留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全球典型热带雨林的微波散射特征建模与验证

王一同 胡秀清 商建 顾玲嘉 尹红刚

王一同, 胡秀清, 商建, 等. 全球典型热带雨林的微波散射特征建模与验证. 应用气象学报, 2024, 35(3): 350-360. DOI:  10.11898/1001-7313.20240308..
引用本文: 王一同, 胡秀清, 商建, 等. 全球典型热带雨林的微波散射特征建模与验证. 应用气象学报, 2024, 35(3): 350-360. DOI:  10.11898/1001-7313.20240308.
Wang Yitong, Hu Xiuqing, Shang Jian, et al. Modeling and verification of microwave scattering characteristics of typical global tropical rainforests. J Appl Meteor Sci, 2024, 35(3): 350-360. DOI:  10.11898/1001-7313.20240308.
Citation: Wang Yitong, Hu Xiuqing, Shang Jian, et al. Modeling and verification of microwave scattering characteristics of typical global tropical rainforests. J Appl Meteor Sci, 2024, 35(3): 350-360. DOI:  10.11898/1001-7313.20240308.

全球典型热带雨林的微波散射特征建模与验证

DOI: 10.11898/1001-7313.20240308
资助项目: 

国家重点研发计划课题 2022YFB3902901

详细信息
    通信作者:

    胡秀清, 邮箱:huxq@cma.gov.cn

Modeling and Verification of Microwave Scattering Characteristics of Typical Global Tropical Rainforests

  • 摘要: 使用大面积且均匀的自然目标进行微波散射计的定标检验, 有助于客观评价微波遥感的观测精度。热带雨林具有相对稳定的植被覆盖条件, 可减小地表异质性对仪器测量的影响, 是微波仪器定标评价的常用目标。利用2019年1月1日—2021年12月31日MetOp-B(the second meteorological operational satellite)卫星ASCAT(advanced scatterometer)散射计的观测数据, 提出平均值、标准差与相对标准差联合的雨林目标稳定区优选算法, 确定亚马逊雨林、刚果雨林和东南亚雨林的稳定区域, 对稳定区内目标的自身特性开展包括季节、入射角和方位角影响建模。建模时综合考虑模型误差和时序变化, 将目标特性与仪器波动导致的后向散射系数变化分离。结果表明:亚马逊雨林和刚果雨林稳定区的白天数据具有较低的模型误差和波动较小的变化趋势, 适用于多星散射计的定标稳定性检验。基于亚马逊雨林和刚果雨林稳定区的白天数据模型, 对MetOp-C卫星的ASCAT观测数据进行定标稳定性检验和分析, 检验结果表明:MetOp-C卫星ASCAT散射计的观测数据略有波动, 但变化幅度小于0.05 dB, 定标稳定性较好。
  • 图  1  热带雨林的稳定目标区掩膜分布

    Fig. 1  Stable area masks for tropical rainforests

    图  2  稳定区域后向散射系数月平均值时序图 (升轨为夜间,降轨为白天)

    Fig. 2  Monthly average time series of backscatter coefficient in stable areas (ascending orbits occur at night, while descending orbits occur in the daytime)

    图  3  经时间修正后稳定区域后向散射系数月平均值时序图

    Fig. 3  Monthly average time series of backscatter coefficient in stable areas after time correction

    图  4  稳定区域后向散射系数随入射角变化 (黑色实线为拟合线)

    Fig. 4  Backscatter coefficient varying with incident angle for stable areas (the black solid line denotes fitting curve)

    图  5  稳定区域后向散射系数随方位角变化 (黑色实线为拟合线)

    Fig. 5  Backscatter coefficient varying with azimuth angle for stable areas (the black solid line denotes fitting curve)

    图  6  MetOp-C卫星ASCAT散射计定标检验曲线

    Fig. 6  Validation curve of ASCAT scatterometer onboard MetOp-C satellite

    表  1  掩膜确定方法的阈值

    Table  1  Thresholds for each mask determination method

    时段 平均值法/dB 相对标准差法/dB 标准差法/dB
    白天 ±0.5 1.0 0.2
    夜间 ±0.5 1.0 0.2
    下载: 导出CSV

    表  2  不同稳定区域的评价指标

    Table  2  Evaluation indices in different stable areas

    地区 时段 均方根误差/dB 平均绝对误差/dB 决定系数
    亚马逊雨林 夜间 0.182 0.145 0.960
    白天 0.157 0.120 0.971
    刚果雨林 夜间 0.175 0.138 0.961
    白天 0.159 0.122 0.970
    东南亚雨林 夜间 0.317 0.254 0.893
    白天 0.280 0.222 0.913
    下载: 导出CSV

    表  3  不同入射角和方位角响应下的评价指标

    Table  3  Results of each evaluation index under different incident angle and azimuth angle responses

    地区 模型参数项 时段 均方根误差/dB 平均绝对误差/dB 决定系数
    亚马逊雨林 无入射角调制 夜间 0.717 0.554 0.410
    白天 0.711 0.540 0.431
    仅含线性入射角调制 夜间 0.203 0.162 0.951
    白天 0.191 0.151 0.958
    无方位角调制 夜间 0.191 0.152 0.955
    白天 0.167 0.130 0.966
    仅含一阶方位角调制 夜间 0.183 0.146 0.959
    白天 0.160 0.123 0.969
    刚果雨林 无入射角调制 夜间 0.717 0.551 0.390
    白天 0.739 0.562 0.409
    仅含线性入射角调制 夜间 0.200 0.159 0.951
    白天 0.195 0.155 0.957
    无方位角调制 夜间 0.181 0.143 0.959
    白天 0.166 0.129 0.968
    仅含一阶方位角调制 夜间 0.176 0.139 0.961
    白天 0.161 0.124 0.970
    下载: 导出CSV
  • [1] 崔鹏, 王素娟, 陆风, 等.FY-4A/AGRI海表温度产品和质量检验.应用气象学报, 2023, 34(3):257-269. doi:  10.11898/1001-7313.20230301

    Cui P, Wang S J, Lu F, et al. FY-4A/AGRI sea surface temperature product and quality validation. J Appl Meteor Sci, 2023, 34(3): 257-269. doi:  10.11898/1001-7313.20230301
    [2] 周雪松, 郭启云, 夏元彩, 等. 基于往返式平漂探空的FY-3D卫星反演温度检验. 应用气象学报, 2023, 34(1): 52-64. doi:  10.11898/1001-7313.20230105

    Zhou X S, Guo Q Y, Xia Y C, et al. Inspection of FY-3D satellite temperature data based on horizontal drift round-trip sounding data. J Appl Meteor Sci, 2023, 34(1): 52-64. doi:  10.11898/1001-7313.20230105
    [3] 王羽飞, 齐彦斌, 李倩, 等. 一次长白山夏季雾的宏微观特征. 应用气象学报, 2022, 33(4): 442-453. doi:  10.11898/1001-7313.20220405

    Wang Y F, Qi Y B, Li Q, et al. Macro and micro characteristics of a fog process in Changbai Mountain in summer. J Appl Meteor Sci, 2022, 33(4): 442-453. doi:  10.11898/1001-7313.20220405
    [4] 高洋, 蔡淼, 曹治强, 等. "21·7" 河南暴雨环境场及云的宏微观特征. 应用气象学报, 2022, 33(6): 682-695. doi:  10.11898/1001-7313.20220604

    Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. doi:  10.11898/1001-7313.20220604
    [5] 齐道日娜, 何立富, 王秀明, 等. "7·20" 河南极端暴雨精细观测及热动力成因. 应用气象学报, 2022, 33(1): 1-15. doi:  10.11898/1001-7313.20220101

    Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi:  10.11898/1001-7313.20220101
    [6] 张春桂, 蔡义勇, 张加春. MODIS遥感数据在我国台湾海峡海雾监测中的应用. 应用气象学报, 2009, 20(1): 8-16. doi:  10.3969/j.issn.1001-7313.2009.01.002

    Zhang C G, Cai Y Y, Zhang J C. The application of monitoring sea fog in Taiwan strait using MODIS remote sensing data. J Appl Meteor Sci, 2009, 20(1): 8-16. doi:  10.3969/j.issn.1001-7313.2009.01.002
    [7] 杨磊, 韩丽娟, 宋金玲, 等. 基于遥感数据的夏玉米高温热害监测评估. 应用气象学报, 2020, 31(6): 749-758. doi:  10.11898/1001-7313.20200610

    Yang L, Han L J, Song J L, et al. Monitoring and evaluation of high temperature and heat damage of summer maize based on remote sensing data. J Appl Meteor Sci, 2020, 31(6): 749-758. doi:  10.11898/1001-7313.20200610
    [8] 张毅, 蒋兴伟, 林明森, 等. 星载微波散射计的研究现状及发展趋势. 遥感信息, 2009, 24(6): 87-94. doi:  10.3969/j.issn.1000-3177.2009.06.019

    Zhang Y, Jiang X W, Lin M S, et al. The present research status and development trend of spacebonre microwave scatterometer. Remote Sens Inf, 2009, 24(6): 87-94. doi:  10.3969/j.issn.1000-3177.2009.06.019
    [9] Kunz L B, Long D G. Melt detection in Antarctic ice shelves using scatterometers and microwave radiometers. IEEE Trans Geosci Remote Sens, 2006, 44(9): 2461-2469. doi:  10.1109/TGRS.2006.874138
    [10] Jarlan L, Mazzega P, Mougin E, et al. Mapping of Sahelian vegetation parameters from ERS scatterometer data with an evolution strategies algorithm. Remote Sens Environ, 2003, 87(1): 72-84. doi:  10.1016/S0034-4257(03)00164-0
    [11] Stuart K M, Long D G. Tracking large tabular icebergs using the SeaWinds Ku-band microwave scatterometer. Deep Sea Res Part II Top Stud Oceanogr, 2011, 58(11/12): 1285-1300.
    [12] 张立新, 张廷新, 王岗. 星载微波散射计定标技术研究. 空间电子技术, 1996(4): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDZ199604007.htm

    Zhang L X, Zhang T X, Wang G. Research on calibration technology of spaceborne microwave scatterometer. Space Electron Technol, 1996(4): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDZ199604007.htm
    [13] 穆博, 刘建强, 宋清涛, 等. 星载微波散射计的在轨定标技术现状及展望. 遥感信息, 2013, 28(3): 112-118. doi:  10.3969/j.issn.1000-3177.2013.03.020

    Mu B, Liu J Q, Song Q T, et al. A review of in-orbit calibration techniques for spaceborne microwave scatterometers. Remote Sens Inf, 2013, 28(3): 112-118. doi:  10.3969/j.issn.1000-3177.2013.03.020
    [14] 何杰颖, 张升伟. FY-3B/MWHS性能参数在轨实时监测. 应用气象学报, 2016, 27(6): 709-715. doi:  10.11898/1001-7313.20160607

    He J Y, Zhang S W. In-orbit performance analysis on monitoring typhoon with FY-3B/MWHS. J Appl Meteor Sci, 2016, 27(6): 709-715. doi:  10.11898/1001-7313.20160607
    [15] Kumar R, Bhowmick S A, Babu K N, et al. Relative calibration using natural terrestrial targets: A preparation towards Oceansat-2 scatterometer. IEEE Trans Geosci Remote Sens, 2011, 49(6): 2268-2273. doi:  10.1109/TGRS.2010.2094196
    [16] Tsai W Y, Graf J E, Winn C, et al. Postlaunch sensor verification and calibration of the NASA Scatterometer. IEEE Trans Geosci Remote Sens, 1999, 37(3): 1517-1542. doi:  10.1109/36.763264
    [17] Zec J, Long D G, Jones W L. NSCAT normalized radar backscattering coefficient biases using homogenous land targets. J Geophys Res, 1999, 104(C5): 11557-11568. doi:  10.1029/1998JC900098
    [18] Kunz L B, Long D G. Calibrating SeaWinds and QuikSCAT scatterometers using natural land targets. IEEE Geosci Remote Sens Lett, 2005, 2(2): 182-186. doi:  10.1109/LGRS.2004.842468
    [19] Madsen N M, Long D G. Calibration and validation of the RapidScat scatterometer using tropical rainforests. IEEE Trans Geosci Remote Sens, 2016, 54(5): 2846-2854. doi:  10.1109/TGRS.2015.2506463
    [20] Manise N, Neyt X, Acheroy M. Calibration Strategy for ERS Scatterometer Data Reprocessing. Conference on Remote Sensing of the Ocean, Sea Ice, and Large Water Regions, 2005.
    [21] Long D G, Skouson G B. Calibration of spaceborne scatterometers using tropical rain forests. IEEE Trans Geosci Remote Sensing, 1996, 34(2): 413-424. doi:  10.1109/36.485119
    [22] Shimada M. Long-term stability of L-band normalized radar cross section of Amazon rainforest using the JERS-1 SAR. Can J Remote Sens, 2005, 31(1): 132-137. doi:  10.5589/m04-058
    [23] Figa-Saldaña J, Wilson J J W, Attema E, et al. The advanced scatterometer(ASCAT) on the meteorological operational(MetOp) platform: A follow on for European wind scatterometers. Can J Remote Sens, 2002, 28(3): 404-412. doi:  10.5589/m02-035
    [24] Ricciardulli L, Manaster A. Intercalibration of ASCAT scatterometer winds from MetOp-A, -B, and-C, for a stable climate data record. Remote Sens, 2021, 13(18). DOI:  10.3390/rs13183678.
    [25] 谢小萍, 魏建苏, 黄亮. ASBAT近岸风场产品与近岸浮标观测风场对比. 应用气象学报, 2014, 25(4): 445-453. doi:  10.3969/j.issn.1001-7313.2014.04.007

    Xie X P, Wei J S, Huang L. Evaluation of ASBAT boastal wind product using nearshore buoy data. J Appl Meteor Sci, 2014, 25(4): 445-453. doi:  10.3969/j.issn.1001-7313.2014.04.007
    [26] Anderson C, Figa J, Bonekamp H, et al. Validation of backscatter measurements from the advanced scatterometer on MetOp-A. J Atmos Ocean Technol, 2011, 29(1): 77-88. doi:  10.1175/JTECH-D-11-00020.1
    [27] Prigent C, Jimenez C, Dinh L A, et al. Diurnal and seasonal variations of passive and active microwave satellite observations over tropical forests. J Geophys Res Biogeosciences, 2022, 127(2). DOI:  10.1029/2021JG006677.
    [28] Satake M, Hanado H. Diurnal change of Amazon rain forest σ0 observed by Ku-band spaceborne radar. IEEE Trans Geosci Remote Sens, 2004, 42(6): 1127-1134. doi:  10.1109/TGRS.2004.825589
    [29] Frolking S, Milliman T, Palace M, et al. Tropical forest backscatter anomaly evident in SeaWinds scatterometer morning overpass data during 2005 drought in Amazonia. Remote Sens Environ, 2011, 115(3): 897-907. doi:  10.1016/j.rse.2010.11.017
    [30] Steele-Dunne S C, Friesen J, van de Giesen N. Using diurnal variation in backscatter to detect vegetation water stress. IEEE Trans Geosci Remote Sens, 2012, 50(7): 2618-2629. doi:  10.1109/TGRS.2012.2194156
    [31] van Emmerik T, Steele-Dunne S C, Judge J, et al. Impact of diurnal variation in vegetation water content on radar backscatter from maize during water stress. IEEE Trans Geosci Remote Sens, 2015, 53(7): 3855-3869. doi:  10.1109/TGRS.2014.2386142
    [32] ASCAT-B Level 1 Calibration and Validation Report. EUMETSAT, Darmstadt, Germany, 2012.
    [33] Shang J, Wang Z X, Dou F L, et al. Preliminary performance of the WindRAD scatterometer onboard the FY-3E meteorological satellite. IEEE Trans Geosci Remote Sens, 2024, 62. DOI:  10.1109/TGRS.2023.3337098.
    [34] Ulaby F T, Long D G, Blackwell W J, et al. Microwave Radar and Radiometric Remote Sensing. Ann Arbor: The University of Michigan Press, 2014.
    [35] Early D S, Long D G. Azimuthal modulation of C-band scatterometer σ0 over Southern Ocean Sea ice. IEEE Trans Geosci Remote Sens, 1997, 35(5): 1201-1209. doi:  10.1109/36.628787
    [36] Long D G, Drinkwater M R. Azimuth variation in microwave scatterometer and radiometer data over Antarctica. IEEE Trans Geosci Remote Sens, 2000, 38(4): 1857-1870. doi:  10.1109/36.851769
    [37] Ashcraft I S, Long D G. Observation and characterization of radar backscatter over Greenland. IEEE Trans Geosci Remote Sens, 2005, 43(2): 225-237. doi:  10.1109/TGRS.2004.841484
  • 加载中
图(6) / 表(3)
计量
  • 摘要浏览量:  192
  • HTML全文浏览量:  59
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-03
  • 修回日期:  2024-03-11
  • 刊出日期:  2024-05-31

目录

    /

    返回文章
    返回