Raindrop Size Distribution Characteristics of Summer Precipitation at Xinmin, Northeast China
-
摘要: 以辽宁省新民气候基准站的降水现象仪观测数据为基础, 研究我国东北地区新民夏季不同雨强及不同降雨类型的雨滴谱特征, 并与其他地区进行对比。结果表明: 新民雨强越大谱宽越宽, 雨强大于20 mm·h-1的雨滴谱谱宽接近8 mm, 降雨以小雨滴为主, 但中等雨滴对雨量的贡献最大。对流云降雨为典型的大陆型对流, 以雨滴的直径较大而数浓度较低为特点, 质量加权平均直径Dm的平均值为2.14 mm, 标准化截距lgNw的平均值为3.40。拟合的μ-Λ关系与其他地区采用PARSIVEL雨滴谱仪数据拟合的μ-Λ经验关系接近, 而与采用二维视频雨滴谱仪(2DVD)数据拟合的μ-Λ关系差异较大。与华东、华北地区相比, 东北地区新民Dm (lgNw)的平均值更大(小), 拟合的对流云降雨Z-R关系的指数更大。Abstract: Raindrop size distribution (DSD) is a basic characteristic for describing the microphysical process of rainfall. A better understanding of DSD and its variations is not only crucial for improving microphysical parameterization schemes in numerical weather forecasting models, but also important for radar quantitative precipitation estimation. It shows that DSD characteristics are not only related to geographical location, climate, terrain, and humidity, but also vary among different rainfall types and rain rate in the same region. At present, there are still some uncertainties and limitations in the understanding of microphysical characteristics of rainfall in Northeast China, and the microphysical parameterization scheme still lacks accurate description of rainfall microphysical process. Based on observations of the precipitation phenomenon instrument at Xinmin of Liaoning Province in summer, DSD characteristics of different rainfall rate classes are investigated and compared with those of other regions in China. Spectral width of DSD increases with an increase in rain rate (R). The spectral width of raindrops is close to 8 mm when R>20 mm·h-1. Small drops are predominant in rainfall of Xinmin, but moderate drops make the most significant contribution to total rainfall. Observed DSD samples are also categorized into convective and stratiform rainfall types. The convective rainfall at Xinmin has large raindrop size and low raindrop concentration. Convective rainfall can be identified as continental clusters, with average Dm and lgNw of 2.14 mm and 3.40, while average Dm and lgNw of stratiform rainfall at Xinmin are 1.23 mm and 3.30, respectively. The μ-Λ and Z-R relationships for convective and stratiform rainfall at Xinmin are thus fitted. Fitted μ-Λ relationship at Xinmin is similar to that in other regions fitted with data observed by PARSIVEL disdrometers, but different from the empirical relationship fitted from two-dimensional video raindrop spectrometers (2DVD) observations in other regions, and the difference of instruments is the main cause for the discrepancies of μ-Λ relationships. Compared with East China and North China, Xinmin rainfall has larger Dm, lower lgNw, and higher exponent value of fitted Z-R power-law relationship for convective rainfall, indicating that the radar reflectivity factor at Xinmin increases more rapidly with the increase of rain rate. Using the Z-R empirical formula fitted at Xinmin can reduce the error of radar-based quantitative precipitation estimation. Results would contribute to the understanding of microphysical characteristics of rainfall in Northeast China and the accuracy of radar quantitative precipitation estimation.
-
表 1 研究中选取的17个降雨日中两种设备的累积雨量、相对偏差和相关系数(相关系数均达到0.01显著性水平)
Table 1 Cumulative rainfall, relative deviations, and correlation coefficients of selected 17 rainfall days by two instruments (correlation coeffients passing the test of 0.01 level)
序号 降雨日 累积雨量/mm 相对偏差/% 相关系数 雨量计 降水现象仪 1 2019-07-11 28.9 27.3 -6 0.99 2 2019-07-30 47.4 38.6 -19 0.98 3 2019-08-03 111.6 93.6 -16 0.98 4 2019-08-11 46.3 41.8 -10 0.99 5 2019-08-14 68.3 51.7 -24 0.97 6 2020-08-04 60.5 51.0 -16 0.99 7 2020-08-19 62.0 43.6 -30 0.96 8 2020-08-25 78.9 60.2 -24 0.99 9 2020-08-27 46.3 32.5 -30 0.99 10 2021-07-30 28.9 31.2 8 0.96 11 2021-08-11 26.0 21.6 -17 0.96 12 2021-08-16 29.8 21.2 -29 0.94 13 2022-07-03 18.8 18.7 0 0.99 14 2022-07-07 69.6 53.1 -23 0.96 15 2022-08-13 17.1 15.4 -9 0.98 16 2023-07-09 27.6 24.9 -9 0.99 17 2023-08-22 21.4 15.1 -29 0.95 表 2 不同雨强等级的降雨参数及Gamma模型参数
Table 2 Precipitation parameters and Gamma model parameters for different rainfall intensities
参数 雨强/(mm·h-1) [0.1, 2) [2, 5) [5, 10) [10, 20) [20, 50) [50, 181.7) Nt/m-3 106.3 264.7 335.4 437.6 659.7 1309.0 W/(g·m-3) 0.035 0.158 0.315 0.593 1.216 2.963 Z/dBZ 22.6 31.7 37.2 41.8 47.3 53.3 Dm/mm 1.190 1.460 1.753 2.032 2.429 2.880 lgNw 3.152 3.453 3.434 3.452 3.454 3.545 μ 1.422 1.862 1.371 1.530 1.497 1.690 Λ/mm-1 4.557 4.015 3.065 2.722 2.264 1.976 N0/(m-3·mm-1) 5372.7 11009.7 5777.0 5229.7 3973.8 3821.8 表 3 采用不同Z-R关系估测新民降雨误差统计
Table 3 Precipitation estimation error for different Z-R relationships at Xinmin
降雨类型 拟合公式 标准化平均偏差/% 标准化绝对偏差/% 对流云降雨 Z=300R1.40(经验公式)[41] 26.26 36.84 Z=733.55R1.22(北京)[9] 8.18 36.7 Z=230.85R1.34(南京)[40] 82.63 84.53 Z=180.93R1.61 (新民) 4.51 24.53 层状云降雨 Z=200R1.60(经验公式)[41] 17.71 41.53 Z=247.19R1.35(北京)[9] 14.09 35.44 Z=193.73R1.54(南京)[40] 20.86 38.94 Z=239.03R1.44 (新民) 11.49 38.22 -
[1] Milbrandt J A, Yau M K. A multimoment bulk microphysics parameterization. Part Ⅰ: Analysis of the role of the spectral shape parameter. J Atmos Sci, 2005, 62(9): 3051-3064. doi: 10.1175/JAS3534.1 [2] Morrison H, Milbrandt J A. Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part Ⅰ: Scheme description and idealized tests. J Atmos Sci, 2015, 72(1): 287-311. doi: 10.1175/JAS-D-14-0065.1 [3] Cifelli R, Chandrasekar V, Lim S, et al. A new dual-polarization radar rainfall algorithm: Application in Colorado precipitation events. J Atmos Ocean Technol, 2011, 28(3): 352-364. doi: 10.1175/2010JTECHA1488.1 [4] Gilmore M S, Straka J M, Rasmussen E N. Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon Wea Rev, 2004, 132(11): 2610-2627. doi: 10.1175/MWR2810.1 [5] Krishna U V M, Reddy K K, Seela B K, et al. Raindrop size distribution of easterly and westerly monsoon precipitation observed over Palau Islands in the Western Pacific Ocean. Atmos Res, 2016, 174: 41-51. [6] Zhang G, Vivekanandan J, Brandes E. A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans Geosci Remote Sens, 2001, 39(4): 830-841. doi: 10.1109/36.917906 [7] 常婉婷, 高文华, 端义宏, 等. 云微物理过程对台风数值模拟的影响. 应用气象学报, 2019, 30(4): 443-455. doi: 10.11898/1001-7313.20190405Chang W T, Gao W H, Duan Y H, et al. The impact of cloud microphysical processes on typhoon numerical simulation. J Appl Meteor Sci, 2019, 30(4): 443-455. doi: 10.11898/1001-7313.20190405 [8] Lam H Y, Din J, Jong S L. Statistical and physical descriptions of raindrop size distributions in equatorial Malaysia from disdrometer observations. Adv Meteor, 2015(2). DOI: 10.1155/2015/253730. [9] Ji L, Chen H N, Li L, et al. Raindrop size distributions and rain characteristics observed by a PARSIVEL disdrometer in Beijing, Northern China. Remote Sens, 2019, 11(12). DOI: 10.3390/rs11121479. [10] Tokay A, Short D A. Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J Appl Meteor, 1996, 35(3): 355-371. doi: 10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2 [11] Bringi V N, Chandrasekar V, Hubbert J, et al. Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J Atmos Sci, 2003, 60(2): 354-365. doi: 10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2 [12] 葛黎黎, 吕国真, 赵桂香, 等. 太原地区雨滴谱季节分布特征. 应用气象学报, 2023, 34(4): 489-502. doi: 10.11898/1001-7313.20230409Ge L L, Lü G Z, Zhao G X, et al. Seasonal distribution characteristics of raindrop spectrum in Taiyuan. J Appl Meteor Sci, 2023, 34(4): 489-502. doi: 10.11898/1001-7313.20230409 [13] 袁野, 朱士超, 李爱华. 黄山雨滴下落过程滴谱变化特征. 应用气象学报, 2016, 27(6): 734-740. doi: 10.11898/1001-7313.20160610Yuan Y, Zhu S C, Li A H. Characteristics of raindrop falling process at the Mount Huang. J Appl Meteor Sci, 2016, 27(6): 734-740. doi: 10.11898/1001-7313.20160610 [14] Wen L, Zhao K, Zhang G F, et al. Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and micro rain radar data. J Geophys Res Atmos, 2016, 121(5): 2265-2282. doi: 10.1002/2015JD024160 [15] 黄泽文, 彭思越, 张浩然, 等. 福建安溪雨滴谱特征. 应用气象学报, 2022, 33(2): 205-217. doi: 10.11898/1001-7313.20220207Huang Z W, Peng S Y, Zhang H R, et al. Characteristics of raindrop size distribution at Anxi of Fujian. J Appl Meteor Sci, 2022, 33(2): 205-217. doi: 10.11898/1001-7313.20220207 [16] Wen L, Zhao K, Zhang G F, et al. Impacts of instrument limitations on estimated raindrop size distribution, radar parameters, and model microphysics during Mei-yu season in East China. J Atmos Ocean Technol, 2017, 34(5): 1021-1037. doi: 10.1175/JTECH-D-16-0225.1 [17] 梅海霞, 梁信忠, 曾明剑, 等. 2015—2017年夏季南京雨滴谱特征. 应用气象学报, 2020, 31(1): 117-128. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX202001011.htmMei H X, Liang X Z, Zeng M J, et al. Raindrop size distribution characteristics of Nanjing in summer of 2015—2017. J Appl Meteor Sci, 2020, 31(1): 117-128. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX202001011.htm [18] Huo Z Y, Ruan Z, Wei M, et al. Statistical characteristics of raindrop size distribution in South China summer based on the vertical structure derived from VPR-CFMCW. Atmos Res, 2019, 222: 47-61. [19] Tang Q, Xiao H, Guo C W, et al. Characteristics of the raindrop size distributions and their retrieved polarimetric radar parameters in northern and southern China. Atmos Res, 2014, 135: 59-75. [20] Wen G, Xiao H, Yang H L, et al. Characteristics of summer and winter precipitation over northern China. Atmos Res, 2017, 197: 390-406. [21] 李欣, 张璐. 北上台风强降水形成机制及微物理特征. 应用气象学报, 2022, 33(1): 29-42. doi: 10.11898/1001-7313.20200111Li X, Zhang L. Formation mechanism and microphysics characteristics of heavy rainfall caused by northward-moving typhoons. J Appl Meteor Sci, 2022, 33(1): 29-42. doi: 10.11898/1001-7313.20200111 [22] 陈宝君, 李子华, 刘吉成, 等. 三类降水云雨滴谱分布模式. 气象学报, 1998, 56(4): 506-512. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB804.012.htmChen B J, Li Z H, Liu J C, et al. Model of raindrop size distribution in three types of precipitation. Acta Meteor Sinica, 1998, 56(4): 506-512. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB804.012.htm [23] 宫福久, 刘吉成, 李子华. 三类降水云雨滴谱特征研究. 大气科学, 1997, 21(5): 607-614. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK705.011.htmGong F J, Liu J C, Li Z H. Study on raindrop spectrum characteristics of three types of precipitation clouds. Chinese J Atmos Sci, 1997, 21(5): 607-614. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK705.011.htm [24] 房彬, 郭学良, 肖辉. 辽宁地区不同降水云系雨滴谱参数及其特征量研究. 大气科学, 2016, 40(6): 1154-1164. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201606005.htmFang B, Guo X L, Xiao H. A study on characteristics of spectral parameters and characteristic variables of raindrop size distribution for different cloud systems in Liaoning Province. Chinese J Atmos Sci, 2016, 40(6): 1154-1164. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201606005.htm [25] 孙钦宏, 马洪波, 齐彦斌, 等. 2021年夏季长白山麓雨滴谱分布特征. 应用气象学报, 2023, 34(3): 336-347. doi: 10.11898/1001-7313.20230307Sun Q H, Ma H B, Qi Y B, et al. Distribution characteristics of raindrop spectrum at Changbai Mountain foothills in summer of 2021. J Appl Meteor Sci, 2023, 34(3): 336-347. doi: 10.11898/1001-7313.20230307 [26] 郭建平, 田志会, 张涓涓. 东北地区玉米热量指数的预测模型研究. 应用气象学报, 2003, 14(5): 626-633. http://qikan.camscma.cn/article/id/20030577Guo J P, Tian Z H, Zhang J J. Forecasting models of heat index for corn in Northeast China. J Appl Meteor Sci, 2003, 14(5): 626-633. http://qikan.camscma.cn/article/id/20030577 [27] 姚秀萍, 董敏. 东北三江流域夏季旱涝基本特征分析. 应用气象学报, 2000, 11(3): 297-303. http://qikan.camscma.cn/article/id/20000345Yao X P, Dong M. Research on the features of summer rainfall in Northeast China. Q J Appl Meteor, 2000, 11(3): 297-303. http://qikan.camscma.cn/article/id/20000345 [28] 黄丽君, 崔晓鹏. 2000—2019年东北冷涡统计特征及其影响期间的降水分布. 大气科学, 2023, 47(6): 1925-1938. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202306016.htmHuang L J, Cui X P. Statistical characteristics of the Northeast China cold vortex and its impact on precipitation distribution from 2000 to 2019. Chinese J Atmos Sci, 2023, 47(6): 1925-1938. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202306016.htm [29] 徐玥, 邵美荣, 唐凯, 等. 2021年黑龙江两次超级单体龙卷过程多尺度特征. 应用气象学报, 2022, 33(3): 305-318. doi: 10.11898/1001-7313.20220305Xu Y, Shao M R, Tang K, et al. Multiscale characteristics of two supercell tornados of Heilongjiang in 2021. J Appl Meteor Sci, 2022, 33(3): 305-318. doi: 10.11898/1001-7313.20220305 [30] Friedrich K, Higgins S, Masters F J, et al. Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall. J Atmos Ocean Technol, 2013, 30(9): 2063-2080. [31] Chen B J, Hu Z Q, Liu L P, et al. Raindrop size distribution measurements at 4, 500m on the Tibetan Plateau during TIPEX-Ⅲ. J Geophys Res Atmos, 2017, 122(20): 11092-11106. [32] Ulbrich C W. Natural variations in the analytical form of the raindrop size distribution. J Appl Meteor, 1983, 22(10): 1764-1775. [33] Kozu T, Nakamura K. Rainfall parameter estimation from dual-radar measurements combining reflectivity profile and path-integrated attenuation. J Atmos Ocean Technol, 1991, 8(2): 259-270. [34] Tokay A, Petersen W A, Gatlin P, et al. Comparison of raindrop size distribution measurements by collocated disdrometers. J Atmos Ocean Technol, 2013, 30(8): 1672-1690. [35] Ulbrich C W, Atlas D. Microphysics of raindrop size spectra: Tropical continental and maritime storms. J Appl Meteor Climatol, 2007, 46(11): 1777-1791. [36] Chen B J, Yang J, Pu J P. Statistical characteristics of raindrop size distribution in the Meiyu season observed in Eastern China. J Meteor Soc Jpn, 2013, 91(2): 215-227. [37] Han Y, Guo J P, Li H J, et al. Investigation of raindrop size distribution and its potential influential factors during warm season over China. Atmos Res, 2022, 275. DOI: 10.1016/j.atmosres.2022.106248. [38] Dolan B, Fuchs B, Rutledge S A, et al. Primary modes of global drop size distributions. J Atmos Sci, 2018, 75(5): 1453-1476. [39] Zhang G F, Vivekanandan J, Brandes E A, et al. The shape-slope relation in observed gamma raindrop size distributions: Statistical error or useful information?. J Atmos Oceanic Technol, 2003, 20(8): 1106-1119. [40] Wen L, Zhao K, Wang M Y, et al. Seasonal variations of observed raindrop size distribution in East China. Adv Atmos Sci, 2019, 36(4): 346-362. [41] Fulton R A, Breidenbach J P, Seo D J, et al. The WSR-88D rainfall algorithm. Wea Forecasting, 1998, 13(2): 377-395.