留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

省级降水实况分析产品在北京地区的适用性评估

赵文芳 王蕙莹 孟慧芳 缪宇鹏 黄明明 范敏 唐伟

赵文芳, 王蕙莹, 孟慧芳, 等. 省级降水实况分析产品在北京地区的适用性评估. 应用气象学报, 2024, 35(3): 361-372. DOI:  10.11898/1001-7313.20240309..
引用本文: 赵文芳, 王蕙莹, 孟慧芳, 等. 省级降水实况分析产品在北京地区的适用性评估. 应用气象学报, 2024, 35(3): 361-372. DOI:  10.11898/1001-7313.20240309.
Zhao Wenfang, Wang Huiying, Meng Huifang, et al. Applicability evaluation of provincial precipitation real-time analysis product in Beijing. J Appl Meteor Sci, 2024, 35(3): 361-372. DOI:  10.11898/1001-7313.20240309.
Citation: Zhao Wenfang, Wang Huiying, Meng Huifang, et al. Applicability evaluation of provincial precipitation real-time analysis product in Beijing. J Appl Meteor Sci, 2024, 35(3): 361-372. DOI:  10.11898/1001-7313.20240309.

省级降水实况分析产品在北京地区的适用性评估

DOI: 10.11898/1001-7313.20240309
资助项目: 

中国气象局重点创新团队 CMA2023ZD01

国家自然科学基金青年科学基金项目 42005125

国家气象信息中心结余资金项目 NM-ICJY202304

详细信息
    通信作者:

    赵文芳, 邮箱:yoyozwf@sina.cn

Applicability Evaluation of Provincial Precipitation Real-time Analysis Product in Beijing

  • 摘要: 利用自动气象站观测数据, 采用误差分析、有效降水时次占比等方法评估2022年9月—2023年8月省级降水实况分析产品在北京地区的一致性和准确性, 并从累积降水量、降水强度、逐小时降水量误差等方面对“23·7”极端降水过程进行分析。结果表明:省级降水实况分析产品在北京地区的均方根误差不足1 mm, 平均绝对偏差低于0.16 mm, 与自动气象站观测结果接近。省级降水实况分析产品误差随降水量等级增加而增大, 小雨等级降水被高估, 中雨及以上等级降水被低估;误差空间分布差异明显, 在中雨和暴雨等级下, 最大负偏差均出现在延庆区, 最大正偏差均出现在昌平区。“23·7”极端降水过程中, 省级降水实况分析产品的平均均方根误差为1.8 mm, 平均绝对偏差为0.806 mm, 降水强度与自动气象站观测随时间变化趋势一致, 较真实地反映了降水强度的变化趋势。
  • 图  1  2022年9月—2023年8月省级降水实况分析产品在检验站的插值结果与检验站小时降水量逐月均方根误差、平均绝对偏差和平均偏差

    Fig. 1  Monthly root mean square error, mean absolute bias and mean bias of provincial precipitation real-time analysis product interpolation results to observations of all verification stations from Sep 2022 to Aug 2023

    图  2  中雨和暴雨等级下检验站偏差与偏差率

    Fig. 2  Bias and bias rate of all verification stations for moderate rain and rainstorm

    图  3  中雨和暴雨等级下检验站偏差和偏差率空间分布

    Fig. 3  Spatial distributions of bias and bias rate of all verification stations for moderate rain and rainstorm

    图  4  省级降水实况分析产品在第3次和第12次降水过程的逐小时均方根误差和平均偏差

    Fig. 4  Hourly root mean square error and mean bias of provincial precipitation real-time analysis product in the 3rd and the 12th precipitation courses

    图  5  2023年汛期北京地区观测和省级降水实况分析产品不同日降水量和小时降水量等级的有效降水时次占比

    Fig. 5  Percentage of effective precipitation hours in observation and provincial precipitation real-time analysis product for different daily precipitation and hourly precipitation classifications in Beijing in the summer of 2023

    图  6  2023年7月29日20:00—8月2日07:00观测和省级降水实况分析产品的累积降水量空间分布

    Fig. 6  Spatial distribution of accumulation precipitation in observation and provincial precipitation real-time analysis product from 2000 BT 29 Jul to 0700 BT 2 Aug in 2023

    图  7  2023年7月29日20:00—8月2日07:00省级降水实况分析产品的逐小时均方根误差(a)、降水强度(b)及对房山新村降水量估计(c)

    Fig. 7  Hourly root mean square error(a), precipitation intensity(b) and estimated precipitation at Xincun, Fangshan(c) in provincial precipitation real-time analysis product from 2000 BT 29 Jul to 0700 BT 2 Aug in 2023

    表  1  不同小时降水量等级下省级降水实况分析产品的偏差与偏差率

    Table  1  Bias and bias rate of provincial precipitation real-time analysis product at different hourly precipitation classifications

    小时降水量等级 偏差/mm 偏差率/%
    小雨(0.1~1.5 mm) 0.01 3.59
    中雨(1.6~6.9 mm) -0.23 -4.54
    大雨(7.0~14.9 mm) -0.68 -5.38
    暴雨(15.0~29.9 mm) -1.23 -5.74
    大暴雨(不低于30 mm) -1.76 -7.95
    下载: 导出CSV

    表  2  2023年汛期13次降水过程

    Table  2  13 precipitation courses in the summer of 2023

    降水过程序号 开始时间 结束时间 累积降水量/mm 持续时长/h 降水量均方根误差/mm
    1 06-03T13:00 06-04T03:00 144.3 15 0.02
    2 06-28T06:00 06-28T16:00 4644.8 9 0.52
    3 07-03T19:00 07-04T12:00 7534.3 18 0.33
    4 07-10T19:00 07-11T05:00 1670.9 11 0.39
    5 07-20T17:00 07-22T20:00 32373.7 52 0.24
    6 07-23T14:00 07-24T03:00 597.7 14 0.99
    7 07-24T19:00 07-25T03:00 7312.0 9 0.42
    8 07-27T17:00 07-28T06:00 5104.0 14 1.80
    9 07-29T20:00 08-02T07:00 155530.8 84 0.04
    10 08-05T20:00 08-06T04:00 79.1 9 0.21
    11 08-09T16:00 08-10T08:00 433.0 17 0.31
    12 08-11T09:00 08-12T08:00 7320.9 24 0.72
    13 08-20T12:00 08-21T08:00 15417.4 21 0.28
    下载: 导出CSV
  • [1] 师春香, 潘旸, 谷军霞, 等.多源气象数据融合格点实况产品研制进展.气象学报, 2019, 77(4):774-783. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201904013.htm

    Shi C X, Pan Y, Gu J X, et al. A review of multi-source meteorological data fusion products. Acta Meteor Sinica, 2019, 77(4): 774-783. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201904013.htm
    [2] 韩帅, 师春香, 姜志伟, 等. CMA高分辨率陆面数据同化系统(HRCLDAS-V1.0)研发及进展. 气象科技进展, 2018, 8(1): 102-108. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201801028.htm

    Han S, Shi C X, Jiang Z W, et al. Development and progress of high resolution CMA land surface data assimilation system. Adv Meteor Sci Tech, 2018, 8(1): 102-108. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201801028.htm
    [3] 潘旸, 沈艳, 宇婧婧, 等. 基于最优插值方法分析的中国区域地面观测与卫星反演逐时降水融合试验. 气象学报, 2012, 70(6): 1381-1389. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201206021.htm

    Pan Y, Shen Y, Yu J J, et al. Analysis of the combined gauge-satellite hourly precipitation over China based on the OI technique. Acta Meteor Sinica, 2012, 70(6): 1381-1389. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201206021.htm
    [4] 宇婧婧, 沈艳, 潘旸, 等. 概率密度匹配法对中国区域卫星降水资料的改进. 应用气象学报, 2013, 24(5): 544-553. doi:  10.3969/j.issn.1001-7313.2013.05.004

    Yu J J, Shen Y, Pan Y, et al. Improvement of satellite-based precipitation estimates over China based on probability density function matching method. J Appl Meteor Sci, 2013, 24(5): 544-553. doi:  10.3969/j.issn.1001-7313.2013.05.004
    [5] 陈昊明, 李普曦, 赵妍. 千米尺度模式降水的检验评估进展及展望. 气象科技进展, 2021, 11(3): 155-164. doi:  10.3969/j.issn.2095-1973.2021.03.018

    Chen H M, Li P X, Zhao Y. A review and outlook of verification and evaluation of precipitation forecast at convection-permitting resolution. Adv Meteor Sci Tech, 2021, 11(3): 155-164. doi:  10.3969/j.issn.2095-1973.2021.03.018
    [6] 张璐, 潘旸, 谷军霞, 等. 国际主流多源融合降水实况产品的研究进展与展望. 气象科技进展, 2022, 12(6): 16-27. doi:  10.3969/j.issn.2095-1973.2022.06.003

    Zhang L, Pan Y, Gu J X, et al. Advances and outlook for international mainstream multi-source precipitation merging products. Adv Meteor Sci Tech, 2022, 12(6): 16-27. doi:  10.3969/j.issn.2095-1973.2022.06.003
    [7] 张博, 张芳华, 李晓兰, 等. "23·7"华北特大暴雨数值预报检验评估. 应用气象学报, 2024, 35(1): 17-32. doi:  10.11898/1001-7313.20240102

    Zhang B, Zhang F H, Li X L, et al. Verification and assessment of "23·7" severe rainstorm numerical prediction in North China. J Appl Meteor Sci, 2024, 35(1): 17-32. doi:  10.11898/1001-7313.20240102
    [8] 陈训来, 徐婷, 王蕊, 等. 珠江三角洲"9·7"极端暴雨精细观测特征及成因. 应用气象学报, 2024, 35(1): 1-16. doi:  10.11898/1001-7313.20240101

    Chen X L, Xu T, Wang R, et al. Fine observation characteristics and causes of "9·7" extreme heavy rainstorm over Pearl River Delta, China. J Appl Meteor Sci, 2024, 35(1): 1-16. doi:  10.11898/1001-7313.20240101
    [9] 俞剑蔚, 李聪, 蔡凝昊, 等. 国家级格点实况分析产品在江苏地区的适用性评估分析. 气象, 2019, 45(9): 1288-1298. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201909009.htm

    Yu J W, Li C, Cai N H, et al. Applicability evaluation of the national gridded real-time observation datasets in Jiangsu Province. Meteor Mon, 2019, 45(9): 1288-1298. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201909009.htm
    [10] 龙柯吉, 师春香, 韩帅, 等. 中国区域高分辨率温度实况融合格点分析产品质量评估. 高原山地气象研究, 2019, 39(3): 67-74. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX201903011.htm

    Long K J, Shi C X, Han S, et al. Quality assessment of high resolution temperature merged grid analysis product in China. Plateau Mountain Meteor Res, 2019, 39(3): 67-74. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX201903011.htm
    [11] 龙柯吉, 谷军霞, 师春香, 等. 多种降水实况融合产品在四川一次强降水过程中的评估. 高原山地气象研究, 2020, 40(2): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX202002005.htm

    Long K J, Gu J X, Shi C X, et al. Quality assessment of several merged precipitation products in a heavy rainfall process in Sichuan. Plateau Mountain Meteor Res, 2020, 40(2): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX202002005.htm
    [12] 杜冰, 吴薇, 黄晓龙, 等. 多种融合降水实况分析产品在雅安宝兴暴雨过程中的适用性评估. 高原山地气象研究, 2023, 43(1): 111-118. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX202301011.htm

    Du B, Wu W, Huang X L, et al. Applicability assessment of merged precipitation real-time products in the process of flood disaster in Baoxing, Ya'an. Plateau Mountain Meteor Res, 2023, 43(1): 111-118. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX202301011.htm
    [13] 郭旭, 龙柯吉, 范江琳, 等. 四种降水融合产品在四川持续性强降水过程中的对比评估. 高原山地气象研究, 2021, 41(2): 42-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX202102005.htm

    Guo X, Long K J, Fan J L, et al. Comparative assessment of four merged precipitation products in a sustained heavy rainfall process in Sichuan. Plateau Mountain Meteor Res, 2021, 41(2): 42-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX202102005.htm
    [14] 张茜茹, 陈益玲, 李长军, 等. 两种融合降水实况分析产品在山东地区的适用性评估. 海洋气象学报, 2023, 43(2): 100-108. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX202302009.htm

    Zhang Q R, Chen Y L, Li C J, et al. Applicability evaluation of two merged precipitation analysis products in Shandong. J Mar Meteor, 2023, 43(2): 100-108. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX202302009.htm
    [15] 霍庆, 何文春, 何林, 等. 气象大数据云平台算法集约化环境设计与应用. 应用气象学报, 2024, 35(1): 80-89. doi:  10.11898/1001-7313.20240107

    Huo Q, He W C, He L, et al. Design and application of algorithm intensive environment for CMA big data and cloud platform. J Appl Meteor Sci, 2024, 35(1): 80-89. doi:  10.11898/1001-7313.20240107
    [16] 徐宗学, 张玲, 阮本清. 北京地区降水量时空分布规律分析. 干旱区地理, 2006, 29(2): 186-192. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL200602003.htm

    Xu Z X, Zhang L, Ruan B Q. Analysis on the spatiotemporal distribution of precipitation in the Beijing Region. Arid Land Geogr, 2006, 29(2): 186-192. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL200602003.htm
    [17] 郭高轩, 辛宝东, 朱琳, 等. 基于小波变换的北京地区1724~2009年降水量多尺度分析. 水文, 2012, 32(3): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ201203005.htm

    Guo G X, Xin B D, Zhu L, et al. Multi-scale analysis of annual precipitation in Beijing Area from 1724 to 2009 based on wavelet transformation. J China Hydrol, 2012, 32(3): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ201203005.htm
    [18] Zhou C S, Li H C, Yu C, et al. A station-data-based model residual machine learning method for fine-grained meteorological grid prediction. Appl Math Mech, 2022, 43(2): 155-166.
    [19] 袁松, 姚叶青, 蔡辉, 等. 基于雷达风暴追踪信息的雷电移动趋势预报//第28届中国气象学会年会论文集, 2011: 1-7.

    Yuan S, Yao Y Q, Cai H, et al. Lightning Movement Trend Prediotion Based on Radar Storm Tracking Information//Proc of 28th Annual Meeting of Chinese Meteorological Society, 2011: 1-7.
    [20] 李喆, 陈炯, 马占山, 等. CMA-GFS云预报的偏差分布特征. 应用气象学报, 2022, 33(5): 527-540. doi:  10.11898/1001-7313.20220502

    Li Z, Chen J, Ma Z S, et al. Deviation distribution features of CMA-GFS cloud prediction. J Appl Meteor Sci, 2022, 33(5): 527-540. doi:  10.11898/1001-7313.20220502
    [21] Prein A F, Langhans W, Fosser G, et al. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev Geophys, 2015, 53(2): 323-361.
    [22] Love B S, Matthews A J, Lister G M S. The diurnal cycle of precipitation over the Maritime Continent in a high-resolution atmospheric model. Q J R Meteor Soc, 2011, 137(657): 934-947.
    [23] 邢楠, 仲跻芹, 雷蕾, 等. 基于CMA-BJ的北京地区短时强降水预报试验. 应用气象学报, 2023, 34(6): 641-654. doi:  10.11898/1001-7313.20230601

    Xing N, Zhong J Q, Lei L, et al. A probabilistic forecast experiment of short-duration heavy rainfall in Beijing based on CMA-BJ. J Appl Meteor Sci, 2023, 34(6): 641-654. doi:  10.11898/1001-7313.20230601
    [24] 周冰雪, 朱朗峰, 吴昊, 等. 微波辐射计反演大气廓线精度及降水预报应用. 应用气象学报, 2023, 34(6): 717-728. doi:  10.11898/1001-7313.20230607

    Zhou B X, Zhu L F, Wu H, et al. Accuracy of atmospheric profiles retrieved from microwave radiometer and its application to precipitation forecast. J Appl Meteor Sci, 2023, 34(6): 717-728. doi:  10.11898/1001-7313.20230607
    [25] 邱贵强, 时少英, 王洪霞, 等. 2 m气温集成订正方法及在冬奥延庆赛区的应用. 应用气象学报, 2023, 34(4): 400-412. doi:  10.11898/1001-7313.20230402

    Qiu G Q, Shi S Y, Wang H X, et al. An integrated correction method for 2 m temperature and its application to Yanqing competition zone of Olympic Winter Games. J Appl Meteor Sci, 2023, 34(4): 400-412. doi:  10.11898/1001-7313.20230402
    [26] 董晓云, 余锦华, 梁信忠, 等. CWRF模式在中国夏季极端降水模拟的误差订正. 应用气象学报, 2019, 30(2): 223-232. doi:  10.11898/1001-7313.20190209

    Dong X Y, Yu J H, Liang X Z, et al. Bias correction of summer extreme precipitation simulated by CWRF model over China. J Appl Meteor Sci, 2019, 30(2): 223-232. doi:  10.11898/1001-7313.20190209
    [27] 张冰, 郑媛媛, 沈菲菲, 等. 2017年苏南一次特大暴雨高分辨率模拟及特征分析. 气象科学, 2021, 41(3): 386-397. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX202103011.htm

    Zhang B, Zheng Y Y, Shen F F, et al. Characteristics and simulation of a torrential rainstorm over southern Jiangsu in 2017 revealed by a high-resolution numerical model. J Meteor Sci, 2021, 41(3): 386-397. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX202103011.htm
    [28] 刘郁珏, 黄倩倩, 张涵斌, 等. 基于大涡模拟的冬奥赛区风环境精细化评估. 应用气象学报, 2022, 33(2): 129-141. doi:  10.11898/1001-7313.20220201

    Liu Y J, Huang Q Q, Zhang H B, et al. Refined assessment of wind environment over Winter Olympic competition zone based on large eddy simulation. J Appl Meteor Sci, 2022, 33(2): 129-141. doi:  10.11898/1001-7313.20220201
    [29] 张舒婷, 仲跻芹, 卢冰, 等. CMA-BJ V2.0系统华北地区降水预报性能评估. 应用气象学报, 2023, 34(2): 129-141. doi:  10.11898/1001-7313.20230201

    Zhang S T, Zhong J Q, Lu B, et al. Performance evaluation of CMA-BJ V2.0 system for precipitation forecast in North China. J Appl Meteor Sci, 2023, 34(2): 129-141. doi:  10.11898/1001-7313.20230201
    [30] 陈静, 刘凑华, 陈法敬, 等. 一种基于可预报性的暴雨预报评分新方法Ⅰ: 中国暴雨可预报性综合指数. 气象学报, 2019, 77(1): 15-27. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201901002.htm

    Chen J, Liu C H, Chen F J, et al. A new verification method for heavy rainfall forecast based on predictability Ⅰ: Synthetic predictability index of heavy rainfall in China. Acta Meteor Sinica, 2019, 77(1): 15-27. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201901002.htm
    [31] 陈法敬, 陈静. "SEEPS"降水预报检验评分方法在我国降水预报中的应用试验. 气象科技进展, 2015, 5(5): 6-13. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201505006.htm

    Chen F J, Chen J. The application experiment of a new score for precipitation verification based on the SEEPS principle. Adv Meteor Sci Tech, 2015, 5(5): 6-13. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201505006.htm
    [32] Lu B, Zhong J Q, Wang W, et al. Influence of near real-time green vegetation fraction data on numerical weather prediction by WRF over North China. J Meteor Res, 2021, 35(3): 505-520.
  • 加载中
图(7) / 表(2)
计量
  • 摘要浏览量:  511
  • HTML全文浏览量:  66
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-08
  • 修回日期:  2024-03-25
  • 刊出日期:  2024-05-31

目录

    /

    返回文章
    返回