Review of duststorm weather and research progress. J Appl Meteor Sci, 2004, 15(3): 366-381. doi: 10.3969/j.issn.1001-7313.2004.03.013 [10] Connolly P J, Möhler O, Field P R, et al. Studies of heterogeneous freezing by three different desert dust samples. Atmos Chem Phys, 2009, 9(8): 2805-2824. doi: 10.5194/acp-9-2805-2009 [11] Jiang H, Yin Y, Yang L, et al. The characteristics of atmospheric ice nuclei measured at different altitudes in the Huangshan Mountains in Southeast China. Adv Atmos Sci, 2014, 31(2): 396-406. doi: 10.1007/s00376-013-3048-5 [12] Fan J W, Wang Y, Rosenfeld D, et al. Review of aerosol-cloud interactions: Mechanisms, significance, and challenges. J Atmos Sci, 2016, 73(11): 4221-4252. doi: 10.1175/JAS-D-16-0037.1 [13] Fan J, Leung L R, DeMott P J, et al. Aerosol impacts on California winter clouds and precipitation during CalWater 2011: Local pollution versus long-range transported dust. Atmos Chem Phys, 2014, 14(1): 81-101. doi: 10.5194/acp-14-81-2014 [14] Creamean J M, Suski K J, Rosenfeld D, et al. Dust and biological aerosols from the Sahara and Asia influence precipitation in the western US. Science, 2013, 339(6127): 1572-1578. doi: 10.1126/science.1227279 [15] 游来光, 马培民, 陈君寒, 等. 沙暴天气下大气中沙尘粒子空间分布特点及其微结构. 应用气象学报, 1991, 2(1): 13-21. http://qikan.camscma.cn/article/id/19910102You L G, Ma P M, Chen J H, et al. A case study of the aerosol characteristics in the lower troposphere during a dust storm event. J Appl Meteor, 1991, 2(1): 13-21. http://qikan.camscma.cn/article/id/19910102 [16] 牛生杰, 孙照渤. 春末中国西北沙漠地区沙尘气溶胶物理特性的飞机观测. 高原气象, 2005, 24(4): 604-610. doi: 10.3321/j.issn:1000-0534.2005.04.021Niu S J, Sun Z B. Aircraft measurements of sand aerosol over Northwest China desert area in late spring. Plateau Meteor, 2005, 24(4): 604-610. doi: 10.3321/j.issn:1000-0534.2005.04.021 [17] 牛生杰, 章澄昌, 孙继明. 贺兰山地区沙尘气溶胶粒子谱分布的观测研究. 大气科学, 2001, 25(2): 243-252. doi: 10.3878/j.issn.1006-9895.2001.02.10Niu S J, Zhang C C, Sun J M. Observational researches on the size distribution of sand aerosol particles in the Helan Mountain Area. Chinese J Atmos Sci, 2001, 25(2): 243-252. doi: 10.3878/j.issn.1006-9895.2001.02.10 [18] 马新成, 毕凯, 田海军, 等. 北京地区沙尘天气气溶胶飞机观测特征. 气象科技, 2016, 44(1): 95-103. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201601017.htmMa X C, Bi K, Tian H J, et al. Aircraft measurements of aerosol characteristics during dust evens in Bejing. Meteor Sci Technol, 2016, 44(1): 95-103. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201601017.htm [19] 董晓波, 麦榕, 王红磊, 等. 石家庄一次沙尘大气污染物与边界层相互作用. 中国环境科学, 2021, 41(3): 1024-1033. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202103006.htmDong X B, Mai R, Wang H L, et al. An interaction study between atmospheric pollutants and boundary layer during a dust storm weather in Shijiazhuang. China Environ Sci, 2021, 41(3): 1024-1033. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202103006.htm [20] 马新成, 黄梦宇, 于潇洧, 等. 一次副热带高压后部层状云降水中山区层状云宏微物理结构探测分析. 气候与环境研究, 2012, 17(6): 711-718. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201206009.htmMa X C, Huang M Y, Yu X W, et al. An observational study of macro/microphysical structures of stratiform cloud in a high-pressure system rear over mountain. Clim Environ Res, 2012, 17(6): 711-718. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201206009.htm [21] 陈鹏飞, 张蔷, 权建农, 等. 北京地区3500m高空内污染物的时空分布特征. 中国环境科学, 2012, 32(10): 1729-1735. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201210000.htmChen P F, Zhang Q, Quan J N, et al. Temporal and spatial distribution of atmospheric pollutants by aircraft sounding in 3500m altitude of Beijing Area. China Environ Sci, 2012, 32(10): 1729-1735. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201210000.htm [22] Korolev A. Reconstruction of the sizes of spherical particles from their shadow images. Part Ⅰ: Theoretical considerations. J Atmos Ocean Technol, 2007, 24(3): 376-389. [23] Shen C Y, Zhao C S, Ma N, et al. Method to estimate water vapor supersaturation in the ambient activation process using aerosol and droplet measurement data. J Geophys Res Atmos, 2018, 123(18): 606-610. [24] DeMott P J, Prenni A J, Liu X, et al. Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc Natl Acad Sci USA, 2010, 107(25): 11217-11222. [25] DeMott P J, Prenni A J, McMeeking G R, et al. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles. Atmos Chem Phys, 2015, 15(1): 393-409. [26] 毕凯, 黄梦宇, 马新成, 等. 在线连续流量扩散云室对华北冬季大气冰核的观测分析. 大气科学, 2020, 44(6): 1243-1257. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202006007.htmBi K, Huang M Y, Ma X C, et al. Observation and analysis of atmospheric ice-nucleating particles in online continuous-flow diffusion chamber in winter in North China. Chinese J Atmos Sci, 2020, 44(6): 1243-1257. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202006007.htm [27] Lance S, Shupe M D, Feingold G, et al. Cloud condensation nuclei as a modulator of ice processes in Arctic mixed-phase clouds. Atmos Chem Phys, 2011, 11(237): 8003-8015. [28] 胡秀清, 卢乃锰, 张鹏. 利用静止气象卫星红外通道遥感监测中国沙尘暴. 应用气象学报, 2007, 18(3): 266-275. http://qikan.camscma.cn/article/id/20070348Hu X Q, Lu N M, Zhang P. Remote sensing and detection of dust storm in China using the thermal bands of geostationary meteorological satellite. J Appl Meteor Sci, 2007, 18(3): 266-275. http://qikan.camscma.cn/article/id/20070348 [29] 王丽娟, 赵琳娜, 寿绍文, 等. 2009年4月北方一次强沙尘暴过程的特征分析和数值模拟. 气象, 2011, 37(3): 309-317. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201103009.htmWang L J, Zhao L N, Shou S W, et al. Observation and numerical simulation analysis of the severe sand storm over northern China in April of 2009. Meteor Mon, 2011, 37(3): 309-317. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201103009.htm [30] 田伟红. 北方气温显著偏高云贵川渝降水偏多——2009年4月. 气象, 2009, 35(7): 119-123.Tian W H. The temperature in the north is significantly higher Yunnan, Guizhou, Sichuan and Chongqing precipitation more-April 2009. Meteor Mon, 2009, 35(7): 119-123. [31] 马新成, 吴宏议, 嵇磊, 等. 北京春季不同天气条件下气溶胶垂直分布特征. 气象, 2011, 37(9): 1126-1133. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201109011.htmMa X C, Wu H Y, Ji L, et al. Vertical distributions of aerosols under different weather conditions in Beijing. Meteor Mon, 2011, 37(9): 1126-1133. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201109011.htm [32] 马新成, 田伟红, 张磊, 等. 2004年北京地区秋季大气气溶胶粒子分布特征. 气象科技, 2011, 39(6): 685-691. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201106004.htmMa X C, Tian W H, Zhang L, et al. Characterizations of aerosol distribution over Beijing Region in autumn 2004. Meteor Sci Technol, 2011, 39(6): 685-691. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201106004.htm [33] Pruppacher H R, Klett J D. Microphysics of Clouds and Precipitation. Dordrecht: Springer Netherlands, 1978. [34] Hallett J, Mossop S C. Production of secondary ice particles during the riming process. Nature, 1974, 249(5452): 26-28. [35] Mossop S C. Secondary ice particle production during rime growth: The effect of drop size distribution and rimer velocity. Q J R Meteor Soc, 1985, 111(470): 1113-1124.