Applicability Evaluation of Provincial Precipitation Real-time Analysis Product in Beijing
-
摘要: 利用自动气象站观测数据, 采用误差分析、有效降水时次占比等方法评估2022年9月—2023年8月省级降水实况分析产品在北京地区的一致性和准确性, 并从累积降水量、降水强度、逐小时降水量误差等方面对“23·7”极端降水过程进行分析。结果表明:省级降水实况分析产品在北京地区的均方根误差不足1 mm, 平均绝对偏差低于0.16 mm, 与自动气象站观测结果接近。省级降水实况分析产品误差随降水量等级增加而增大, 小雨等级降水被高估, 中雨及以上等级降水被低估;误差空间分布差异明显, 在中雨和暴雨等级下, 最大负偏差均出现在延庆区, 最大正偏差均出现在昌平区。“23·7”极端降水过程中, 省级降水实况分析产品的平均均方根误差为1.8 mm, 平均绝对偏差为0.806 mm, 降水强度与自动气象站观测随时间变化趋势一致, 较真实地反映了降水强度的变化趋势。Abstract: The national precipitation real-time analysis product is a gridded product developed using probability density matching, Bayesian model averaging, multi grid variation, optimal interpolation and other technologies by National Meteorological Information Center. It has advantages of high accuracy, high quality, and spatiotemporal continuity, and is widely used in national nowcasting forecasting operations. In September 2022, National Meteorological Information Center issues a provincial multi-source fusion real-time analysis system to promote the collaborative application of precipitation analysis in different provinces. The same core multi-source fusion algorithms for real-time precipitation analysis products are applied in this system, allowing access to additional provincial local observations. The consistency and accuracy of the provincial precipitation analysis products in Beijing from September 2022 to August 2023 are evaluated by automatic weather station observations, error analysis, effective precipitation time proportion, and other methods. "23·7" extreme precipitation event is also analyzed in terms of cumulative precipitation, precipitation intensity, and hourly precipitation error. Results show that root mean square error of the provincial precipitation analysis product is less than 1 mm, and the average absolute deviation is below 0.16 mm, which closely aligns with observations from automatic weather stations. The bias of provincial precipitation real-time analysis product increases with magnitude of precipitation. The intensity of light rain exceeds the observation, while the spatial distribution difference of bias is evident. The maximum negative deviation occurs in both moderate rain and rainstorm magnitudes of Yanqing, while the maximum positive deviation is observed at Changping. During the extreme precipitation event of "23·7", the spatial distribution of provincial precipitation real-time analysis product is largely consistent with observations from automatic weather stations. The precipitation intensity is consistent with the trend of time variation observed by automatic weather stations, with an average root mean square error of 1.8 mm and an average absolute deviation of 0.806 mm, which more accurately reflects the trend of precipitation intensity variation. Overall, the provincial precipitation real-time analysis product has high accuracy in Beijing and can reflect the spatial distribution of precipitation, but the estimate is lower than the observation in the precipitation course of local heavy rainstorm.
-
表 1 不同小时降水量等级下省级降水实况分析产品的偏差与偏差率
Table 1 Bias and bias rate of provincial precipitation real-time analysis product at different hourly precipitation classifications
小时降水量等级 偏差/mm 偏差率/% 小雨(0.1~1.5 mm) 0.01 3.59 中雨(1.6~6.9 mm) -0.23 -4.54 大雨(7.0~14.9 mm) -0.68 -5.38 暴雨(15.0~29.9 mm) -1.23 -5.74 大暴雨(不低于30 mm) -1.76 -7.95 表 2 2023年汛期13次降水过程
Table 2 13 precipitation courses in the summer of 2023
降水过程序号 开始时间 结束时间 累积降水量/mm 持续时长/h 降水量均方根误差/mm 1 06-03T13:00 06-04T03:00 144.3 15 0.02 2 06-28T06:00 06-28T16:00 4644.8 9 0.52 3 07-03T19:00 07-04T12:00 7534.3 18 0.33 4 07-10T19:00 07-11T05:00 1670.9 11 0.39 5 07-20T17:00 07-22T20:00 32373.7 52 0.24 6 07-23T14:00 07-24T03:00 597.7 14 0.99 7 07-24T19:00 07-25T03:00 7312.0 9 0.42 8 07-27T17:00 07-28T06:00 5104.0 14 1.80 9 07-29T20:00 08-02T07:00 155530.8 84 0.04 10 08-05T20:00 08-06T04:00 79.1 9 0.21 11 08-09T16:00 08-10T08:00 433.0 17 0.31 12 08-11T09:00 08-12T08:00 7320.9 24 0.72 13 08-20T12:00 08-21T08:00 15417.4 21 0.28 -
[1] 师春香, 潘旸, 谷军霞, 等.多源气象数据融合格点实况产品研制进展.气象学报, 2019, 77(4):774-783. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201904013.htmShi C X, Pan Y, Gu J X, et al. A review of multi-source meteorological data fusion products. Acta Meteor Sinica, 2019, 77(4): 774-783. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201904013.htm [2] 韩帅, 师春香, 姜志伟, 等. CMA高分辨率陆面数据同化系统(HRCLDAS-V1.0)研发及进展. 气象科技进展, 2018, 8(1): 102-108. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201801028.htmHan S, Shi C X, Jiang Z W, et al. Development and progress of high resolution CMA land surface data assimilation system. Adv Meteor Sci Tech, 2018, 8(1): 102-108. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201801028.htm [3] 潘旸, 沈艳, 宇婧婧, 等. 基于最优插值方法分析的中国区域地面观测与卫星反演逐时降水融合试验. 气象学报, 2012, 70(6): 1381-1389. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201206021.htmPan Y, Shen Y, Yu J J, et al. Analysis of the combined gauge-satellite hourly precipitation over China based on the OI technique. Acta Meteor Sinica, 2012, 70(6): 1381-1389. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201206021.htm [4] 宇婧婧, 沈艳, 潘旸, 等. 概率密度匹配法对中国区域卫星降水资料的改进. 应用气象学报, 2013, 24(5): 544-553. doi: 10.3969/j.issn.1001-7313.2013.05.004Yu J J, Shen Y, Pan Y, et al. Improvement of satellite-based precipitation estimates over China based on probability density function matching method. J Appl Meteor Sci, 2013, 24(5): 544-553. doi: 10.3969/j.issn.1001-7313.2013.05.004 [5] 陈昊明, 李普曦, 赵妍. 千米尺度模式降水的检验评估进展及展望. 气象科技进展, 2021, 11(3): 155-164. doi: 10.3969/j.issn.2095-1973.2021.03.018Chen H M, Li P X, Zhao Y. A review and outlook of verification and evaluation of precipitation forecast at convection-permitting resolution. Adv Meteor Sci Tech, 2021, 11(3): 155-164. doi: 10.3969/j.issn.2095-1973.2021.03.018 [6] 张璐, 潘旸, 谷军霞, 等. 国际主流多源融合降水实况产品的研究进展与展望. 气象科技进展, 2022, 12(6): 16-27. doi: 10.3969/j.issn.2095-1973.2022.06.003Zhang L, Pan Y, Gu J X, et al. Advances and outlook for international mainstream multi-source precipitation merging products. Adv Meteor Sci Tech, 2022, 12(6): 16-27. doi: 10.3969/j.issn.2095-1973.2022.06.003 [7] 张博, 张芳华, 李晓兰, 等. "23·7"华北特大暴雨数值预报检验评估. 应用气象学报, 2024, 35(1): 17-32. doi: 10.11898/1001-7313.20240102Zhang B, Zhang F H, Li X L, et al. Verification and assessment of "23·7" severe rainstorm numerical prediction in North China. J Appl Meteor Sci, 2024, 35(1): 17-32. doi: 10.11898/1001-7313.20240102 [8] 陈训来, 徐婷, 王蕊, 等. 珠江三角洲"9·7"极端暴雨精细观测特征及成因. 应用气象学报, 2024, 35(1): 1-16. doi: 10.11898/1001-7313.20240101Chen X L, Xu T, Wang R, et al. Fine observation characteristics and causes of "9·7" extreme heavy rainstorm over Pearl River Delta, China. J Appl Meteor Sci, 2024, 35(1): 1-16. doi: 10.11898/1001-7313.20240101 [9] 俞剑蔚, 李聪, 蔡凝昊, 等. 国家级格点实况分析产品在江苏地区的适用性评估分析. 气象, 2019, 45(9): 1288-1298. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201909009.htmYu J W, Li C, Cai N H, et al. Applicability evaluation of the national gridded real-time observation datasets in Jiangsu Province. Meteor Mon, 2019, 45(9): 1288-1298. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201909009.htm [10] 龙柯吉, 师春香, 韩帅, 等. 中国区域高分辨率温度实况融合格点分析产品质量评估. 高原山地气象研究, 2019, 39(3): 67-74. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX201903011.htmLong K J, Shi C X, Han S, et al. Quality assessment of high resolution temperature merged grid analysis product in China. Plateau Mountain Meteor Res, 2019, 39(3): 67-74. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX201903011.htm [11] 龙柯吉, 谷军霞, 师春香, 等. 多种降水实况融合产品在四川一次强降水过程中的评估. 高原山地气象研究, 2020, 40(2): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX202002005.htmLong K J, Gu J X, Shi C X, et al. Quality assessment of several merged precipitation products in a heavy rainfall process in Sichuan. Plateau Mountain Meteor Res, 2020, 40(2): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX202002005.htm [12] 杜冰, 吴薇, 黄晓龙, 等. 多种融合降水实况分析产品在雅安宝兴暴雨过程中的适用性评估. 高原山地气象研究, 2023, 43(1): 111-118. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX202301011.htmDu B, Wu W, Huang X L, et al. Applicability assessment of merged precipitation real-time products in the process of flood disaster in Baoxing, Ya'an. Plateau Mountain Meteor Res, 2023, 43(1): 111-118. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX202301011.htm [13] 郭旭, 龙柯吉, 范江琳, 等. 四种降水融合产品在四川持续性强降水过程中的对比评估. 高原山地气象研究, 2021, 41(2): 42-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX202102005.htmGuo X, Long K J, Fan J L, et al. Comparative assessment of four merged precipitation products in a sustained heavy rainfall process in Sichuan. Plateau Mountain Meteor Res, 2021, 41(2): 42-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX202102005.htm [14] 张茜茹, 陈益玲, 李长军, 等. 两种融合降水实况分析产品在山东地区的适用性评估. 海洋气象学报, 2023, 43(2): 100-108. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX202302009.htmZhang Q R, Chen Y L, Li C J, et al. Applicability evaluation of two merged precipitation analysis products in Shandong. J Mar Meteor, 2023, 43(2): 100-108. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX202302009.htm [15] 霍庆, 何文春, 何林, 等. 气象大数据云平台算法集约化环境设计与应用. 应用气象学报, 2024, 35(1): 80-89. doi: 10.11898/1001-7313.20240107Huo Q, He W C, He L, et al. Design and application of algorithm intensive environment for CMA big data and cloud platform. J Appl Meteor Sci, 2024, 35(1): 80-89. doi: 10.11898/1001-7313.20240107 [16] 徐宗学, 张玲, 阮本清. 北京地区降水量时空分布规律分析. 干旱区地理, 2006, 29(2): 186-192. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL200602003.htmXu Z X, Zhang L, Ruan B Q. Analysis on the spatiotemporal distribution of precipitation in the Beijing Region. Arid Land Geogr, 2006, 29(2): 186-192. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL200602003.htm [17] 郭高轩, 辛宝东, 朱琳, 等. 基于小波变换的北京地区1724~2009年降水量多尺度分析. 水文, 2012, 32(3): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ201203005.htmGuo G X, Xin B D, Zhu L, et al. Multi-scale analysis of annual precipitation in Beijing Area from 1724 to 2009 based on wavelet transformation. J China Hydrol, 2012, 32(3): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ201203005.htm [18] Zhou C S, Li H C, Yu C, et al. A station-data-based model residual machine learning method for fine-grained meteorological grid prediction. Appl Math Mech, 2022, 43(2): 155-166. [19] 袁松, 姚叶青, 蔡辉, 等. 基于雷达风暴追踪信息的雷电移动趋势预报//第28届中国气象学会年会论文集, 2011: 1-7.Yuan S, Yao Y Q, Cai H, et al. Lightning Movement Trend Prediotion Based on Radar Storm Tracking Information//Proc of 28th Annual Meeting of Chinese Meteorological Society, 2011: 1-7. [20] 李喆, 陈炯, 马占山, 等. CMA-GFS云预报的偏差分布特征. 应用气象学报, 2022, 33(5): 527-540. doi: 10.11898/1001-7313.20220502Li Z, Chen J, Ma Z S, et al. Deviation distribution features of CMA-GFS cloud prediction. J Appl Meteor Sci, 2022, 33(5): 527-540. doi: 10.11898/1001-7313.20220502 [21] Prein A F, Langhans W, Fosser G, et al. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev Geophys, 2015, 53(2): 323-361. [22] Love B S, Matthews A J, Lister G M S. The diurnal cycle of precipitation over the Maritime Continent in a high-resolution atmospheric model. Q J R Meteor Soc, 2011, 137(657): 934-947. [23] 邢楠, 仲跻芹, 雷蕾, 等. 基于CMA-BJ的北京地区短时强降水预报试验. 应用气象学报, 2023, 34(6): 641-654. doi: 10.11898/1001-7313.20230601Xing N, Zhong J Q, Lei L, et al. A probabilistic forecast experiment of short-duration heavy rainfall in Beijing based on CMA-BJ. J Appl Meteor Sci, 2023, 34(6): 641-654. doi: 10.11898/1001-7313.20230601 [24] 周冰雪, 朱朗峰, 吴昊, 等. 微波辐射计反演大气廓线精度及降水预报应用. 应用气象学报, 2023, 34(6): 717-728. doi: 10.11898/1001-7313.20230607Zhou B X, Zhu L F, Wu H, et al. Accuracy of atmospheric profiles retrieved from microwave radiometer and its application to precipitation forecast. J Appl Meteor Sci, 2023, 34(6): 717-728. doi: 10.11898/1001-7313.20230607 [25] 邱贵强, 时少英, 王洪霞, 等. 2 m气温集成订正方法及在冬奥延庆赛区的应用. 应用气象学报, 2023, 34(4): 400-412. doi: 10.11898/1001-7313.20230402Qiu G Q, Shi S Y, Wang H X, et al. An integrated correction method for 2 m temperature and its application to Yanqing competition zone of Olympic Winter Games. J Appl Meteor Sci, 2023, 34(4): 400-412. doi: 10.11898/1001-7313.20230402 [26] 董晓云, 余锦华, 梁信忠, 等. CWRF模式在中国夏季极端降水模拟的误差订正. 应用气象学报, 2019, 30(2): 223-232. doi: 10.11898/1001-7313.20190209Dong X Y, Yu J H, Liang X Z, et al. Bias correction of summer extreme precipitation simulated by CWRF model over China. J Appl Meteor Sci, 2019, 30(2): 223-232. doi: 10.11898/1001-7313.20190209 [27] 张冰, 郑媛媛, 沈菲菲, 等. 2017年苏南一次特大暴雨高分辨率模拟及特征分析. 气象科学, 2021, 41(3): 386-397. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX202103011.htmZhang B, Zheng Y Y, Shen F F, et al. Characteristics and simulation of a torrential rainstorm over southern Jiangsu in 2017 revealed by a high-resolution numerical model. J Meteor Sci, 2021, 41(3): 386-397. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX202103011.htm [28] 刘郁珏, 黄倩倩, 张涵斌, 等. 基于大涡模拟的冬奥赛区风环境精细化评估. 应用气象学报, 2022, 33(2): 129-141. doi: 10.11898/1001-7313.20220201Liu Y J, Huang Q Q, Zhang H B, et al. Refined assessment of wind environment over Winter Olympic competition zone based on large eddy simulation. J Appl Meteor Sci, 2022, 33(2): 129-141. doi: 10.11898/1001-7313.20220201 [29] 张舒婷, 仲跻芹, 卢冰, 等. CMA-BJ V2.0系统华北地区降水预报性能评估. 应用气象学报, 2023, 34(2): 129-141. doi: 10.11898/1001-7313.20230201Zhang S T, Zhong J Q, Lu B, et al. Performance evaluation of CMA-BJ V2.0 system for precipitation forecast in North China. J Appl Meteor Sci, 2023, 34(2): 129-141. doi: 10.11898/1001-7313.20230201 [30] 陈静, 刘凑华, 陈法敬, 等. 一种基于可预报性的暴雨预报评分新方法Ⅰ: 中国暴雨可预报性综合指数. 气象学报, 2019, 77(1): 15-27. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201901002.htmChen J, Liu C H, Chen F J, et al. A new verification method for heavy rainfall forecast based on predictability Ⅰ: Synthetic predictability index of heavy rainfall in China. Acta Meteor Sinica, 2019, 77(1): 15-27. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201901002.htm [31] 陈法敬, 陈静. "SEEPS"降水预报检验评分方法在我国降水预报中的应用试验. 气象科技进展, 2015, 5(5): 6-13. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201505006.htmChen F J, Chen J. The application experiment of a new score for precipitation verification based on the SEEPS principle. Adv Meteor Sci Tech, 2015, 5(5): 6-13. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201505006.htm [32] Lu B, Zhong J Q, Wang W, et al. Influence of near real-time green vegetation fraction data on numerical weather prediction by WRF over North China. J Meteor Res, 2021, 35(3): 505-520.