Modeling and Verification of Microwave Scattering Characteristics of Typical Global Tropical Rainforests
-
摘要: 使用大面积且均匀的自然目标进行微波散射计的定标检验, 有助于客观评价微波遥感的观测精度。热带雨林具有相对稳定的植被覆盖条件, 可减小地表异质性对仪器测量的影响, 是微波仪器定标评价的常用目标。利用2019年1月1日—2021年12月31日MetOp-B(the second meteorological operational satellite)卫星ASCAT(advanced scatterometer)散射计的观测数据, 提出平均值、标准差与相对标准差联合的雨林目标稳定区优选算法, 确定亚马逊雨林、刚果雨林和东南亚雨林的稳定区域, 对稳定区内目标的自身特性开展包括季节、入射角和方位角影响建模。建模时综合考虑模型误差和时序变化, 将目标特性与仪器波动导致的后向散射系数变化分离。结果表明:亚马逊雨林和刚果雨林稳定区的白天数据具有较低的模型误差和波动较小的变化趋势, 适用于多星散射计的定标稳定性检验。基于亚马逊雨林和刚果雨林稳定区的白天数据模型, 对MetOp-C卫星的ASCAT观测数据进行定标稳定性检验和分析, 检验结果表明:MetOp-C卫星ASCAT散射计的观测数据略有波动, 但变化幅度小于0.05 dB, 定标稳定性较好。Abstract: To ensure the microwave scatterometer is accurately calibrated, natural targets with stability, homogeneity, and isotropy are selected as references. The broad and continuous spatial distribution of the tropical rainforest, along with its relatively consistent vegetation cover, makes it an ideal choice.A tropical rainforest optimal stable area selection algorithm, combining mean, standard deviation, and relative standard deviation, is proposed using measurements from the advanced scatterometer (ASCAT) onboard the second Meteorological Operational satellite (MetOp-B) from 2019 to 2021. It is used to identify stable areas within the Amazon, Congo, and Southeast Asian rainforests. Results show that the Amazon rainforest has a larger stable area compared to the Congo and Southeast Asian rainforests, indicating more consistent backscatter across space. However, the Southeast Asian rainforest exhibits scattered stable areas and unstable backscatter properties.To accurately model the intrinsic characteristics of targets within stable areas, influences of seasonal variations, incidence angles and azimuth angles are comprehensively considered. The scatterometer, as an independently measured remote sensing instrument, is not affected by seasonal variations on the earth and experiences minimal temperature-related fluctuations. Therefore, seasonal characteristics of backscatter coefficients in rainforests can be modeled to reduce their impact. Different incidence and azimuth angles can cause variations in the backscatter coefficient. To address this issue, responses to these aspects are also modeled. It is observed that daytime data, with lower model errors, shows greater stability in the stable areas of the Amazon and Congo rainforests. Therefore, daytime data from these areas should be selected to assess instrument stability.A stability verification of ASCAT measurements from the stable areas of the Amazon and Congo rainforest on MetOp-C, covering the period from 1 July 2019 to 31 October 2023, is carried out based on model coefficients derived from the continuous three-year data of ASCAT on MetOp-B. The calibration stability verification quantifies the magnitude of variations in ASCAT measurements over different periods. Through analysis, it's found that measurements from the ASCAT on MetOp-C shows regular fluctuations of about 0.05 dB, indicating relatively stable characteristics.
-
表 1 掩膜确定方法的阈值
Table 1 Thresholds for each mask determination method
时段 平均值法/dB 相对标准差法/dB 标准差法/dB 白天 ±0.5 1.0 0.2 夜间 ±0.5 1.0 0.2 表 2 不同稳定区域的评价指标
Table 2 Evaluation indices in different stable areas
地区 时段 均方根误差/dB 平均绝对误差/dB 决定系数 亚马逊雨林 夜间 0.182 0.145 0.960 白天 0.157 0.120 0.971 刚果雨林 夜间 0.175 0.138 0.961 白天 0.159 0.122 0.970 东南亚雨林 夜间 0.317 0.254 0.893 白天 0.280 0.222 0.913 表 3 不同入射角和方位角响应下的评价指标
Table 3 Results of each evaluation index under different incident angle and azimuth angle responses
地区 模型参数项 时段 均方根误差/dB 平均绝对误差/dB 决定系数 亚马逊雨林 无入射角调制 夜间 0.717 0.554 0.410 白天 0.711 0.540 0.431 仅含线性入射角调制 夜间 0.203 0.162 0.951 白天 0.191 0.151 0.958 无方位角调制 夜间 0.191 0.152 0.955 白天 0.167 0.130 0.966 仅含一阶方位角调制 夜间 0.183 0.146 0.959 白天 0.160 0.123 0.969 刚果雨林 无入射角调制 夜间 0.717 0.551 0.390 白天 0.739 0.562 0.409 仅含线性入射角调制 夜间 0.200 0.159 0.951 白天 0.195 0.155 0.957 无方位角调制 夜间 0.181 0.143 0.959 白天 0.166 0.129 0.968 仅含一阶方位角调制 夜间 0.176 0.139 0.961 白天 0.161 0.124 0.970 -
[1] 崔鹏, 王素娟, 陆风, 等.FY-4A/AGRI海表温度产品和质量检验.应用气象学报, 2023, 34(3):257-269. doi: 10.11898/1001-7313.20230301Cui P, Wang S J, Lu F, et al. FY-4A/AGRI sea surface temperature product and quality validation. J Appl Meteor Sci, 2023, 34(3): 257-269. doi: 10.11898/1001-7313.20230301 [2] 周雪松, 郭启云, 夏元彩, 等. 基于往返式平漂探空的FY-3D卫星反演温度检验. 应用气象学报, 2023, 34(1): 52-64. doi: 10.11898/1001-7313.20230105Zhou X S, Guo Q Y, Xia Y C, et al. Inspection of FY-3D satellite temperature data based on horizontal drift round-trip sounding data. J Appl Meteor Sci, 2023, 34(1): 52-64. doi: 10.11898/1001-7313.20230105 [3] 王羽飞, 齐彦斌, 李倩, 等. 一次长白山夏季雾的宏微观特征. 应用气象学报, 2022, 33(4): 442-453. doi: 10.11898/1001-7313.20220405Wang Y F, Qi Y B, Li Q, et al. Macro and micro characteristics of a fog process in Changbai Mountain in summer. J Appl Meteor Sci, 2022, 33(4): 442-453. doi: 10.11898/1001-7313.20220405 [4] 高洋, 蔡淼, 曹治强, 等. "21·7" 河南暴雨环境场及云的宏微观特征. 应用气象学报, 2022, 33(6): 682-695. doi: 10.11898/1001-7313.20220604Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. doi: 10.11898/1001-7313.20220604 [5] 齐道日娜, 何立富, 王秀明, 等. "7·20" 河南极端暴雨精细观测及热动力成因. 应用气象学报, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101 [6] 张春桂, 蔡义勇, 张加春. MODIS遥感数据在我国台湾海峡海雾监测中的应用. 应用气象学报, 2009, 20(1): 8-16. doi: 10.3969/j.issn.1001-7313.2009.01.002Zhang C G, Cai Y Y, Zhang J C. The application of monitoring sea fog in Taiwan strait using MODIS remote sensing data. J Appl Meteor Sci, 2009, 20(1): 8-16. doi: 10.3969/j.issn.1001-7313.2009.01.002 [7] 杨磊, 韩丽娟, 宋金玲, 等. 基于遥感数据的夏玉米高温热害监测评估. 应用气象学报, 2020, 31(6): 749-758. doi: 10.11898/1001-7313.20200610Yang L, Han L J, Song J L, et al. Monitoring and evaluation of high temperature and heat damage of summer maize based on remote sensing data. J Appl Meteor Sci, 2020, 31(6): 749-758. doi: 10.11898/1001-7313.20200610 [8] 张毅, 蒋兴伟, 林明森, 等. 星载微波散射计的研究现状及发展趋势. 遥感信息, 2009, 24(6): 87-94. doi: 10.3969/j.issn.1000-3177.2009.06.019Zhang Y, Jiang X W, Lin M S, et al. The present research status and development trend of spacebonre microwave scatterometer. Remote Sens Inf, 2009, 24(6): 87-94. doi: 10.3969/j.issn.1000-3177.2009.06.019 [9] Kunz L B, Long D G. Melt detection in Antarctic ice shelves using scatterometers and microwave radiometers. IEEE Trans Geosci Remote Sens, 2006, 44(9): 2461-2469. doi: 10.1109/TGRS.2006.874138 [10] Jarlan L, Mazzega P, Mougin E, et al. Mapping of Sahelian vegetation parameters from ERS scatterometer data with an evolution strategies algorithm. Remote Sens Environ, 2003, 87(1): 72-84. doi: 10.1016/S0034-4257(03)00164-0 [11] Stuart K M, Long D G. Tracking large tabular icebergs using the SeaWinds Ku-band microwave scatterometer. Deep Sea Res Part II Top Stud Oceanogr, 2011, 58(11/12): 1285-1300. [12] 张立新, 张廷新, 王岗. 星载微波散射计定标技术研究. 空间电子技术, 1996(4): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDZ199604007.htmZhang L X, Zhang T X, Wang G. Research on calibration technology of spaceborne microwave scatterometer. Space Electron Technol, 1996(4): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDZ199604007.htm [13] 穆博, 刘建强, 宋清涛, 等. 星载微波散射计的在轨定标技术现状及展望. 遥感信息, 2013, 28(3): 112-118. doi: 10.3969/j.issn.1000-3177.2013.03.020Mu B, Liu J Q, Song Q T, et al. A review of in-orbit calibration techniques for spaceborne microwave scatterometers. Remote Sens Inf, 2013, 28(3): 112-118. doi: 10.3969/j.issn.1000-3177.2013.03.020 [14] 何杰颖, 张升伟. FY-3B/MWHS性能参数在轨实时监测. 应用气象学报, 2016, 27(6): 709-715. doi: 10.11898/1001-7313.20160607He J Y, Zhang S W. In-orbit performance analysis on monitoring typhoon with FY-3B/MWHS. J Appl Meteor Sci, 2016, 27(6): 709-715. doi: 10.11898/1001-7313.20160607 [15] Kumar R, Bhowmick S A, Babu K N, et al. Relative calibration using natural terrestrial targets: A preparation towards Oceansat-2 scatterometer. IEEE Trans Geosci Remote Sens, 2011, 49(6): 2268-2273. doi: 10.1109/TGRS.2010.2094196 [16] Tsai W Y, Graf J E, Winn C, et al. Postlaunch sensor verification and calibration of the NASA Scatterometer. IEEE Trans Geosci Remote Sens, 1999, 37(3): 1517-1542. doi: 10.1109/36.763264 [17] Zec J, Long D G, Jones W L. NSCAT normalized radar backscattering coefficient biases using homogenous land targets. J Geophys Res, 1999, 104(C5): 11557-11568. doi: 10.1029/1998JC900098 [18] Kunz L B, Long D G. Calibrating SeaWinds and QuikSCAT scatterometers using natural land targets. IEEE Geosci Remote Sens Lett, 2005, 2(2): 182-186. doi: 10.1109/LGRS.2004.842468 [19] Madsen N M, Long D G. Calibration and validation of the RapidScat scatterometer using tropical rainforests. IEEE Trans Geosci Remote Sens, 2016, 54(5): 2846-2854. doi: 10.1109/TGRS.2015.2506463 [20] Manise N, Neyt X, Acheroy M. Calibration Strategy for ERS Scatterometer Data Reprocessing. Conference on Remote Sensing of the Ocean, Sea Ice, and Large Water Regions, 2005. [21] Long D G, Skouson G B. Calibration of spaceborne scatterometers using tropical rain forests. IEEE Trans Geosci Remote Sensing, 1996, 34(2): 413-424. doi: 10.1109/36.485119 [22] Shimada M. Long-term stability of L-band normalized radar cross section of Amazon rainforest using the JERS-1 SAR. Can J Remote Sens, 2005, 31(1): 132-137. doi: 10.5589/m04-058 [23] Figa-Saldaña J, Wilson J J W, Attema E, et al. The advanced scatterometer(ASCAT) on the meteorological operational(MetOp) platform: A follow on for European wind scatterometers. Can J Remote Sens, 2002, 28(3): 404-412. doi: 10.5589/m02-035 [24] Ricciardulli L, Manaster A. Intercalibration of ASCAT scatterometer winds from MetOp-A, -B, and-C, for a stable climate data record. Remote Sens, 2021, 13(18). DOI: 10.3390/rs13183678. [25] 谢小萍, 魏建苏, 黄亮. ASBAT近岸风场产品与近岸浮标观测风场对比. 应用气象学报, 2014, 25(4): 445-453. doi: 10.3969/j.issn.1001-7313.2014.04.007Xie X P, Wei J S, Huang L. Evaluation of ASBAT boastal wind product using nearshore buoy data. J Appl Meteor Sci, 2014, 25(4): 445-453. doi: 10.3969/j.issn.1001-7313.2014.04.007 [26] Anderson C, Figa J, Bonekamp H, et al. Validation of backscatter measurements from the advanced scatterometer on MetOp-A. J Atmos Ocean Technol, 2011, 29(1): 77-88. doi: 10.1175/JTECH-D-11-00020.1 [27] Prigent C, Jimenez C, Dinh L A, et al. Diurnal and seasonal variations of passive and active microwave satellite observations over tropical forests. J Geophys Res Biogeosciences, 2022, 127(2). DOI: 10.1029/2021JG006677. [28] Satake M, Hanado H. Diurnal change of Amazon rain forest σ0 observed by Ku-band spaceborne radar. IEEE Trans Geosci Remote Sens, 2004, 42(6): 1127-1134. doi: 10.1109/TGRS.2004.825589 [29] Frolking S, Milliman T, Palace M, et al. Tropical forest backscatter anomaly evident in SeaWinds scatterometer morning overpass data during 2005 drought in Amazonia. Remote Sens Environ, 2011, 115(3): 897-907. doi: 10.1016/j.rse.2010.11.017 [30] Steele-Dunne S C, Friesen J, van de Giesen N. Using diurnal variation in backscatter to detect vegetation water stress. IEEE Trans Geosci Remote Sens, 2012, 50(7): 2618-2629. doi: 10.1109/TGRS.2012.2194156 [31] van Emmerik T, Steele-Dunne S C, Judge J, et al. Impact of diurnal variation in vegetation water content on radar backscatter from maize during water stress. IEEE Trans Geosci Remote Sens, 2015, 53(7): 3855-3869. doi: 10.1109/TGRS.2014.2386142 [32] ASCAT-B Level 1 Calibration and Validation Report. EUMETSAT, Darmstadt, Germany, 2012. [33] Shang J, Wang Z X, Dou F L, et al. Preliminary performance of the WindRAD scatterometer onboard the FY-3E meteorological satellite. IEEE Trans Geosci Remote Sens, 2024, 62. DOI: 10.1109/TGRS.2023.3337098. [34] Ulaby F T, Long D G, Blackwell W J, et al. Microwave Radar and Radiometric Remote Sensing. Ann Arbor: The University of Michigan Press, 2014. [35] Early D S, Long D G. Azimuthal modulation of C-band scatterometer σ0 over Southern Ocean Sea ice. IEEE Trans Geosci Remote Sens, 1997, 35(5): 1201-1209. doi: 10.1109/36.628787 [36] Long D G, Drinkwater M R. Azimuth variation in microwave scatterometer and radiometer data over Antarctica. IEEE Trans Geosci Remote Sens, 2000, 38(4): 1857-1870. doi: 10.1109/36.851769 [37] Ashcraft I S, Long D G. Observation and characterization of radar backscatter over Greenland. IEEE Trans Geosci Remote Sens, 2005, 43(2): 225-237. doi: 10.1109/TGRS.2004.841484