留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2024年2月我国两次大范围雨雪冰冻天气对比

董全 陈博宇 胡宁 孔铃涵 陈涛 王佳 张博

董全, 陈博宇, 胡宁, 等. 2024年2月我国两次大范围雨雪冰冻天气对比. 应用气象学报, 2024, 35(4): 385-399. DOI:  10.11898/1001-7313.20240401..
引用本文: 董全, 陈博宇, 胡宁, 等. 2024年2月我国两次大范围雨雪冰冻天气对比. 应用气象学报, 2024, 35(4): 385-399. DOI:  10.11898/1001-7313.20240401.
Dong Quan, Chen Boyu, Hu Ning, et al. Comparison of two ice and snow storm processes in China in February 2024. J Appl Meteor Sci, 2024, 35(4): 385-399. DOI:  10.11898/1001-7313.20240401.
Citation: Dong Quan, Chen Boyu, Hu Ning, et al. Comparison of two ice and snow storm processes in China in February 2024. J Appl Meteor Sci, 2024, 35(4): 385-399. DOI:  10.11898/1001-7313.20240401.

2024年2月我国两次大范围雨雪冰冻天气对比

DOI: 10.11898/1001-7313.20240401
资助项目: 

中国气象局青年创新团队 CMA2024QN04

中国气象局重点创新团队 CMA2022ZD04

国家重点研发计划 2017YFC1502004

详细信息
    通信作者:

    董全, 邮箱:dongquan@cma.gov.cn

Comparison of Two Ice and Snow Storm Processes in China in February 2024

  • 摘要: 2024年1月31日—2月7日(过程Ⅰ)和2月19—25日(过程Ⅱ)我国中东部地区先后出现两次大范围、持续性的雨雪冰冻天气过程,利用地面观测、再分析资料、双偏振雷达、雨滴谱等分析两次过程的雨雪冰冻实况、微物理特征、环流形势和层结特征,并对比二者异同。结果表明:两次过程的影响区域、持续时间和总降水量接近,但过程Ⅰ积冰更厚、积雪更深,过程Ⅱ影响范围更广、降雪量更大。过程Ⅰ降水粒子从上到下呈3层结构特征,即冰晶层-融化层-液态层,过程Ⅱ呈4层结构特征,即冰晶层-融化层-液态层-再冻结层,导致过程Ⅰ冻雨更明显、积冰更厚,过程Ⅱ冰粒更多、积雪深度较浅、积冰厚度较薄。环流形势和层结特征显示两次过程均为西伯利亚高压和南支系统的协同作用,但过程Ⅱ低层急流强度和地面西伯利亚高压更强,导致过程Ⅱ中层暖层和低层冷层的强度均强于过程Ⅰ,而冷层更强是过程Ⅱ冰粒更明显的直接原因。
  • 图  1  过程Ⅰ积冰厚度(圆圈,单位:mm)和积雪深度(星形,单位:cm)

    Fig. 1  Icing depth(the circle, unit:mm) and snow depth(the star, unit:cm) for Process Ⅰ

    图  2  图 1,但为过程Ⅱ

    Fig. 2  The same as in Fig. 1, but for Process Ⅱ

    图  3  过程Ⅰ和过程Ⅱ总降水量(单位:mm)、最大积雪深度(单位:cm)和总降雪量(单位:mm)

    Fig. 3  Total precipitation(unit:mm), maximum snow depth(unit:cm), and total snowfall(unit:mm) for Process Ⅰ and Process Ⅱ

    图  4  2024年2月3日03:00安庆站和2月21日00:59阜阳站双偏振雷达1.5°仰角CCZDRKDP

    Fig. 4  CC, ZDRKDP of dual polarization radar at 1.5° elevation for Anqing Station at 0300 BT 3 Feb 2024 and Fuyang Station at 0059 BT 21 Feb 2024

    图  5  2024年2月3日08:00—4日08:00武汉市蔡甸站雨滴谱仪观测不同直径(a)和下落速度(b)粒子数

    Fig. 5  Raindrop spectrometer observations of raindrop numbers for different droplet size(a) and velocity(b) at Caidian Station, Wuhan from 0800 BT 3 Feb to 0800 BT 4 Feb in 2024

    图  6  图 5,但为2024年2月21日08:00—22日08:00

    Fig. 6  The same as in Fig. 5, but from 0800 BT 21 Feb to 0800 BT 22 Feb in 2024

    图  7  过程Ⅰ和过程Ⅱ平均环流及要素场

    (a) 过程Ⅰ 500 hPa高度场(等值线,单位:gpm)和风场(风羽),(b)过程Ⅱ 500 hPa高度场(等值线,单位:gpm)和风场(风羽),(c)过程Ⅰ 700 hPa风场(风羽)和整层可降水量(等值线,单位:mm),(d)过程Ⅱ 700 hPa风场(风羽)和整层可降水量(等值线,单位:mm),(e)过程Ⅰ 2 m气温(等值线,单位:℃)和10 m风场(风羽),(f)过程Ⅱ 2 m气温(等值线,单位:℃)和10 m风场(风羽)

    Fig. 7  Mean circulation and parameters for Process Ⅰ and Process Ⅱ

    (a)geopotential height(the contour, unit:gpm) and wind(the barb) at 500 hPa for Process Ⅰ, (b)geopotential height(the contour, unit:gpm) and wind(the barb) at 500 hPa for Process Ⅱ, (c)700 hPa wind(the barb) and total precipitable water(the isoline, unit:mm) for Process Ⅰ, (d)700 hPa wind(the barb) and total precipitable water(the isoline, unit:mm) for Process Ⅱ, (e)2 m temperature(the isoline, unit:℃) and 10 m wind(the barb) for Process Ⅰ, (f)2 m temperature(the isoline, unit:℃) and 10 m wind(the barb) for Process Ⅱ

    图  8  过程Ⅰ和过程Ⅱ在25°~35°N范围沿113°E不同高度的经向风(填色)、温度(等值线, 单位:℃)和风场(风羽)随时间变化

    Fig. 8  Meridional speed(the shaded), temperature(the isoline, unit:℃) and wind(the barb) along 113°E between 25°-35°N varying with time at different height for Process Ⅰ and Process Ⅱ

  • [1] Call D A.Changes in ice storm impacts over time:1886-2000.Weather Climate Soc, 2010, 2(1):23-35. doi:  10.1175/2009WCAS1013.1
    [2] Cortinas J Jr. A climatology of freezing rain in the great lakes region of North America. Mon Wea Rev, 2000, 128(10): 3574-3588. doi:  10.1175/1520-0493(2001)129<3574:ACOFRI>2.0.CO;2
    [3] 于波, 杜佳, 张琳娜. 1960—2013年北京地区冻雨天气过程特征分析. 气象与环境学报, 2016, 32(4): 113-118. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201604015.htm

    Yu B, Du J, Zhang L N. Characteristics of freezing rain in Beijing from 1960 to 2013. J Meteor Environ, 2016, 32(4): 113-118. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201604015.htm
    [4] 欧建军, 周毓荃, 杨棋, 等. 我国冻雨时空分布及温湿结构特征分析. 高原气象, 2011, 30(3): 692-699. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201103017.htm

    Ou J J, Zhou Y Q, Yang Q, et al. Analyses on spatial-temporal distributions and temperature-moisture structure of freezing rain in China. Plateau Meteor, 2011, 30(3): 692-699. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201103017.htm
    [5] 宋艳玲, 周广胜, 郭建平, 等. 北方冬小麦冬季冻害及播期延迟应对. 应用气象学报, 2022, 33(4): 454-465. doi:  10.11898/1001-7313.20220406

    Song Y L, Zhou G S, Guo J P, et al. Freezing injury of winter wheat in Northern China and delaying sowing date to adapt. J Appl Meteor Sci, 2022, 33(4): 454-465. doi:  10.11898/1001-7313.20220406
    [6] 王泽林, 周旭, 吴俊辉, 等. 一次飞机严重积冰的天气条件和云微物理特征. 应用气象学报, 2022, 33(5): 555-567. doi:  10.11898/1001-7313.20220504

    Wang Z L, Zhou X, Wu J H, et al. Weather conditions and cloud microphysical characteristics of an aircraft severe icing process. J Appl Meteor Sci, 2022, 33(5): 555-567. doi:  10.11898/1001-7313.20220504
    [7] Zerr R J. Freezing rain: An observational and theoretical study. J Appl Meteor, 1997, 36(12): 1647-1661. doi:  10.1175/1520-0450(1997)036<1647:FRAOAT>2.0.CO;2
    [8] Czys R R, Scott R W, Tang K C, et al. A physically based, nondimensional parameter for discriminating between locations of freezing rain and ice pellets. Wea Forecasting, 1996, 11(4): 591-598. doi:  10.1175/1520-0434(1996)011<0591:APBNPF>2.0.CO;2
    [9] 漆梁波. 我国冬季冻雨和冰粒天气的形成机制及预报着眼点. 气象, 2012, 38(7): 769-778. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201207002.htm

    Qi L B. Formation mechanism and forecast on freezing rain and ice pellet in winter of China. Meteor Mon, 2012, 38(7): 769-778. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201207002.htm
    [10] Stewart R E, King P. Freezing precipitation in winter storms. Mon Wea Rev, 1987, 115(7): 1270-1280. doi:  10.1175/1520-0493(1987)115<1270:FPIWS>2.0.CO;2
    [11] Lachapelle M, Thériault J M. Characteristics of precipitation particles and microphysical processes during the 11-12 January 2020 ice pellet storm in the Montréal area, Québec, Canada. Mon Wea Rev, 2022, 150(5): 1043-1059. doi:  10.1175/MWR-D-21-0185.1
    [12] Rahman K, Testik F Y. Shapes and fall speeds of freezing and frozen raindrops. J Hydrometeorol, 2020, 21(6): 1311-1331. doi:  10.1175/JHM-D-19-0204.1
    [13] Tobin D M, Kumjian M R. Polarimetric radar and surface-based precipitation-type observations of ice pellet to freezing rain transitions. Wea Forecasting, 2017, 32(6): 2065-2082. doi:  10.1175/WAF-D-17-0054.1
    [14] 杨贵名, 孔期, 毛冬艳, 等. 2008年初"低温雨雪冰冻" 灾害天气的持续性原因分析. 气象学报, 2008, 66(5): 836-849. doi:  10.3321/j.issn:0577-6619.2008.05.016

    Yang G M, Kong Q, Mao D Y, et al. Analysis of the long-lasting cryogenic freezing rain and snow weather in the beginning of 2008. Acta Meteor Sinica, 2008, 66(5): 836-849. doi:  10.3321/j.issn:0577-6619.2008.05.016
    [15] 王东海, 柳崇健, 刘英, 等. 2008年1月中国南方低温雨雪冰冻天气特征及其天气动力学成因的初步分析. 气象学报, 2008, 66(3): 405-422. doi:  10.3321/j.issn:0577-6619.2008.03.011

    Wang D H, Liu C J, Liu Y, et al. A preliminary analysis of features and causes of the snow storm event over the Southern China in January 2008. Acta Meteor Sinica, 2008, 66(3): 405-422. doi:  10.3321/j.issn:0577-6619.2008.03.011
    [16] 赵思雄, 孙建华. 2008年初南方雨雪冰冻天气的环流场与多尺度特征. 气候与环境研究, 2008, 13(4): 351-367. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200804002.htm

    Zhao S X, Sun J H. Multi-scale systems and conceptual model on freezing rain and snow storm over Southern China during January-February 2008. Clim Environ Res, 2008, 13(4): 351-367. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200804002.htm
    [17] 杨贵名, 毛冬艳, 孔期. "低温雨雪冰冻" 天气过程锋区特征分析. 气象学报, 2009, 67(4): 652-665. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200904015.htm

    Yang G M, Mao D Y, Kong Q. Analysis of the frontal characteristics of the cryogenic freezing rain and snow weather. Acta Meteor Sinica, 2009, 67(4): 652-665. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200904015.htm
    [18] 孙建华, 赵思雄. 2008年初南方雨雪冰冻灾害天气静止锋与层结结构分析. 气候与环境研究, 2008, 13(4): 368-384. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200804003.htm

    Sun J H, Zhao S X. Quasi-stationary front and stratification structure of the freezing rain and snow storm over Southern China in January 2008. Clim Environ Res, 2008, 13(4): 368-384. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200804003.htm
    [19] 宗志平, 马杰. 2008年初冻雨强度变化以及与逆温层特征之间的关系. 气象, 2011, 37(2): 156-160. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201102005.htm

    Zong Z P, Ma J. The relationship between the strength variability of freezing rain and the character of inversion in the beginning of 2008. Meteor Mon, 2011, 37(2): 156-160. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201102005.htm
    [20] 黄小玉, 黎祖贤, 李超, 等. 2008年湖南极端冰冻特大灾害天气成因分析. 气象, 2008, 34(11): 47-53. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200811008.htm

    Huang X Y, Li Z X, Li C, et al. Analysis on extreme freeze catastrophic weather of Hunan in 2008. Meteor Mon, 2008, 34(11): 47-53. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200811008.htm
    [21] 陈虹杏, 谌芸, 陆尔, 等. 2008年初南方雨雪冰冻期间降水过程的温湿异常. 应用气象学报, 2015, 26(5): 525-535. doi:  10.11898/1001-7313.20150502

    Chen H X, Chen Y, Lu E, et al. Anomalous moisture and temperature characteristics in precipitation process during January 2008 heavy snowstorm in China. J Appl Meteor Sci, 2015, 26(5): 525-535. doi:  10.11898/1001-7313.20150502
    [22] 高辉, 陈丽娟, 贾小龙, 等. 2008年1月我国大范围低温雨雪冰冻灾害分析Ⅱ. 成因分析. 气象, 2008, 34(4): 101-106. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200804014.htm

    Gao H, Chen L J, Jia X L, et al. Analysis of the severe cold surge, ice-snow and frozen disasters in South China during January 2008: Ⅱ. Possible climatic causes. Meteor Mon, 2008, 34(4): 101-106. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200804014.htm
    [23] 宗志平, 马杰, 张恒德, 等. 近几十年来冻雨时空分布特征分析. 气象, 2013, 39(7): 813-820. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201307003.htm

    Zong Z P, Ma J, Zhang H D, et al. Analysis on the spatial-temporal characteristics of freezing rain in recent decades. Meteor Mon, 2013, 39(7): 813-820. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201307003.htm
    [24] 陈新玉, 王传根, 戴泽武, 等. 2018年初江西中北部冻雨暴雪天气过程特征及成因. 气象与减灾研究, 2018, 41(4): 270-277. https://www.cnki.com.cn/Article/CJFDTOTAL-HXQO201804004.htm

    Chen X Y, Wang C G, Dai Z W, et al. Characteristic and causes of severe freezing rain and snowstorm in early 2018 in Jiangxi. Meteor Disaster Reduct Res, 2018, 41(4): 270-277. https://www.cnki.com.cn/Article/CJFDTOTAL-HXQO201804004.htm
    [25] 杜小玲, 彭芳, 武文辉. 贵州冻雨频发地带分布特征及成因分析. 气象, 2010, 36(5): 92-97. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201005015.htm

    Du X L, Peng F, Wu W H. Distribution and cause on frequent freezing rain zone in Guizhou. Meteor Mon, 2010, 36(5): 92-97. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201005015.htm
    [26] 甘文强, 蓝伟, 杜小玲, 等. 2018年1月底至2月初贵州低温雨雪天气成因初探. 暴雨灾害, 2018, 37(5): 410-420. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201805003.htm

    Gan W Q, Lan W, Du X L, et al. Tentative analysis on the cause of a low-temperature, freezing rain and snow event in Guizhou between the end of January and the beginning of February in 2018. Torrential Rain Disasters, 2018, 37(5): 410-420. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201805003.htm
    [27] 李江波, 李根娥, 裴雨杰, 等. 一次春季强寒潮的降水相态变化分析. 气象, 2009, 35(7): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200907014.htm

    Li J B, Li G E, Pei Y J, et al. Analysis on the phase transformation of precipitation during a strong cold wave happened in spring. Meteor Mon, 2009, 35(7): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200907014.htm
    [28] 谌芸, 曹勇, 孙健, 等. 中央气象台精细化网格降水预报技术的发展和思考. 气象, 2021, 47(6): 655-670. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202106002.htm

    Chen Y, Cao Y, Sun J, et al. Progress of fine gridded quantitative precipitation forecast technology of National Meteorological Centre. Meteor Mon, 2021, 47(6): 655-670. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202106002.htm
    [29] 毕宝贵, 代刊, 王毅, 等. 定量降水预报技术进展. 应用气象学报, 2016, 27(5): 534-549. doi:  10.11898/1001-7313.20160503

    Bi B G, Dai K, Wang Y, et al. Advances in techniques of quantitative precipitation forecast. J Appl Meteor Sci, 2016, 27(5): 534-549. doi:  10.11898/1001-7313.20160503
    [30] 董全, 黄小玉, 宗志平. 人工神经网络法和线性回归法对降水相态的预报效果对比. 气象, 2013, 39(3): 324-332. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201303007.htm

    Dong Q, Huang X Y, Zong Z P. Comparison of artificial nueral network and linear regression methods in forecasting precipitation types. Meteor Mon, 2013, 39(3): 324-332. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201303007.htm
    [31] 董全, 胡宁, 宗志平. ECMWF降水相态预报产品(PTYPE)应用和检验. 气象, 2020, 46(9): 1210-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202009008.htm

    Dong Q, Hu N, Zong Z P. Application and verification of the ECMWF precipitation type forecast product(PTYPE). Meteor Mon, 2020, 46(9): 1210-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202009008.htm
    [32] 董全, 张峰, 宗志平. 基于ECMWF集合预报产品的降水相态客观预报方法. 应用气象学报, 2020, 31(5): 527-542. doi:  10.11898/1001-7313.20200502

    Dong Q, Zhang F, Zong Z P. Objective precipitation type forecast based on ECMWF ensemble prediction product. J Appl Meteor Sci, 2020, 31(5): 527-542. doi:  10.11898/1001-7313.20200502
    [33] 王蕾, 陈起英, 胡江林, 等. 基于CMA-MESO冰粒子含量的雨雪相态判据应用. 应用气象学报, 2023, 34(6): 655-667. doi:  10.11898/1001-7313.20230602

    Wang L, Chen Q Y, Hu J L, et al. Application of rain and snow phase criterion based on ice-phase particle content forecast by CMA-MESO. J Appl Meteor Sci, 2023, 34(6): 655-667. doi:  10.11898/1001-7313.20230602
    [34] 刘玉莲, 任国玉, 孙秀宝. 降水相态分离单临界气温模型建立和检验. 应用气象学报, 2018, 29(4): 449-459. doi:  10.11898/1001-7313.20180406

    Liu Y L, Ren G Y, Sun X B. Establishment and verification of single threshold temperature model for partition precipitation phase separation. J Appl Meteor Sci, 2018, 29(4): 449-459. doi:  10.11898/1001-7313.20180406
    [35] 陆虹, 翟盘茂, 覃卫坚, 等. 低温雨雪过程的粒子群-神经网络预报模型. 应用气象学报, 2015, 26(5): 513-524. doi:  10.11898/1001-7313.20150501

    Lu H, Zhai P M, Qin W J, et al. A particle swarm optimization-neural network ensemble prediction model for persistent freezing rain and snow storm in Southern China. J Appl Meteor Sci, 2015, 26(5): 513-524. doi:  10.11898/1001-7313.20150501
    [36] 李杰, 郭学良, 盛日峰, 等. 我国冰粒降水天气的观测特征统计分析. 大气科学学报, 2016, 39(3): 349-360. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201603007.htm

    Li J, Guo X L, Sheng R F, et al. Statistical analysis of observed properties of ice-pellet precipitation in China. Trans Atmos Sci, 2016, 39(3): 349-360. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201603007.htm
    [37] 李哲, 吴翀, 刘黎平, 等. 双偏振相控阵雷达误差评估与相态识别方法. 应用气象学报, 2022, 33(1): 16-28. doi:  10.11898/1001-7313.20220102

    Li Z, Wu C, Liu L P, et al. Error evaluation and hydrometeor classification method of dual polarization phased array radar. J Appl Meteor Sci, 2022, 33(1): 16-28. doi:  10.11898/1001-7313.20220102
    [38] 张林, 李峰, 吴蕾, 等. CINRAD/SAD双偏振雷达非降水回波识别技术. 应用气象学报, 2022, 33(6): 724-735. doi:  10.11898/1001-7313.20220607

    Zhang L, Li F, Wu L, et al. Non-precipitation identification technique for CINRAD/SAD dual polarimetric weather radar. J Appl Meteor Sci, 2022, 33(6): 724-735. doi:  10.11898/1001-7313.20220607
    [39] 徐舒扬, 吴翀, 刘黎平. 双偏振雷达水凝物相态识别算法的参数改进. 应用气象学报, 2020, 31(3): 350-360. doi:  10.11898/1001-7313.20200309

    Xu S Y, Wu C, Liu L P. Parameter improvements of hydrometeor classification algorithm for the dual-polarimetric radar. J Appl Meteor Sci, 2020, 31(3): 350-360. doi:  10.11898/1001-7313.20200309
    [40] Thériault J M, Stewart R E, Henson W. On the dependence of winter precipitation types on temperature, precipitation rate, and associated features. J Appl Meteor Climatol, 2010, 49(7): 1429-1442.
    [41] Thériault J M, Stewart R E. On the effects of vertical air velocity on winter precipitation types. Nat Hazards Earth Syst Sci, 2007, 7(2): 231-242.
    [42] 吕克利, 徐银梓, 谈哲敏. 动力气象学(第2版). 南京: 南京大学出版社, 2014.

    Lü K L, Xu Y Z, Tan Z M. Dynamic Meteorology(2nd Ed). Nanjing: Nanjing University Press, 2014.
    [43] 吴息, 孙朋杰, 熊海星, 等. 利用常规气象资料建立的导线覆冰模型. 大气科学学报, 2012, 35(3): 335-341. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201203008.htm

    Wu X, Sun P J, Xiong H X, et al. A conductor icing model based on parameters of conventional meteorological observations. Trans Atmos Sci, 2012, 35(3): 335-341. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201203008.htm
    [44] Jones K F. A simple model for freezing rain ice loads. Atmos Res, 1998, 46(1/2): 87-97.
  • 加载中
图(8)
计量
  • 摘要浏览量:  1410
  • HTML全文浏览量:  134
  • PDF下载量:  243
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-19
  • 修回日期:  2024-06-14
  • 刊出日期:  2024-07-31

目录

    /

    返回文章
    返回