留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东北地区新民夏季雨滴谱特征

周任然 王改利 高云义

周任然, 王改利, 高云义. 东北地区新民夏季雨滴谱特征. 应用气象学报, 2024, 35(3): 337-349. DOI:  10.11898/1001-7313.20240307..
引用本文: 周任然, 王改利, 高云义. 东北地区新民夏季雨滴谱特征. 应用气象学报, 2024, 35(3): 337-349. DOI:  10.11898/1001-7313.20240307.
Zhou Renran, Wang Gaili, Gao Yunyi. Raindrop size distribution characteristics of summer precipitation at Xinmin, Northeast China. J Appl Meteor Sci, 2024, 35(3): 337-349. DOI:  10.11898/1001-7313.20240307.
Citation: Zhou Renran, Wang Gaili, Gao Yunyi. Raindrop size distribution characteristics of summer precipitation at Xinmin, Northeast China. J Appl Meteor Sci, 2024, 35(3): 337-349. DOI:  10.11898/1001-7313.20240307.

东北地区新民夏季雨滴谱特征

DOI: 10.11898/1001-7313.20240307
资助项目: 

中国气象科学研究院基本科研业务费 2023Z019

中国气象科学研究院科技发展基金 2023KJ041

详细信息
    通信作者:

    王改利, 邮箱:wanggl@cma.gov.cn

Raindrop Size Distribution Characteristics of Summer Precipitation at Xinmin, Northeast China

  • 摘要: 以辽宁省新民气候基准站的降水现象仪观测数据为基础, 研究我国东北地区新民夏季不同雨强及不同降雨类型的雨滴谱特征, 并与其他地区进行对比。结果表明: 新民雨强越大谱宽越宽, 雨强大于20 mm·h-1的雨滴谱谱宽接近8 mm, 降雨以小雨滴为主, 但中等雨滴对雨量的贡献最大。对流云降雨为典型的大陆型对流, 以雨滴的直径较大而数浓度较低为特点, 质量加权平均直径Dm的平均值为2.14 mm, 标准化截距lgNw的平均值为3.40。拟合的μ-Λ关系与其他地区采用PARSIVEL雨滴谱仪数据拟合的μ-Λ经验关系接近, 而与采用二维视频雨滴谱仪(2DVD)数据拟合的μ-Λ关系差异较大。与华东、华北地区相比, 东北地区新民Dm (lgNw)的平均值更大(小), 拟合的对流云降雨Z-R关系的指数更大。
  • 图  1  2020年8月4日新民基本气候基准站降水现象仪观测的质量控制后的雨滴谱(a)和质量控制前后的6 min雨量(b)

    Fig. 1  Raindrop size distributions after quality control(a) and 6-minute accumulated rainfall before and after quality control(b) for precipitation phenomenon instrument at Xinmin on 4 Aug 2020

    图  2  不同雨强等级对雨量(实线) 和降雨时间(柱状) 的相对贡献

    Fig. 2  Relative contributions of different rain intensities to accumulated rain amount (the solid line) and accumulated rain duration (the column)

    图  3  不同雨强(单位:mm·h-1) 等级的平均雨滴谱

    Fig. 3  Average raindrop size distribution for different rainfall intensities (unit: mm·h-1)

    图  4  不同直径等级对雨滴总数浓度和雨强的相对贡献

    Fig. 4  Relative contribution of different diameters to total raindrop concentration and rainfall intensity

    图  5  层状云降雨和对流云降雨的Dm和lgNw发生频率

    Fig. 5  Occurrence frequency of Dm and lgNw for stratiform rainfall and convective rainfall

    图  6  μ-Λ的散点图及拟合曲线

    Fig. 6  Scatter plot and fitting curves of μ-Λ

    图  7  层状云降雨和对流云降雨的Z-R散点图及拟合关系

    Fig. 7  Scatter plots and fitting curves of Z-R for stratiform rainfall and convective rainfall

    表  1  研究中选取的17个降雨日中两种设备的累积雨量、相对偏差和相关系数(相关系数均达到0.01显著性水平)

    Table  1  Cumulative rainfall, relative deviations, and correlation coefficients of selected 17 rainfall days by two instruments (correlation coeffients passing the test of 0.01 level)

    序号 降雨日 累积雨量/mm 相对偏差/% 相关系数
    雨量计 降水现象仪
    1 2019-07-11 28.9 27.3 -6 0.99
    2 2019-07-30 47.4 38.6 -19 0.98
    3 2019-08-03 111.6 93.6 -16 0.98
    4 2019-08-11 46.3 41.8 -10 0.99
    5 2019-08-14 68.3 51.7 -24 0.97
    6 2020-08-04 60.5 51.0 -16 0.99
    7 2020-08-19 62.0 43.6 -30 0.96
    8 2020-08-25 78.9 60.2 -24 0.99
    9 2020-08-27 46.3 32.5 -30 0.99
    10 2021-07-30 28.9 31.2 8 0.96
    11 2021-08-11 26.0 21.6 -17 0.96
    12 2021-08-16 29.8 21.2 -29 0.94
    13 2022-07-03 18.8 18.7 0 0.99
    14 2022-07-07 69.6 53.1 -23 0.96
    15 2022-08-13 17.1 15.4 -9 0.98
    16 2023-07-09 27.6 24.9 -9 0.99
    17 2023-08-22 21.4 15.1 -29 0.95
    下载: 导出CSV

    表  2  不同雨强等级的降雨参数及Gamma模型参数

    Table  2  Precipitation parameters and Gamma model parameters for different rainfall intensities

    参数 雨强/(mm·h-1)
    [0.1, 2) [2, 5) [5, 10) [10, 20) [20, 50) [50, 181.7)
    Nt/m-3 106.3 264.7 335.4 437.6 659.7 1309.0
    W/(g·m-3) 0.035 0.158 0.315 0.593 1.216 2.963
    Z/dBZ 22.6 31.7 37.2 41.8 47.3 53.3
    Dm/mm 1.190 1.460 1.753 2.032 2.429 2.880
    lgNw 3.152 3.453 3.434 3.452 3.454 3.545
    μ 1.422 1.862 1.371 1.530 1.497 1.690
    Λ/mm-1 4.557 4.015 3.065 2.722 2.264 1.976
    N0/(m-3·mm-1) 5372.7 11009.7 5777.0 5229.7 3973.8 3821.8
    下载: 导出CSV

    表  3  采用不同Z-R关系估测新民降雨误差统计

    Table  3  Precipitation estimation error for different Z-R relationships at Xinmin

    降雨类型 拟合公式 标准化平均偏差/% 标准化绝对偏差/%
    对流云降雨 Z=300R1.40(经验公式)[41] 26.26 36.84
    Z=733.55R1.22(北京)[9] 8.18 36.7
    Z=230.85R1.34(南京)[40] 82.63 84.53
    Z=180.93R1.61 (新民) 4.51 24.53
    层状云降雨 Z=200R1.60(经验公式)[41] 17.71 41.53
    Z=247.19R1.35(北京)[9] 14.09 35.44
    Z=193.73R1.54(南京)[40] 20.86 38.94
    Z=239.03R1.44 (新民) 11.49 38.22
    下载: 导出CSV
  • [1] Milbrandt J A, Yau M K. A multimoment bulk microphysics parameterization. Part Ⅰ: Analysis of the role of the spectral shape parameter. J Atmos Sci, 2005, 62(9): 3051-3064. doi:  10.1175/JAS3534.1
    [2] Morrison H, Milbrandt J A. Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part Ⅰ: Scheme description and idealized tests. J Atmos Sci, 2015, 72(1): 287-311. doi:  10.1175/JAS-D-14-0065.1
    [3] Cifelli R, Chandrasekar V, Lim S, et al. A new dual-polarization radar rainfall algorithm: Application in Colorado precipitation events. J Atmos Ocean Technol, 2011, 28(3): 352-364. doi:  10.1175/2010JTECHA1488.1
    [4] Gilmore M S, Straka J M, Rasmussen E N. Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon Wea Rev, 2004, 132(11): 2610-2627. doi:  10.1175/MWR2810.1
    [5] Krishna U V M, Reddy K K, Seela B K, et al. Raindrop size distribution of easterly and westerly monsoon precipitation observed over Palau Islands in the Western Pacific Ocean. Atmos Res, 2016, 174: 41-51.
    [6] Zhang G, Vivekanandan J, Brandes E. A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans Geosci Remote Sens, 2001, 39(4): 830-841. doi:  10.1109/36.917906
    [7] 常婉婷, 高文华, 端义宏, 等. 云微物理过程对台风数值模拟的影响. 应用气象学报, 2019, 30(4): 443-455. doi:  10.11898/1001-7313.20190405

    Chang W T, Gao W H, Duan Y H, et al. The impact of cloud microphysical processes on typhoon numerical simulation. J Appl Meteor Sci, 2019, 30(4): 443-455. doi:  10.11898/1001-7313.20190405
    [8] Lam H Y, Din J, Jong S L. Statistical and physical descriptions of raindrop size distributions in equatorial Malaysia from disdrometer observations. Adv Meteor, 2015(2). DOI:  10.1155/2015/253730.
    [9] Ji L, Chen H N, Li L, et al. Raindrop size distributions and rain characteristics observed by a PARSIVEL disdrometer in Beijing, Northern China. Remote Sens, 2019, 11(12). DOI:  10.3390/rs11121479.
    [10] Tokay A, Short D A. Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J Appl Meteor, 1996, 35(3): 355-371. doi:  10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2
    [11] Bringi V N, Chandrasekar V, Hubbert J, et al. Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J Atmos Sci, 2003, 60(2): 354-365. doi:  10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2
    [12] 葛黎黎, 吕国真, 赵桂香, 等. 太原地区雨滴谱季节分布特征. 应用气象学报, 2023, 34(4): 489-502. doi:  10.11898/1001-7313.20230409

    Ge L L, Lü G Z, Zhao G X, et al. Seasonal distribution characteristics of raindrop spectrum in Taiyuan. J Appl Meteor Sci, 2023, 34(4): 489-502. doi:  10.11898/1001-7313.20230409
    [13] 袁野, 朱士超, 李爱华. 黄山雨滴下落过程滴谱变化特征. 应用气象学报, 2016, 27(6): 734-740. doi:  10.11898/1001-7313.20160610

    Yuan Y, Zhu S C, Li A H. Characteristics of raindrop falling process at the Mount Huang. J Appl Meteor Sci, 2016, 27(6): 734-740. doi:  10.11898/1001-7313.20160610
    [14] Wen L, Zhao K, Zhang G F, et al. Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and micro rain radar data. J Geophys Res Atmos, 2016, 121(5): 2265-2282. doi:  10.1002/2015JD024160
    [15] 黄泽文, 彭思越, 张浩然, 等. 福建安溪雨滴谱特征. 应用气象学报, 2022, 33(2): 205-217. doi:  10.11898/1001-7313.20220207

    Huang Z W, Peng S Y, Zhang H R, et al. Characteristics of raindrop size distribution at Anxi of Fujian. J Appl Meteor Sci, 2022, 33(2): 205-217. doi:  10.11898/1001-7313.20220207
    [16] Wen L, Zhao K, Zhang G F, et al. Impacts of instrument limitations on estimated raindrop size distribution, radar parameters, and model microphysics during Mei-yu season in East China. J Atmos Ocean Technol, 2017, 34(5): 1021-1037. doi:  10.1175/JTECH-D-16-0225.1
    [17] 梅海霞, 梁信忠, 曾明剑, 等. 2015—2017年夏季南京雨滴谱特征. 应用气象学报, 2020, 31(1): 117-128. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX202001011.htm

    Mei H X, Liang X Z, Zeng M J, et al. Raindrop size distribution characteristics of Nanjing in summer of 2015—2017. J Appl Meteor Sci, 2020, 31(1): 117-128. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX202001011.htm
    [18] Huo Z Y, Ruan Z, Wei M, et al. Statistical characteristics of raindrop size distribution in South China summer based on the vertical structure derived from VPR-CFMCW. Atmos Res, 2019, 222: 47-61.
    [19] Tang Q, Xiao H, Guo C W, et al. Characteristics of the raindrop size distributions and their retrieved polarimetric radar parameters in northern and southern China. Atmos Res, 2014, 135: 59-75.
    [20] Wen G, Xiao H, Yang H L, et al. Characteristics of summer and winter precipitation over northern China. Atmos Res, 2017, 197: 390-406.
    [21] 李欣, 张璐. 北上台风强降水形成机制及微物理特征. 应用气象学报, 2022, 33(1): 29-42. doi:  10.11898/1001-7313.20200111

    Li X, Zhang L. Formation mechanism and microphysics characteristics of heavy rainfall caused by northward-moving typhoons. J Appl Meteor Sci, 2022, 33(1): 29-42. doi:  10.11898/1001-7313.20200111
    [22] 陈宝君, 李子华, 刘吉成, 等. 三类降水云雨滴谱分布模式. 气象学报, 1998, 56(4): 506-512. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB804.012.htm

    Chen B J, Li Z H, Liu J C, et al. Model of raindrop size distribution in three types of precipitation. Acta Meteor Sinica, 1998, 56(4): 506-512. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB804.012.htm
    [23] 宫福久, 刘吉成, 李子华. 三类降水云雨滴谱特征研究. 大气科学, 1997, 21(5): 607-614. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK705.011.htm

    Gong F J, Liu J C, Li Z H. Study on raindrop spectrum characteristics of three types of precipitation clouds. Chinese J Atmos Sci, 1997, 21(5): 607-614. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK705.011.htm
    [24] 房彬, 郭学良, 肖辉. 辽宁地区不同降水云系雨滴谱参数及其特征量研究. 大气科学, 2016, 40(6): 1154-1164. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201606005.htm

    Fang B, Guo X L, Xiao H. A study on characteristics of spectral parameters and characteristic variables of raindrop size distribution for different cloud systems in Liaoning Province. Chinese J Atmos Sci, 2016, 40(6): 1154-1164. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201606005.htm
    [25] 孙钦宏, 马洪波, 齐彦斌, 等. 2021年夏季长白山麓雨滴谱分布特征. 应用气象学报, 2023, 34(3): 336-347. doi:  10.11898/1001-7313.20230307

    Sun Q H, Ma H B, Qi Y B, et al. Distribution characteristics of raindrop spectrum at Changbai Mountain foothills in summer of 2021. J Appl Meteor Sci, 2023, 34(3): 336-347. doi:  10.11898/1001-7313.20230307
    [26] 郭建平, 田志会, 张涓涓. 东北地区玉米热量指数的预测模型研究. 应用气象学报, 2003, 14(5): 626-633. http://qikan.camscma.cn/article/id/20030577

    Guo J P, Tian Z H, Zhang J J. Forecasting models of heat index for corn in Northeast China. J Appl Meteor Sci, 2003, 14(5): 626-633. http://qikan.camscma.cn/article/id/20030577
    [27] 姚秀萍, 董敏. 东北三江流域夏季旱涝基本特征分析. 应用气象学报, 2000, 11(3): 297-303. http://qikan.camscma.cn/article/id/20000345

    Yao X P, Dong M. Research on the features of summer rainfall in Northeast China. Q J Appl Meteor, 2000, 11(3): 297-303. http://qikan.camscma.cn/article/id/20000345
    [28] 黄丽君, 崔晓鹏. 2000—2019年东北冷涡统计特征及其影响期间的降水分布. 大气科学, 2023, 47(6): 1925-1938. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202306016.htm

    Huang L J, Cui X P. Statistical characteristics of the Northeast China cold vortex and its impact on precipitation distribution from 2000 to 2019. Chinese J Atmos Sci, 2023, 47(6): 1925-1938. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202306016.htm
    [29] 徐玥, 邵美荣, 唐凯, 等. 2021年黑龙江两次超级单体龙卷过程多尺度特征. 应用气象学报, 2022, 33(3): 305-318. doi:  10.11898/1001-7313.20220305

    Xu Y, Shao M R, Tang K, et al. Multiscale characteristics of two supercell tornados of Heilongjiang in 2021. J Appl Meteor Sci, 2022, 33(3): 305-318. doi:  10.11898/1001-7313.20220305
    [30] Friedrich K, Higgins S, Masters F J, et al. Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall. J Atmos Ocean Technol, 2013, 30(9): 2063-2080.
    [31] Chen B J, Hu Z Q, Liu L P, et al. Raindrop size distribution measurements at 4, 500m on the Tibetan Plateau during TIPEX-Ⅲ. J Geophys Res Atmos, 2017, 122(20): 11092-11106.
    [32] Ulbrich C W. Natural variations in the analytical form of the raindrop size distribution. J Appl Meteor, 1983, 22(10): 1764-1775.
    [33] Kozu T, Nakamura K. Rainfall parameter estimation from dual-radar measurements combining reflectivity profile and path-integrated attenuation. J Atmos Ocean Technol, 1991, 8(2): 259-270.
    [34] Tokay A, Petersen W A, Gatlin P, et al. Comparison of raindrop size distribution measurements by collocated disdrometers. J Atmos Ocean Technol, 2013, 30(8): 1672-1690.
    [35] Ulbrich C W, Atlas D. Microphysics of raindrop size spectra: Tropical continental and maritime storms. J Appl Meteor Climatol, 2007, 46(11): 1777-1791.
    [36] Chen B J, Yang J, Pu J P. Statistical characteristics of raindrop size distribution in the Meiyu season observed in Eastern China. J Meteor Soc Jpn, 2013, 91(2): 215-227.
    [37] Han Y, Guo J P, Li H J, et al. Investigation of raindrop size distribution and its potential influential factors during warm season over China. Atmos Res, 2022, 275. DOI:  10.1016/j.atmosres.2022.106248.
    [38] Dolan B, Fuchs B, Rutledge S A, et al. Primary modes of global drop size distributions. J Atmos Sci, 2018, 75(5): 1453-1476.
    [39] Zhang G F, Vivekanandan J, Brandes E A, et al. The shape-slope relation in observed gamma raindrop size distributions: Statistical error or useful information?. J Atmos Oceanic Technol, 2003, 20(8): 1106-1119.
    [40] Wen L, Zhao K, Wang M Y, et al. Seasonal variations of observed raindrop size distribution in East China. Adv Atmos Sci, 2019, 36(4): 346-362.
    [41] Fulton R A, Breidenbach J P, Seo D J, et al. The WSR-88D rainfall algorithm. Wea Forecasting, 1998, 13(2): 377-395.
  • 加载中
图(7) / 表(3)
计量
  • 摘要浏览量:  285
  • HTML全文浏览量:  80
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-28
  • 修回日期:  2024-04-28
  • 刊出日期:  2024-05-31

目录

    /

    返回文章
    返回