Comparison of Two Ice and Snow Storm Processes in China in February 2024
-
摘要: 2024年1月31日—2月7日(过程Ⅰ)和2月19—25日(过程Ⅱ)我国中东部地区先后出现两次大范围、持续性的雨雪冰冻天气过程,利用地面观测、再分析资料、双偏振雷达、雨滴谱等分析两次过程的雨雪冰冻实况、微物理特征、环流形势和层结特征,并对比二者异同。结果表明:两次过程的影响区域、持续时间和总降水量接近,但过程Ⅰ积冰更厚、积雪更深,过程Ⅱ影响范围更广、降雪量更大。过程Ⅰ降水粒子从上到下呈3层结构特征,即冰晶层-融化层-液态层,过程Ⅱ呈4层结构特征,即冰晶层-融化层-液态层-再冻结层,导致过程Ⅰ冻雨更明显、积冰更厚,过程Ⅱ冰粒更多、积雪深度较浅、积冰厚度较薄。环流形势和层结特征显示两次过程均为西伯利亚高压和南支系统的协同作用,但过程Ⅱ低层急流强度和地面西伯利亚高压更强,导致过程Ⅱ中层暖层和低层冷层的强度均强于过程Ⅰ,而冷层更强是过程Ⅱ冰粒更明显的直接原因。Abstract: Two ice and snow storm processes hit middle and eastern China during 31 January to 7 February (Process Ⅰ) and 19 February to 25 February (Process Ⅱ) in 2024, which are the most extreme ice and snow events since 2009. After the long-lasting cryogenic freezing rain and snow weather in the beginning of 2008, studies about freezing rain and snow storm have effectively improved the ability of subjective forecast and objective forecast skills of these kinds of weather. However, the accuracy of forecasting ice, freezing rain, and snow storm cannot meet demands of society. Recently, the capability of new types of observations has significantly advanced, and the surface observation system is more complete. Utilizing these more comprehensive observations to analyze and compare characteristics of these two processes will be beneficial for precious, objective and quantitative forecast of ice and snow storm, ice-accretion for example.The ice and snow surface observations, reanalysis dataset, and new types of observations, including dual polarization radar and raindrop spectrum, are used to analyze the precipitation, snowfall, ice-accretion and so on. In addition, microphysical characteristics, atmospheric circulations, and stratification features of these two processes are summarized and compared, and causes for differences is researched. Results show that the affected areas, duration, and total amount of precipitation in these two processes are similar. Process Ⅰ is characterized by deeper ice-accretion and snow depth, while Process Ⅱ is characterized by a larger affected area and increased snowfall. The observation of dual polarization radar shows that there are three layers of precipitation drops for Process Ⅰ: An ice crystal layer, melting layer, and liquid layer from top to the bottom. However, there are four layers for Process Ⅱ which are ice crystal layer, melting layer, liquid layer and refrozen layer from top to the bottom. So, for Process Ⅰ, there is no significant refreezing, and the precipitation droplets are mainly supercooled liquid falling through the cold layer near the surface. Process Ⅰ is mainly characterized by freezing rain and deeper ice accretion. During Process Ⅱ, significant refrozen to mixed or solid precipitation near the surface happens which results in more ice pellets which is not good to ice-accretion. On the other hand, the density of ice pellets is larger than that of snow, resulting in thinner snow depth and less ice-acceration for Process Ⅱ. The atmospheric circulation and stratification features indicate that both processes are characterized by cooperation of Siberia high and southern branch trough. However, the lower-level jet and Siberia high of Process Ⅱ are stronger than that of Process Ⅰ, leading to stronger warm layer and cold layer in Process Ⅱ and the colder low level cold layer is the main reason for the significant ice pellet in Process Ⅱ.
-
图 7 过程Ⅰ和过程Ⅱ平均环流及要素场
(a) 过程Ⅰ 500 hPa高度场(等值线,单位:gpm)和风场(风羽),(b)过程Ⅱ 500 hPa高度场(等值线,单位:gpm)和风场(风羽),(c)过程Ⅰ 700 hPa风场(风羽)和整层可降水量(等值线,单位:mm),(d)过程Ⅱ 700 hPa风场(风羽)和整层可降水量(等值线,单位:mm),(e)过程Ⅰ 2 m气温(等值线,单位:℃)和10 m风场(风羽),(f)过程Ⅱ 2 m气温(等值线,单位:℃)和10 m风场(风羽)
Fig. 7 Mean circulation and parameters for Process Ⅰ and Process Ⅱ
(a)geopotential height(the contour, unit:gpm) and wind(the barb) at 500 hPa for Process Ⅰ, (b)geopotential height(the contour, unit:gpm) and wind(the barb) at 500 hPa for Process Ⅱ, (c)700 hPa wind(the barb) and total precipitable water(the isoline, unit:mm) for Process Ⅰ, (d)700 hPa wind(the barb) and total precipitable water(the isoline, unit:mm) for Process Ⅱ, (e)2 m temperature(the isoline, unit:℃) and 10 m wind(the barb) for Process Ⅰ, (f)2 m temperature(the isoline, unit:℃) and 10 m wind(the barb) for Process Ⅱ
-
[1] Call D A.Changes in ice storm impacts over time:1886-2000.Weather Climate Soc, 2010, 2(1):23-35. doi: 10.1175/2009WCAS1013.1 [2] Cortinas J Jr. A climatology of freezing rain in the great lakes region of North America. Mon Wea Rev, 2000, 128(10): 3574-3588. doi: 10.1175/1520-0493(2001)129<3574:ACOFRI>2.0.CO;2 [3] 于波, 杜佳, 张琳娜. 1960—2013年北京地区冻雨天气过程特征分析. 气象与环境学报, 2016, 32(4): 113-118. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201604015.htmYu B, Du J, Zhang L N. Characteristics of freezing rain in Beijing from 1960 to 2013. J Meteor Environ, 2016, 32(4): 113-118. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201604015.htm [4] 欧建军, 周毓荃, 杨棋, 等. 我国冻雨时空分布及温湿结构特征分析. 高原气象, 2011, 30(3): 692-699. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201103017.htmOu J J, Zhou Y Q, Yang Q, et al. Analyses on spatial-temporal distributions and temperature-moisture structure of freezing rain in China. Plateau Meteor, 2011, 30(3): 692-699. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201103017.htm [5] 宋艳玲, 周广胜, 郭建平, 等. 北方冬小麦冬季冻害及播期延迟应对. 应用气象学报, 2022, 33(4): 454-465. doi: 10.11898/1001-7313.20220406Song Y L, Zhou G S, Guo J P, et al. Freezing injury of winter wheat in Northern China and delaying sowing date to adapt. J Appl Meteor Sci, 2022, 33(4): 454-465. doi: 10.11898/1001-7313.20220406 [6] 王泽林, 周旭, 吴俊辉, 等. 一次飞机严重积冰的天气条件和云微物理特征. 应用气象学报, 2022, 33(5): 555-567. doi: 10.11898/1001-7313.20220504Wang Z L, Zhou X, Wu J H, et al. Weather conditions and cloud microphysical characteristics of an aircraft severe icing process. J Appl Meteor Sci, 2022, 33(5): 555-567. doi: 10.11898/1001-7313.20220504 [7] Zerr R J. Freezing rain: An observational and theoretical study. J Appl Meteor, 1997, 36(12): 1647-1661. doi: 10.1175/1520-0450(1997)036<1647:FRAOAT>2.0.CO;2 [8] Czys R R, Scott R W, Tang K C, et al. A physically based, nondimensional parameter for discriminating between locations of freezing rain and ice pellets. Wea Forecasting, 1996, 11(4): 591-598. doi: 10.1175/1520-0434(1996)011<0591:APBNPF>2.0.CO;2 [9] 漆梁波. 我国冬季冻雨和冰粒天气的形成机制及预报着眼点. 气象, 2012, 38(7): 769-778. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201207002.htmQi L B. Formation mechanism and forecast on freezing rain and ice pellet in winter of China. Meteor Mon, 2012, 38(7): 769-778. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201207002.htm [10] Stewart R E, King P. Freezing precipitation in winter storms. Mon Wea Rev, 1987, 115(7): 1270-1280. doi: 10.1175/1520-0493(1987)115<1270:FPIWS>2.0.CO;2 [11] Lachapelle M, Thériault J M. Characteristics of precipitation particles and microphysical processes during the 11-12 January 2020 ice pellet storm in the Montréal area, Québec, Canada. Mon Wea Rev, 2022, 150(5): 1043-1059. doi: 10.1175/MWR-D-21-0185.1 [12] Rahman K, Testik F Y. Shapes and fall speeds of freezing and frozen raindrops. J Hydrometeorol, 2020, 21(6): 1311-1331. doi: 10.1175/JHM-D-19-0204.1 [13] Tobin D M, Kumjian M R. Polarimetric radar and surface-based precipitation-type observations of ice pellet to freezing rain transitions. Wea Forecasting, 2017, 32(6): 2065-2082. doi: 10.1175/WAF-D-17-0054.1 [14] 杨贵名, 孔期, 毛冬艳, 等. 2008年初"低温雨雪冰冻" 灾害天气的持续性原因分析. 气象学报, 2008, 66(5): 836-849. doi: 10.3321/j.issn:0577-6619.2008.05.016Yang G M, Kong Q, Mao D Y, et al. Analysis of the long-lasting cryogenic freezing rain and snow weather in the beginning of 2008. Acta Meteor Sinica, 2008, 66(5): 836-849. doi: 10.3321/j.issn:0577-6619.2008.05.016 [15] 王东海, 柳崇健, 刘英, 等. 2008年1月中国南方低温雨雪冰冻天气特征及其天气动力学成因的初步分析. 气象学报, 2008, 66(3): 405-422. doi: 10.3321/j.issn:0577-6619.2008.03.011Wang D H, Liu C J, Liu Y, et al. A preliminary analysis of features and causes of the snow storm event over the Southern China in January 2008. Acta Meteor Sinica, 2008, 66(3): 405-422. doi: 10.3321/j.issn:0577-6619.2008.03.011 [16] 赵思雄, 孙建华. 2008年初南方雨雪冰冻天气的环流场与多尺度特征. 气候与环境研究, 2008, 13(4): 351-367. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200804002.htmZhao S X, Sun J H. Multi-scale systems and conceptual model on freezing rain and snow storm over Southern China during January-February 2008. Clim Environ Res, 2008, 13(4): 351-367. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200804002.htm [17] 杨贵名, 毛冬艳, 孔期. "低温雨雪冰冻" 天气过程锋区特征分析. 气象学报, 2009, 67(4): 652-665. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200904015.htmYang G M, Mao D Y, Kong Q. Analysis of the frontal characteristics of the cryogenic freezing rain and snow weather. Acta Meteor Sinica, 2009, 67(4): 652-665. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200904015.htm [18] 孙建华, 赵思雄. 2008年初南方雨雪冰冻灾害天气静止锋与层结结构分析. 气候与环境研究, 2008, 13(4): 368-384. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200804003.htmSun J H, Zhao S X. Quasi-stationary front and stratification structure of the freezing rain and snow storm over Southern China in January 2008. Clim Environ Res, 2008, 13(4): 368-384. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200804003.htm [19] 宗志平, 马杰. 2008年初冻雨强度变化以及与逆温层特征之间的关系. 气象, 2011, 37(2): 156-160. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201102005.htmZong Z P, Ma J. The relationship between the strength variability of freezing rain and the character of inversion in the beginning of 2008. Meteor Mon, 2011, 37(2): 156-160. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201102005.htm [20] 黄小玉, 黎祖贤, 李超, 等. 2008年湖南极端冰冻特大灾害天气成因分析. 气象, 2008, 34(11): 47-53. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200811008.htmHuang X Y, Li Z X, Li C, et al. Analysis on extreme freeze catastrophic weather of Hunan in 2008. Meteor Mon, 2008, 34(11): 47-53. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200811008.htm [21] 陈虹杏, 谌芸, 陆尔, 等. 2008年初南方雨雪冰冻期间降水过程的温湿异常. 应用气象学报, 2015, 26(5): 525-535. doi: 10.11898/1001-7313.20150502Chen H X, Chen Y, Lu E, et al. Anomalous moisture and temperature characteristics in precipitation process during January 2008 heavy snowstorm in China. J Appl Meteor Sci, 2015, 26(5): 525-535. doi: 10.11898/1001-7313.20150502 [22] 高辉, 陈丽娟, 贾小龙, 等. 2008年1月我国大范围低温雨雪冰冻灾害分析Ⅱ. 成因分析. 气象, 2008, 34(4): 101-106. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200804014.htmGao H, Chen L J, Jia X L, et al. Analysis of the severe cold surge, ice-snow and frozen disasters in South China during January 2008: Ⅱ. Possible climatic causes. Meteor Mon, 2008, 34(4): 101-106. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200804014.htm [23] 宗志平, 马杰, 张恒德, 等. 近几十年来冻雨时空分布特征分析. 气象, 2013, 39(7): 813-820. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201307003.htmZong Z P, Ma J, Zhang H D, et al. Analysis on the spatial-temporal characteristics of freezing rain in recent decades. Meteor Mon, 2013, 39(7): 813-820. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201307003.htm [24] 陈新玉, 王传根, 戴泽武, 等. 2018年初江西中北部冻雨暴雪天气过程特征及成因. 气象与减灾研究, 2018, 41(4): 270-277. https://www.cnki.com.cn/Article/CJFDTOTAL-HXQO201804004.htmChen X Y, Wang C G, Dai Z W, et al. Characteristic and causes of severe freezing rain and snowstorm in early 2018 in Jiangxi. Meteor Disaster Reduct Res, 2018, 41(4): 270-277. https://www.cnki.com.cn/Article/CJFDTOTAL-HXQO201804004.htm [25] 杜小玲, 彭芳, 武文辉. 贵州冻雨频发地带分布特征及成因分析. 气象, 2010, 36(5): 92-97. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201005015.htmDu X L, Peng F, Wu W H. Distribution and cause on frequent freezing rain zone in Guizhou. Meteor Mon, 2010, 36(5): 92-97. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201005015.htm [26] 甘文强, 蓝伟, 杜小玲, 等. 2018年1月底至2月初贵州低温雨雪天气成因初探. 暴雨灾害, 2018, 37(5): 410-420. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201805003.htmGan W Q, Lan W, Du X L, et al. Tentative analysis on the cause of a low-temperature, freezing rain and snow event in Guizhou between the end of January and the beginning of February in 2018. Torrential Rain Disasters, 2018, 37(5): 410-420. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201805003.htm [27] 李江波, 李根娥, 裴雨杰, 等. 一次春季强寒潮的降水相态变化分析. 气象, 2009, 35(7): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200907014.htmLi J B, Li G E, Pei Y J, et al. Analysis on the phase transformation of precipitation during a strong cold wave happened in spring. Meteor Mon, 2009, 35(7): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200907014.htm [28] 谌芸, 曹勇, 孙健, 等. 中央气象台精细化网格降水预报技术的发展和思考. 气象, 2021, 47(6): 655-670. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202106002.htmChen Y, Cao Y, Sun J, et al. Progress of fine gridded quantitative precipitation forecast technology of National Meteorological Centre. Meteor Mon, 2021, 47(6): 655-670. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202106002.htm [29] 毕宝贵, 代刊, 王毅, 等. 定量降水预报技术进展. 应用气象学报, 2016, 27(5): 534-549. doi: 10.11898/1001-7313.20160503Bi B G, Dai K, Wang Y, et al. Advances in techniques of quantitative precipitation forecast. J Appl Meteor Sci, 2016, 27(5): 534-549. doi: 10.11898/1001-7313.20160503 [30] 董全, 黄小玉, 宗志平. 人工神经网络法和线性回归法对降水相态的预报效果对比. 气象, 2013, 39(3): 324-332. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201303007.htmDong Q, Huang X Y, Zong Z P. Comparison of artificial nueral network and linear regression methods in forecasting precipitation types. Meteor Mon, 2013, 39(3): 324-332. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201303007.htm [31] 董全, 胡宁, 宗志平. ECMWF降水相态预报产品(PTYPE)应用和检验. 气象, 2020, 46(9): 1210-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202009008.htmDong Q, Hu N, Zong Z P. Application and verification of the ECMWF precipitation type forecast product(PTYPE). Meteor Mon, 2020, 46(9): 1210-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202009008.htm [32] 董全, 张峰, 宗志平. 基于ECMWF集合预报产品的降水相态客观预报方法. 应用气象学报, 2020, 31(5): 527-542. doi: 10.11898/1001-7313.20200502Dong Q, Zhang F, Zong Z P. Objective precipitation type forecast based on ECMWF ensemble prediction product. J Appl Meteor Sci, 2020, 31(5): 527-542. doi: 10.11898/1001-7313.20200502 [33] 王蕾, 陈起英, 胡江林, 等. 基于CMA-MESO冰粒子含量的雨雪相态判据应用. 应用气象学报, 2023, 34(6): 655-667. doi: 10.11898/1001-7313.20230602Wang L, Chen Q Y, Hu J L, et al. Application of rain and snow phase criterion based on ice-phase particle content forecast by CMA-MESO. J Appl Meteor Sci, 2023, 34(6): 655-667. doi: 10.11898/1001-7313.20230602 [34] 刘玉莲, 任国玉, 孙秀宝. 降水相态分离单临界气温模型建立和检验. 应用气象学报, 2018, 29(4): 449-459. doi: 10.11898/1001-7313.20180406Liu Y L, Ren G Y, Sun X B. Establishment and verification of single threshold temperature model for partition precipitation phase separation. J Appl Meteor Sci, 2018, 29(4): 449-459. doi: 10.11898/1001-7313.20180406 [35] 陆虹, 翟盘茂, 覃卫坚, 等. 低温雨雪过程的粒子群-神经网络预报模型. 应用气象学报, 2015, 26(5): 513-524. doi: 10.11898/1001-7313.20150501Lu H, Zhai P M, Qin W J, et al. A particle swarm optimization-neural network ensemble prediction model for persistent freezing rain and snow storm in Southern China. J Appl Meteor Sci, 2015, 26(5): 513-524. doi: 10.11898/1001-7313.20150501 [36] 李杰, 郭学良, 盛日峰, 等. 我国冰粒降水天气的观测特征统计分析. 大气科学学报, 2016, 39(3): 349-360. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201603007.htmLi J, Guo X L, Sheng R F, et al. Statistical analysis of observed properties of ice-pellet precipitation in China. Trans Atmos Sci, 2016, 39(3): 349-360. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201603007.htm [37] 李哲, 吴翀, 刘黎平, 等. 双偏振相控阵雷达误差评估与相态识别方法. 应用气象学报, 2022, 33(1): 16-28. doi: 10.11898/1001-7313.20220102Li Z, Wu C, Liu L P, et al. Error evaluation and hydrometeor classification method of dual polarization phased array radar. J Appl Meteor Sci, 2022, 33(1): 16-28. doi: 10.11898/1001-7313.20220102 [38] 张林, 李峰, 吴蕾, 等. CINRAD/SAD双偏振雷达非降水回波识别技术. 应用气象学报, 2022, 33(6): 724-735. doi: 10.11898/1001-7313.20220607Zhang L, Li F, Wu L, et al. Non-precipitation identification technique for CINRAD/SAD dual polarimetric weather radar. J Appl Meteor Sci, 2022, 33(6): 724-735. doi: 10.11898/1001-7313.20220607 [39] 徐舒扬, 吴翀, 刘黎平. 双偏振雷达水凝物相态识别算法的参数改进. 应用气象学报, 2020, 31(3): 350-360. doi: 10.11898/1001-7313.20200309Xu S Y, Wu C, Liu L P. Parameter improvements of hydrometeor classification algorithm for the dual-polarimetric radar. J Appl Meteor Sci, 2020, 31(3): 350-360. doi: 10.11898/1001-7313.20200309 [40] Thériault J M, Stewart R E, Henson W. On the dependence of winter precipitation types on temperature, precipitation rate, and associated features. J Appl Meteor Climatol, 2010, 49(7): 1429-1442. [41] Thériault J M, Stewart R E. On the effects of vertical air velocity on winter precipitation types. Nat Hazards Earth Syst Sci, 2007, 7(2): 231-242. [42] 吕克利, 徐银梓, 谈哲敏. 动力气象学(第2版). 南京: 南京大学出版社, 2014.Lü K L, Xu Y Z, Tan Z M. Dynamic Meteorology(2nd Ed). Nanjing: Nanjing University Press, 2014. [43] 吴息, 孙朋杰, 熊海星, 等. 利用常规气象资料建立的导线覆冰模型. 大气科学学报, 2012, 35(3): 335-341. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201203008.htmWu X, Sun P J, Xiong H X, et al. A conductor icing model based on parameters of conventional meteorological observations. Trans Atmos Sci, 2012, 35(3): 335-341. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201203008.htm [44] Jones K F. A simple model for freezing rain ice loads. Atmos Res, 1998, 46(1/2): 87-97.